Files
doris/be/src/vec/aggregate_functions/aggregate_function_stddev.h
Gabriel 3b46242483 [feature-wip] Optimize Decimal type (#10794)
* [feature-wip](decimalv3) support decimalv3

* [feature-wip] Optimize Decimal type

Co-authored-by: liaoxin <liaoxinbit@126.com>
2022-07-14 10:50:50 +08:00

328 lines
11 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include "common/status.h"
#include "vec/aggregate_functions/aggregate_function.h"
#include "vec/columns/columns_number.h"
#include "vec/data_types/data_type_decimal.h"
#include "vec/data_types/data_type_nullable.h"
#include "vec/data_types/data_type_number.h"
#include "vec/io/io_helper.h"
namespace doris::vectorized {
template <typename T, bool is_stddev>
struct BaseData {
BaseData() : mean(0.0), m2(0.0), count(0) {}
virtual ~BaseData() = default;
void write(BufferWritable& buf) const {
write_binary(mean, buf);
write_binary(m2, buf);
write_binary(count, buf);
}
void read(BufferReadable& buf) {
read_binary(mean, buf);
read_binary(m2, buf);
read_binary(count, buf);
}
void reset() {
mean = 0.0;
m2 = 0.0;
count = 0;
}
double get_result(double res) const {
if constexpr (is_stddev) {
return std::sqrt(res);
} else {
return res;
}
}
double get_pop_result() const {
if (count == 1) {
return 0.0;
}
double res = m2 / count;
return get_result(res);
}
double get_samp_result() const {
double res = m2 / (count - 1);
return get_result(res);
}
void merge(const BaseData& rhs) {
if (rhs.count == 0) {
return;
}
double delta = mean - rhs.mean;
double sum_count = count + rhs.count;
mean = rhs.mean + delta * count / sum_count;
m2 = rhs.m2 + m2 + (delta * delta) * rhs.count * count / sum_count;
count = sum_count;
}
void add(const IColumn* column, size_t row_num) {
const auto& sources = static_cast<const ColumnVector<T>&>(*column);
double source_data = sources.get_data()[row_num];
double delta = source_data - mean;
double r = delta / (1 + count);
mean += r;
m2 += count * delta * r;
count += 1;
}
static DataTypePtr get_return_type() { return std::make_shared<DataTypeNumber<Float64>>(); }
double mean;
double m2;
int64_t count;
};
template <typename T, bool is_stddev>
struct BaseDatadecimal {
BaseDatadecimal() : mean(0), m2(0), count(0) {}
virtual ~BaseDatadecimal() = default;
void write(BufferWritable& buf) const {
write_binary(mean, buf);
write_binary(m2, buf);
write_binary(count, buf);
}
void read(BufferReadable& buf) {
read_binary(mean, buf);
read_binary(m2, buf);
read_binary(count, buf);
}
void reset() {
mean = DecimalV2Value();
m2 = DecimalV2Value();
count = {};
}
DecimalV2Value get_result(DecimalV2Value res) const {
if constexpr (is_stddev) {
return DecimalV2Value::sqrt(res);
} else {
return res;
}
}
DecimalV2Value get_pop_result() const {
DecimalV2Value new_count = DecimalV2Value();
if (count == 1) {
return new_count;
}
DecimalV2Value res = m2 / new_count.assign_from_double(count);
return get_result(res);
}
DecimalV2Value get_samp_result() const {
DecimalV2Value new_count = DecimalV2Value();
DecimalV2Value res = m2 / new_count.assign_from_double(count - 1);
return get_result(res);
}
void merge(const BaseDatadecimal& rhs) {
if (rhs.count == 0) {
return;
}
DecimalV2Value new_count = DecimalV2Value();
new_count.assign_from_double(count);
DecimalV2Value rhs_count = DecimalV2Value();
rhs_count.assign_from_double(rhs.count);
DecimalV2Value delta = mean - rhs.mean;
DecimalV2Value sum_count = new_count + rhs_count;
mean = rhs.mean + delta * (new_count / sum_count);
m2 = rhs.m2 + m2 + (delta * delta) * (rhs_count * new_count / sum_count);
count += rhs.count;
}
void add(const IColumn* column, size_t row_num) {
const auto& sources = static_cast<const ColumnDecimal<T>&>(*column);
Field field = sources[row_num];
auto decimal_field = field.template get<DecimalField<T>>();
int128_t value;
if (decimal_field.get_scale() > DecimalV2Value::SCALE) {
value = static_cast<int128_t>(decimal_field.get_value()) /
(decimal_field.get_scale_multiplier() / DecimalV2Value::ONE_BILLION);
} else {
value = static_cast<int128_t>(decimal_field.get_value()) *
(DecimalV2Value::ONE_BILLION / decimal_field.get_scale_multiplier());
}
DecimalV2Value source_data = DecimalV2Value(value);
DecimalV2Value new_count = DecimalV2Value();
new_count.assign_from_double(count);
DecimalV2Value increase_count = DecimalV2Value();
increase_count.assign_from_double(1 + count);
DecimalV2Value delta = source_data - mean;
DecimalV2Value r = delta / increase_count;
mean += r;
m2 += new_count * delta * r;
count += 1;
}
static DataTypePtr get_return_type() {
return std::make_shared<DataTypeDecimal<Decimal128>>(27, 9);
}
DecimalV2Value mean;
DecimalV2Value m2;
int64_t count;
};
template <typename T, typename Data>
struct PopData : Data {
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<Decimal128>,
ColumnVector<Float64>>;
void insert_result_into(IColumn& to) const {
auto& col = assert_cast<ColVecResult&>(to);
if constexpr (IsDecimalNumber<T>) {
col.get_data().push_back(this->get_pop_result().value());
} else {
col.get_data().push_back(this->get_pop_result());
}
}
};
template <typename Data>
struct StddevName : Data {
static const char* name() { return "stddev"; }
};
template <typename Data>
struct VarianceName : Data {
static const char* name() { return "variance"; }
};
template <typename Data>
struct VarianceSampName : Data {
static const char* name() { return "variance_samp"; }
};
template <typename Data>
struct StddevSampName : Data {
static const char* name() { return "stddev_samp"; }
};
template <typename T, typename Data>
struct SampData : Data {
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<Decimal128>,
ColumnVector<Float64>>;
void insert_result_into(IColumn& to) const {
ColumnNullable& nullable_column = assert_cast<ColumnNullable&>(to);
if (this->count == 1 || this->count == 0) {
nullable_column.insert_default();
} else {
auto& col = static_cast<ColVecResult&>(nullable_column.get_nested_column());
if constexpr (IsDecimalNumber<T>) {
col.get_data().push_back(this->get_samp_result().value());
} else {
col.get_data().push_back(this->get_samp_result());
}
nullable_column.get_null_map_data().push_back(0);
}
}
};
template <bool is_pop, typename Data, bool is_nullable>
class AggregateFunctionSampVariance
: public IAggregateFunctionDataHelper<
Data, AggregateFunctionSampVariance<is_pop, Data, is_nullable>> {
public:
AggregateFunctionSampVariance(const DataTypes& argument_types_)
: IAggregateFunctionDataHelper<
Data, AggregateFunctionSampVariance<is_pop, Data, is_nullable>>(
argument_types_, {}) {}
String get_name() const override { return Data::name(); }
DataTypePtr get_return_type() const override {
if constexpr (is_pop) {
return Data::get_return_type();
} else {
return make_nullable(Data::get_return_type());
}
}
void add(AggregateDataPtr __restrict place, const IColumn** columns, size_t row_num,
Arena*) const override {
if constexpr (is_pop) {
this->data(place).add(columns[0], row_num);
} else {
if constexpr (is_nullable) {
const auto* nullable_column = check_and_get_column<ColumnNullable>(columns[0]);
if (!nullable_column->is_null_at(row_num)) {
this->data(place).add(&nullable_column->get_nested_column(), row_num);
}
} else {
this->data(place).add(columns[0], row_num);
}
}
}
void reset(AggregateDataPtr __restrict place) const override { this->data(place).reset(); }
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs,
Arena*) const override {
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr __restrict place, BufferWritable& buf) const override {
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr __restrict place, BufferReadable& buf,
Arena*) const override {
this->data(place).read(buf);
}
void insert_result_into(ConstAggregateDataPtr __restrict place, IColumn& to) const override {
this->data(place).insert_result_into(to);
}
};
//samp function it's always nullables, it's need to handle nullable column
//so return type and add function should processing null values
template <typename Data, bool is_nullable>
class AggregateFunctionSamp final : public AggregateFunctionSampVariance<false, Data, is_nullable> {
public:
AggregateFunctionSamp(const DataTypes& argument_types_)
: AggregateFunctionSampVariance<false, Data, is_nullable>(argument_types_) {}
};
//pop function have use AggregateFunctionNullBase function, so needn't processing null values
template <typename Data, bool is_nullable>
class AggregateFunctionPop final : public AggregateFunctionSampVariance<true, Data, is_nullable> {
public:
AggregateFunctionPop(const DataTypes& argument_types_)
: AggregateFunctionSampVariance<true, Data, is_nullable>(argument_types_) {}
};
} // namespace doris::vectorized