This is part of the array type support and has not been fully completed. The following functions are implemented 1. fe array type support and implementation of array function, support array syntax analysis and planning 2. Support import array type data through insert into 3. Support select array type data 4. Only the array type is supported on the value lie of the duplicate table this pr merge some code from #4655 #4650 #4644 #4643 #4623 #2979
561 lines
19 KiB
Python
Executable File
561 lines
19 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
|
|
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
"""
|
|
# This script will generate the implementation of the simple vector functions for the BE.
|
|
# These include:
|
|
# - Arithmetic functions
|
|
# - Binary functions
|
|
# - Cast functions
|
|
#
|
|
# The script outputs (run: 'src/common/function/gen_vector_functions.py')
|
|
# - header and implemention for above functions:
|
|
# - src/gen_cpp/opcode/vector_functions.[h/cc]
|
|
# - python file that contains the metadata for those functions:
|
|
# - src/gen_cpp/generated_vector_functions.py
|
|
"""
|
|
|
|
import string
|
|
import os
|
|
|
|
filter_binary_op = string.Template("\
|
|
bool VectorComputeFunctions::${fn_signature}(\n\
|
|
Expr* expr, VectorizedRowBatch* batch) {\n\
|
|
int n = batch->size();\n\
|
|
if (0 == n) {\n\
|
|
return false;\n\
|
|
}\n\
|
|
int* sel = batch->selected();\n\
|
|
Expr* op1 = expr->children()[0];\n\
|
|
Expr* op2 = expr->children()[1];\n\
|
|
batch->add_column(expr->output_column(), expr->type());\n\
|
|
if (expr->is_constant()) {\n\
|
|
${native_type1}* val1 = reinterpret_cast<${native_type1}*>(op1->get_value(NULL));\n\
|
|
${native_type2}* val2 = reinterpret_cast<${native_type2}*>(op2->get_value(NULL));\n\
|
|
if (val1 == NULL || val2 == NULL) return false;\n\
|
|
if (!(*val1 ${native_op} *val2)) batch->set_size(0);\n\
|
|
} else if (op1->is_constant()) {\n\
|
|
${native_type1}* value = reinterpret_cast<${native_type1}*>(op1->get_value(NULL));\n\
|
|
if (NULL == value || !op2->evaluate(batch)) return false;\n\
|
|
${native_type1}* vector1\n\
|
|
= reinterpret_cast<${native_type1}*>(batch->column(op2->output_column())->col_data());\n\
|
|
\n\
|
|
int new_size = 0;\n\
|
|
if (batch->selected_in_use()) {\n\
|
|
for (int j = 0; j != n; ++j) {\n\
|
|
int i = sel[j];\n\
|
|
if (*value ${native_op} vector1[i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
batch->set_size(new_size);\n\
|
|
} else {\n\
|
|
for (int i = 0; i != n; ++i) {\n\
|
|
if (*value ${native_op} vector1[i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
\n\
|
|
if (new_size < n) {\n\
|
|
batch->set_size(new_size);\n\
|
|
batch->set_selected_in_use(true);\n\
|
|
}\n\
|
|
}\n\
|
|
} else if (op2->is_constant()) {\n\
|
|
${native_type2}* value = reinterpret_cast<${native_type2}*>(op2->get_value(NULL));\n\
|
|
if (NULL == value || !op1->evaluate(batch)) return false;\n\
|
|
${native_type1}* vector1\n\
|
|
= reinterpret_cast<${native_type1}*>(batch->column(op1->output_column())->col_data());\n\
|
|
\n\
|
|
int new_size = 0;\n\
|
|
if (batch->selected_in_use()) {\n\
|
|
for (int j = 0; j != n; ++j) {\n\
|
|
int i = sel[j];\n\
|
|
if (vector1[i] ${native_op} *value) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
batch->set_size(new_size);\n\
|
|
} else {\n\
|
|
for (int i = 0; i != n; ++i) {\n\
|
|
if (vector1[i] ${native_op} *value) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
\n\
|
|
if (new_size < n) {\n\
|
|
batch->set_size(new_size);\n\
|
|
batch->set_selected_in_use(true);\n\
|
|
}\n\
|
|
}\n\
|
|
} else {\n\
|
|
if (!op1->evaluate(batch) || !op2->evaluate(batch)) return false;\n\
|
|
${native_type1}* vector1\n\
|
|
= reinterpret_cast<${native_type1}*>(batch->column(op1->output_column())->col_data());\n\
|
|
${native_type2}* vector2\n\
|
|
= reinterpret_cast<${native_type2}*>(batch->column(op2->output_column())->col_data());\n\
|
|
\n\
|
|
int new_size = 0;\n\
|
|
if (batch->selected_in_use()) {\n\
|
|
for (int j = 0; j != n; ++j) {\n\
|
|
int i = sel[j];\n\
|
|
if (vector1[i] ${native_op} vector2[i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
batch->set_size(new_size);\n\
|
|
} else {\n\
|
|
for (int i = 0; i != n; ++i) {\n\
|
|
if (vector1[i] ${native_op} vector2[i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
if (new_size < n) {\n\
|
|
batch->set_size(new_size);\n\
|
|
batch->set_selected_in_use(true);\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
return true;\n\
|
|
}\n\n")
|
|
|
|
filter_in_op = string.Template("\
|
|
bool VectorComputeFunctions::${fn_signature}(\n\
|
|
Expr* expr, VectorizedRowBatch* batch) {\n\
|
|
int n = batch->size();\n\
|
|
if (0 == n) {\n\
|
|
return true;\n\
|
|
}\n\
|
|
batch->add_column(expr->output_column(), expr->type());\n\
|
|
int* sel = batch->selected();\n\
|
|
int num_children = expr->get_num_children();\n\
|
|
Expr* op1 = expr->children()[0];\n\
|
|
InPredicate *in_pred = static_cast<InPredicate*>(expr);\n\
|
|
\n\
|
|
if (op1->is_constant()) {\n\
|
|
void* value = op1->get_value(NULL);\n\
|
|
if (!in_pred->hybird_set()->find(value)) {\n\
|
|
batch->set_size(0);\n\
|
|
return true;\n\
|
|
}\n\
|
|
\n\
|
|
if (num_children > 1) {\n\
|
|
${native_type1}* v = reinterpret_cast<${native_type1}*>(value);\n\
|
|
${native_type1}* vectors[num_children];\n\
|
|
for (int i = 1; i < num_children; ++i) {\n\
|
|
if (expr->get_child(i)->evaluate(batch)) return false;\n\
|
|
vectors[i] = reinterpret_cast<${native_type1}*>(batch->column(expr->get_child(i)->output_column())->col_data());\n\
|
|
}\n\
|
|
\n\
|
|
int new_size = 0;\n\
|
|
if (batch->selected_in_use()) {\n\
|
|
for (int j = 0; j != n; ++j) {\n\
|
|
int i = sel[j];\n\
|
|
for (int k = 1; k < num_children; ++k) {\n\
|
|
if (*v == vectors[k][i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
break;\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
batch->set_size(new_size);\n\
|
|
} else {\n\
|
|
for (int i = 0; i != n; ++i) {\n\
|
|
for (int k = 1; k < num_children; ++k) {\n\
|
|
if (*v == vectors[k][i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
break;\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
\n\
|
|
if (new_size < n) {\n\
|
|
batch->set_size(new_size);\n\
|
|
batch->set_selected_in_use(true);\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
} else {\n\
|
|
int c1 = op1->evaluate(batch);\n\
|
|
DCHECK(c1 >= 0);\n\
|
|
${native_type1}* vector1 \n\
|
|
=reinterpret_cast<${native_type1}*>(batch->column(op1->output_column())->col_data());\n\
|
|
if (0 != in_pred->hybird_set()->size()) {\n\
|
|
int new_size = 0;\n\
|
|
if (batch->selected_in_use()) {\n\
|
|
for (int j = 0; j != n; ++j) {\n\
|
|
int i = sel[j];\n\
|
|
if (in_pred->hybird_set()->find(&vector1[i])) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
batch->set_size(new_size);\n\
|
|
} else {\n\
|
|
for (int i = 0; i != n; ++i) {\n\
|
|
if (in_pred->hybird_set()->find(&vector1[i])) {\n\
|
|
sel[new_size++] = i;\n\
|
|
}\n\
|
|
}\n\
|
|
\n\
|
|
if (new_size < n) {\n\
|
|
batch->set_size(new_size);\n\
|
|
batch->set_selected_in_use(true);\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
\n\
|
|
if (num_children > 1) {\n\
|
|
${native_type1}* vectors[num_children];\n\
|
|
for (int i = 1; i < num_children; ++i) {\n\
|
|
if (!expr->get_child(i)->evaluate(batch)) return false;\n\
|
|
vectors[i] = reinterpret_cast<${native_type1}*>(batch->column(expr->get_child(i)->output_column())->col_data());\n\
|
|
}\n\
|
|
\n\
|
|
int new_size = 0;\n\
|
|
if (batch->selected_in_use()) {\n\
|
|
for (int j = 0; j != n; ++j) {\n\
|
|
int i = sel[j];\n\
|
|
for (int k = 1; k < num_children; ++k) {\n\
|
|
if (vector1[i] == vectors[k][i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
break;\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
batch->set_size(new_size);\n\
|
|
} else {\n\
|
|
for (int i = 0; i != n; ++i) {\n\
|
|
for (int k = 1; k < num_children; ++k) {\n\
|
|
if (vector1[i] == vectors[k][i]) {\n\
|
|
sel[new_size++] = i;\n\
|
|
break;\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
\n\
|
|
if (new_size < n) {\n\
|
|
batch->set_size(new_size);\n\
|
|
batch->set_selected_in_use(true);\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
}\n\
|
|
return true;\n\
|
|
}\n\n")
|
|
|
|
python_template = string.Template("\
|
|
['${fn_name}', '${return_type}', [${args}], 'VectorComputeFunctions::${fn_signature}', []], \n")
|
|
|
|
# Mapping of function to template
|
|
templates = {
|
|
'Filter_Eq': filter_binary_op,
|
|
'Filter_Ne': filter_binary_op,
|
|
'Filter_Gt': filter_binary_op,
|
|
'Filter_Lt': filter_binary_op,
|
|
'Filter_Ge': filter_binary_op,
|
|
'Filter_Le': filter_binary_op,
|
|
'Filter_In': filter_in_op,
|
|
}
|
|
|
|
# Some aggregate types that are useful for defining functions
|
|
types = {
|
|
'BOOLEAN': ['BOOLEAN'],
|
|
'TINYINT': ['TINYINT'],
|
|
'SMALLINT': ['SMALLINT'],
|
|
'INT': ['INT'],
|
|
'BIGINT': ['BIGINT'],
|
|
'LARGEINT': ['LARGEINT'],
|
|
'FLOAT': ['FLOAT'],
|
|
'DOUBLE': ['DOUBLE'],
|
|
'STRING': ['VARCHAR'],
|
|
'DATE': ['DATE'],
|
|
'DATETIME': ['DATETIME'],
|
|
'DECIMALV2': ['DECIMALV2'],
|
|
'NATIVE_INT_TYPES': ['TINYINT', 'SMALLINT', 'INT', 'BIGINT'],
|
|
'INT_TYPES': ['TINYINT', 'SMALLINT', 'INT', 'BIGINT', 'LARGEINT'],
|
|
'FLOAT_TYPES': ['FLOAT', 'DOUBLE'],
|
|
'NUMERIC_TYPES': ['TINYINT', 'SMALLINT', 'INT', 'BIGINT', 'FLOAT', 'DOUBLE'],
|
|
'NATIVE_TYPES': ['BOOLEAN', 'TINYINT', 'SMALLINT', 'INT', 'BIGINT', 'FLOAT', 'DOUBLE'],
|
|
'STRCAST_TYPES': ['BOOLEAN', 'SMALLINT', 'INT', 'BIGINT', 'FLOAT', 'DOUBLE'],
|
|
'ALL_TYPES': ['BOOLEAN', 'TINYINT', 'SMALLINT', 'INT', 'BIGINT', 'LARGEINT', 'FLOAT',\
|
|
'DOUBLE', 'VARCHAR', 'DATETIME', 'DECIMALV2'],
|
|
'MAX_TYPES': ['BIGINT', 'LARGEINT', 'DOUBLE', 'DECIMALV2'],
|
|
}
|
|
|
|
# Operation, [ReturnType], [[Args1], [Args2], ... [ArgsN]]
|
|
functions = [
|
|
# BinaryPredicates
|
|
['Filter_Eq', ['BOOLEAN'], [['ALL_TYPES'], ['ALL_TYPES']]],
|
|
['Filter_Ne', ['BOOLEAN'], [['ALL_TYPES'], ['ALL_TYPES']]],
|
|
['Filter_Gt', ['BOOLEAN'], [['ALL_TYPES'], ['ALL_TYPES']]],
|
|
['Filter_Lt', ['BOOLEAN'], [['ALL_TYPES'], ['ALL_TYPES']]],
|
|
['Filter_Ge', ['BOOLEAN'], [['ALL_TYPES'], ['ALL_TYPES']]],
|
|
['Filter_Le', ['BOOLEAN'], [['ALL_TYPES'], ['ALL_TYPES']]],
|
|
|
|
# InPredicates
|
|
['Filter_In', ['BOOLEAN'], [['ALL_TYPES']]],
|
|
]
|
|
|
|
native_types = {
|
|
'BOOLEAN': 'bool',
|
|
'TINYINT': 'char',
|
|
'SMALLINT': 'short',
|
|
'INT': 'int',
|
|
'BIGINT': 'long',
|
|
'LARGEINT': '__int128',
|
|
'FLOAT': 'float',
|
|
'DOUBLE': 'double',
|
|
'VARCHAR': 'StringValue',
|
|
'DATE': 'DateTimeValue',
|
|
'DATETIME': 'DateTimeValue',
|
|
'DECIMALV2': 'DecimalV2Value',
|
|
}
|
|
|
|
# Portable type used in the function implementation
|
|
implemented_types = {
|
|
'BOOLEAN': 'bool',
|
|
'TINYINT': 'int8_t',
|
|
'SMALLINT': 'int16_t',
|
|
'INT': 'int32_t',
|
|
'BIGINT': 'int64_t',
|
|
'LARGEINT': '__int128',
|
|
'FLOAT': 'float',
|
|
'DOUBLE': 'double',
|
|
'VARCHAR': 'StringValue',
|
|
'DATE': 'DateTimeValue',
|
|
'DATETIME': 'DateTimeValue',
|
|
'DECIMALV2': 'DecimalV2Value',
|
|
}
|
|
|
|
native_ops = {
|
|
'Filter_Eq': '==',
|
|
'Filter_Ne': '!=',
|
|
'Filter_Gt': '>',
|
|
'Filter_Lt': '<',
|
|
'Filter_Ge': '>=',
|
|
'Filter_Le': '<=',
|
|
'Eq': '==',
|
|
'Ne': '!=',
|
|
'Gt': '>',
|
|
'Lt': '<',
|
|
'Ge': '>=',
|
|
'Le': '<=',
|
|
'BITAND': '&',
|
|
'BITNOT': '~',
|
|
'BITOR': '|',
|
|
'BITXOR': '^',
|
|
'DIVIDE': '/',
|
|
'EQ': '==',
|
|
'GT': '>',
|
|
'GE': '>=',
|
|
'INT_DIVIDE': '/',
|
|
'SUBTRACT': '-',
|
|
'MOD': '%',
|
|
'MULTIPLY': '*',
|
|
'LT': '<',
|
|
'LE': '<=',
|
|
'NE': '!=',
|
|
'ADD': '+',
|
|
}
|
|
|
|
native_funcs = {
|
|
'EQ': 'Eq',
|
|
'LE': 'Le',
|
|
'LT': 'Lt',
|
|
'NE': 'Ne',
|
|
'GE': 'Ge',
|
|
'GT': 'Gt',
|
|
}
|
|
|
|
cc_preamble = '\
|
|
// This is a generated file, DO NOT EDIT IT.\n\
|
|
// To add new functions, see impala/common/function-registry/gen_vector_functions.py\n\
|
|
\n\
|
|
#include "gen_cpp/opcode/vector-functions.h"\n\
|
|
#include "exprs/case_expr.h"\n\
|
|
#include "exprs/expr.h"\n\
|
|
#include "exprs/in_predicate.h"\n\
|
|
#include "runtime/string_value.hpp"\n\
|
|
#include "runtime/vectorized_row_batch.h"\n\
|
|
#include "util/string_parser.hpp"\n\
|
|
#include <boost/lexical_cast.hpp>\n\
|
|
\n\
|
|
using namespace boost;\n\
|
|
using namespace std;\n\
|
|
\n\
|
|
namespace doris { \n\
|
|
\n'
|
|
|
|
cc_epilogue = '\
|
|
}\n'
|
|
|
|
h_preamble = '\
|
|
// This is a generated file, DO NOT EDIT IT.\n\
|
|
// To add new functions, see impala/common/function-registry/gen_vector_functions.py\n\
|
|
\n\
|
|
#ifndef DORIS_OPCODE_VECTOR_FUNCTIONS_H\n\
|
|
#define DORIS_OPCODE_VECTOR_FUNCTIONS_H\n\
|
|
\n\
|
|
namespace doris {\n\
|
|
class Expr;\n\
|
|
class OpcodeRegistry;\n\
|
|
class VectorizedRowBatch;\n\
|
|
\n\
|
|
class VectorComputeFunctions {\n\
|
|
public:\n'
|
|
|
|
h_epilogue = '\
|
|
};\n\
|
|
\n\
|
|
}\n\
|
|
\n\
|
|
#endif\n'
|
|
|
|
python_preamble = '\
|
|
#!/usr/bin/env python\n\
|
|
# Licensed to the Apache Software Foundation (ASF) under one \n\
|
|
# or more contributor license agreements. See the NOTICE file \n\
|
|
# distributed with this work for additional information \n\
|
|
# regarding copyright ownership. The ASF licenses this file \n\
|
|
# to you under the Apache License, Version 2.0 (the \n\
|
|
# "License"); you may not use this file except in compliance \n\
|
|
# with the License. You may obtain a copy of the License at \n\
|
|
# \n\
|
|
# http://www.apache.org/licenses/LICENSE-2.0\n\
|
|
# \n\
|
|
# Unless required by applicable law or agreed to in writing, software\n\
|
|
# distributed under the License is distributed on an "AS IS" BASIS,\n\
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n\
|
|
# See the License for the specific language governing permissions and\n\
|
|
# limitations under the License.\n\
|
|
\n\
|
|
# This is a generated file, DO NOT EDIT IT.\n\
|
|
# To add new functions, see impala/common/function-registry/gen_opcodes.py\n\
|
|
\n\
|
|
functions = [\n'
|
|
|
|
python_epilogue = ']'
|
|
|
|
header_template = string.Template("\
|
|
static bool ${fn_signature}(\n\
|
|
Expr* e, VectorizedRowBatch* batch);\n")
|
|
|
|
BE_PATH = "../gen_cpp/opcode/"
|
|
if not os.path.exists(BE_PATH):
|
|
os.makedirs(BE_PATH)
|
|
|
|
def initialize_sub(op, return_type, arg_types):
|
|
"""
|
|
Expand the signature data for template substitution. Returns
|
|
a dictionary with all the entries for all the templates used in this script
|
|
"""
|
|
sub = {}
|
|
sub["fn_name"] = op
|
|
sub["fn_signature"] = op
|
|
sub["return_type"] = return_type
|
|
sub["args"] = ""
|
|
if op in native_ops:
|
|
sub["native_op"] = native_ops[op]
|
|
for idx in range(0, len(arg_types)):
|
|
arg = arg_types[idx]
|
|
sub["fn_signature"] += "_" + native_types[arg]
|
|
sub["native_type" + repr(idx + 1)] = implemented_types[arg]
|
|
sub["args"] += "'" + arg + "', "
|
|
return sub
|
|
|
|
if __name__ == "__main__":
|
|
h_file = open(BE_PATH + 'vector-functions.h', 'w')
|
|
cc_file = open(BE_PATH + 'vector-functions.cc', 'w')
|
|
python_file = open('generated_vector_functions.py', 'w')
|
|
h_file.write(h_preamble)
|
|
cc_file.write(cc_preamble)
|
|
python_file.write(python_preamble)
|
|
|
|
# Generate functions and headers
|
|
for func_data in functions:
|
|
op = func_data[0]
|
|
# If a specific template has been specified, use that one.
|
|
if len(func_data) >= 4:
|
|
template = func_data[3]
|
|
else:
|
|
# Skip functions with no template (shouldn't be auto-generated)
|
|
if not op in templates:
|
|
continue
|
|
template = templates[op]
|
|
|
|
# Expand all arguments
|
|
return_types = []
|
|
for ret in func_data[1]:
|
|
for t in types[ret]:
|
|
return_types.append(t)
|
|
signatures = []
|
|
for args in func_data[2]:
|
|
expanded_arg = []
|
|
for arg in args:
|
|
for t in types[arg]:
|
|
expanded_arg.append(t)
|
|
signatures.append(expanded_arg)
|
|
|
|
# Put arguments into substitution structure
|
|
num_functions = 0
|
|
for args in signatures:
|
|
num_functions = max(num_functions, len(args))
|
|
num_functions = max(num_functions, len(return_types))
|
|
num_args = len(signatures)
|
|
|
|
# Validate the input is correct
|
|
if len(return_types) != 1 and len(return_types) != num_functions:
|
|
print("Invalid Declaration: " + func_data)
|
|
sys.exit(1)
|
|
|
|
for args in signatures:
|
|
if len(args) != 1 and len(args) != num_functions:
|
|
print("Invalid Declaration: " + func_data)
|
|
sys.exit(1)
|
|
|
|
# Iterate over every function signature to generate
|
|
for i in range(0, num_functions):
|
|
if len(return_types) == 1:
|
|
return_type = return_types[0]
|
|
else:
|
|
return_type = return_types[i]
|
|
|
|
arg_types = []
|
|
for j in range(0, num_args):
|
|
if len(signatures[j]) == 1:
|
|
arg_types.append(signatures[j][0])
|
|
else:
|
|
arg_types.append(signatures[j][i])
|
|
|
|
# At this point, 'return_type' is a single type and 'arg_types'
|
|
# is a list of single types
|
|
sub = initialize_sub(op, return_type, arg_types)
|
|
|
|
h_file.write(header_template.substitute(sub))
|
|
cc_file.write(template.substitute(sub))
|
|
python_file.write(python_template.substitute(sub))
|
|
|
|
h_file.write(h_epilogue)
|
|
cc_file.write(cc_epilogue)
|
|
python_file.write(python_epilogue)
|
|
h_file.close()
|
|
cc_file.close()
|
|
python_file.close()
|