Files
doris/be/test/olap/segcompaction_test.cpp
zhengyu a7180c5ad8 [fix](segcompaction) fix segcompaction failed for newly created segment (#15022) (#15023)
Currently, newly created segment could be chosen to be compaction
candidate, which is prone to bugs and segment file open failures. We
should skip last (maybe active) segment while doing segcompaction.
2022-12-19 14:17:58 +08:00

582 lines
23 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "common/config.h"
#include "env/env_posix.h"
#include "gen_cpp/olap_file.pb.h"
#include "olap/data_dir.h"
#include "olap/row_block.h"
#include "olap/row_cursor.h"
#include "olap/rowset/beta_rowset_reader.h"
#include "olap/rowset/beta_rowset_writer.h"
#include "olap/rowset/rowset_factory.h"
#include "olap/rowset/rowset_reader_context.h"
#include "olap/rowset/rowset_writer.h"
#include "olap/rowset/rowset_writer_context.h"
#include "olap/storage_engine.h"
#include "olap/tablet_schema.h"
#include "olap/utils.h"
#include "runtime/exec_env.h"
#include "runtime/mem_pool.h"
#include "runtime/memory/mem_tracker.h"
#include "util/file_utils.h"
#include "util/slice.h"
namespace doris {
using namespace ErrorCode;
static const uint32_t MAX_PATH_LEN = 1024;
StorageEngine* l_engine = nullptr;
static const std::string lTestDir = "./data_test/data/segcompaction_test";
class SegCompactionTest : public testing::Test {
public:
SegCompactionTest() : _data_dir(std::make_unique<DataDir>(lTestDir)) {
_data_dir->update_capacity();
}
void SetUp() {
config::enable_segcompaction = true;
config::enable_storage_vectorization = true;
config::tablet_map_shard_size = 1;
config::txn_map_shard_size = 1;
config::txn_shard_size = 1;
char buffer[MAX_PATH_LEN];
EXPECT_NE(getcwd(buffer, MAX_PATH_LEN), nullptr);
config::storage_root_path = std::string(buffer) + "/data_test";
EXPECT_TRUE(FileUtils::remove_all(config::storage_root_path).ok());
EXPECT_TRUE(FileUtils::create_dir(config::storage_root_path).ok());
std::vector<StorePath> paths;
paths.emplace_back(config::storage_root_path, -1);
doris::EngineOptions options;
options.store_paths = paths;
Status s = doris::StorageEngine::open(options, &l_engine);
EXPECT_TRUE(s.ok()) << s.to_string();
ExecEnv* exec_env = doris::ExecEnv::GetInstance();
exec_env->set_storage_engine(l_engine);
EXPECT_TRUE(FileUtils::create_dir(lTestDir).ok());
l_engine->start_bg_threads();
}
void TearDown() {
if (l_engine != nullptr) {
l_engine->stop();
delete l_engine;
l_engine = nullptr;
}
config::enable_segcompaction = false;
}
protected:
OlapReaderStatistics _stats;
bool check_dir(std::vector<std::string>& vec) {
std::vector<std::string> result;
for (const auto& entry : std::filesystem::directory_iterator(lTestDir)) {
result.push_back(std::filesystem::path(entry.path()).filename());
}
LOG(INFO) << "expected ls:" << std::endl;
for (auto& i : vec) {
LOG(INFO) << i;
}
LOG(INFO) << "acutal ls:" << std::endl;
for (auto& i : result) {
LOG(INFO) << i;
}
if (result.size() != vec.size()) {
return false;
} else {
for (auto& i : vec) {
if (std::find(result.begin(), result.end(), i) == result.end()) {
return false;
}
}
}
return true;
}
// (k1 int, k2 varchar(20), k3 int) duplicated key (k1, k2)
void create_tablet_schema(TabletSchemaSPtr tablet_schema) {
TabletSchemaPB tablet_schema_pb;
tablet_schema_pb.set_keys_type(DUP_KEYS);
tablet_schema_pb.set_num_short_key_columns(2);
tablet_schema_pb.set_num_rows_per_row_block(1024);
tablet_schema_pb.set_compress_kind(COMPRESS_NONE);
tablet_schema_pb.set_next_column_unique_id(4);
ColumnPB* column_1 = tablet_schema_pb.add_column();
column_1->set_unique_id(1);
column_1->set_name("k1");
column_1->set_type("INT");
column_1->set_is_key(true);
column_1->set_length(4);
column_1->set_index_length(4);
column_1->set_is_nullable(true);
column_1->set_is_bf_column(false);
ColumnPB* column_2 = tablet_schema_pb.add_column();
column_2->set_unique_id(2);
column_2->set_name("k2");
column_2->set_type(
"INT"); // TODO change to varchar(20) when dict encoding for string is supported
column_2->set_length(4);
column_2->set_index_length(4);
column_2->set_is_nullable(true);
column_2->set_is_key(true);
column_2->set_is_nullable(true);
column_2->set_is_bf_column(false);
ColumnPB* column_3 = tablet_schema_pb.add_column();
column_3->set_unique_id(3);
column_3->set_name("v1");
column_3->set_type("INT");
column_3->set_length(4);
column_3->set_is_key(false);
column_3->set_is_nullable(false);
column_3->set_is_bf_column(false);
column_3->set_aggregation("SUM");
tablet_schema->init_from_pb(tablet_schema_pb);
}
// use different id to avoid conflict
void create_rowset_writer_context(int64_t id, TabletSchemaSPtr tablet_schema,
RowsetWriterContext* rowset_writer_context) {
RowsetId rowset_id;
rowset_id.init(id);
// rowset_writer_context->data_dir = _data_dir.get();
rowset_writer_context->rowset_id = rowset_id;
rowset_writer_context->tablet_id = 12345;
rowset_writer_context->tablet_schema_hash = 1111;
rowset_writer_context->partition_id = 10;
rowset_writer_context->rowset_type = BETA_ROWSET;
rowset_writer_context->rowset_dir = lTestDir;
rowset_writer_context->rowset_state = VISIBLE;
rowset_writer_context->tablet_schema = tablet_schema;
rowset_writer_context->version.first = 10;
rowset_writer_context->version.second = 10;
}
void create_and_init_rowset_reader(Rowset* rowset, RowsetReaderContext& context,
RowsetReaderSharedPtr* result) {
auto s = rowset->create_reader(result);
EXPECT_EQ(Status::OK(), s);
EXPECT_TRUE(*result != nullptr);
s = (*result)->init(&context);
EXPECT_EQ(Status::OK(), s);
}
private:
std::unique_ptr<DataDir> _data_dir;
};
TEST_F(SegCompactionTest, SegCompactionThenRead) {
config::enable_segcompaction = true;
config::enable_storage_vectorization = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema);
RowsetSharedPtr rowset;
const int num_segments = 15;
const uint32_t rows_per_segment = 4096;
config::segcompaction_small_threshold = 6000; // set threshold above
// rows_per_segment
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10047, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := rid
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10047_0.dat");
ls.push_back("10047_1.dat");
ls.push_back("10047_2.dat");
ls.push_back("10047_3.dat");
ls.push_back("10047_4.dat");
ls.push_back("10047_5.dat");
ls.push_back("10047_6.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
RowBlock* output_block;
uint32_t num_rows_read = 0;
while ((s = rowset_reader->next_block(&output_block)) == Status::OK()) {
EXPECT_TRUE(output_block != nullptr);
EXPECT_GT(output_block->row_num(), 0);
EXPECT_EQ(0, output_block->pos());
EXPECT_EQ(output_block->row_num(), output_block->limit());
EXPECT_EQ(return_columns, output_block->row_block_info().column_ids);
// after sort merge segments, k1 will be 0, 1, 2, 10, 11, 12, 20, 21, 22, ..., 40950, 40951, 40952
for (int i = 0; i < output_block->row_num(); ++i) {
char* field1 = output_block->field_ptr(i, 0);
char* field2 = output_block->field_ptr(i, 1);
char* field3 = output_block->field_ptr(i, 2);
// test null bit
EXPECT_FALSE(*reinterpret_cast<bool*>(field1));
EXPECT_FALSE(*reinterpret_cast<bool*>(field2));
EXPECT_FALSE(*reinterpret_cast<bool*>(field3));
uint32_t k1 = *reinterpret_cast<uint32_t*>(field1 + 1);
uint32_t k2 = *reinterpret_cast<uint32_t*>(field2 + 1);
uint32_t k3 = *reinterpret_cast<uint32_t*>(field3 + 1);
EXPECT_EQ(100 * k3 + k2, k1);
num_rows_read++;
}
}
EXPECT_EQ(Status::Error<END_OF_FILE>(), s);
EXPECT_TRUE(output_block == nullptr);
EXPECT_EQ(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
//EXPECT_EQ(segment_num_rows.size(), num_segments);
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_EQ(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_ooooOOoOooooooooO) {
config::enable_segcompaction = true;
config::enable_storage_vectorization = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema);
RowsetSharedPtr rowset;
config::segcompaction_small_threshold = 6000; // set threshold above
// rows_per_segment
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10048, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 4;
uint32_t rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 2;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 8;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
// ooooOOoOooooooooO
ls.push_back("10048_0.dat"); // oooo
ls.push_back("10048_1.dat"); // O
ls.push_back("10048_2.dat"); // O
ls.push_back("10048_3.dat"); // o
ls.push_back("10048_4.dat"); // O
ls.push_back("10048_5.dat"); // oooooooo
ls.push_back("10048_6.dat"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_OoOoO) {
config::enable_segcompaction = true;
config::enable_storage_vectorization = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema);
RowsetSharedPtr rowset;
config::segcompaction_small_threshold = 6000; // set threshold above
config::segcompaction_threshold_segment_num = 5;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10049, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 1;
uint32_t rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
MemPool mem_pool;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &mem_pool);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &mem_pool);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &mem_pool);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10049_0.dat"); // O
ls.push_back("10049_1.dat"); // o
ls.push_back("10049_2.dat"); // O
ls.push_back("10049_3.dat"); // o
ls.push_back("10049_4.dat"); // O
EXPECT_TRUE(check_dir(ls));
}
}
} // namespace doris
// @brief Test Stub