* [feature-wip](decimalv3) support decimalv3 * [feature-wip] Optimize Decimal type Co-authored-by: liaoxin <liaoxinbit@126.com>
328 lines
11 KiB
C++
328 lines
11 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "common/status.h"
|
|
#include "vec/aggregate_functions/aggregate_function.h"
|
|
#include "vec/columns/columns_number.h"
|
|
#include "vec/data_types/data_type_decimal.h"
|
|
#include "vec/data_types/data_type_nullable.h"
|
|
#include "vec/data_types/data_type_number.h"
|
|
#include "vec/io/io_helper.h"
|
|
namespace doris::vectorized {
|
|
|
|
template <typename T, bool is_stddev>
|
|
struct BaseData {
|
|
BaseData() : mean(0.0), m2(0.0), count(0) {}
|
|
virtual ~BaseData() = default;
|
|
|
|
void write(BufferWritable& buf) const {
|
|
write_binary(mean, buf);
|
|
write_binary(m2, buf);
|
|
write_binary(count, buf);
|
|
}
|
|
|
|
void read(BufferReadable& buf) {
|
|
read_binary(mean, buf);
|
|
read_binary(m2, buf);
|
|
read_binary(count, buf);
|
|
}
|
|
|
|
void reset() {
|
|
mean = 0.0;
|
|
m2 = 0.0;
|
|
count = 0;
|
|
}
|
|
|
|
double get_result(double res) const {
|
|
if constexpr (is_stddev) {
|
|
return std::sqrt(res);
|
|
} else {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
double get_pop_result() const {
|
|
if (count == 1) {
|
|
return 0.0;
|
|
}
|
|
double res = m2 / count;
|
|
return get_result(res);
|
|
}
|
|
|
|
double get_samp_result() const {
|
|
double res = m2 / (count - 1);
|
|
return get_result(res);
|
|
}
|
|
|
|
void merge(const BaseData& rhs) {
|
|
if (rhs.count == 0) {
|
|
return;
|
|
}
|
|
double delta = mean - rhs.mean;
|
|
double sum_count = count + rhs.count;
|
|
mean = rhs.mean + delta * count / sum_count;
|
|
m2 = rhs.m2 + m2 + (delta * delta) * rhs.count * count / sum_count;
|
|
count = sum_count;
|
|
}
|
|
|
|
void add(const IColumn* column, size_t row_num) {
|
|
const auto& sources = static_cast<const ColumnVector<T>&>(*column);
|
|
double source_data = sources.get_data()[row_num];
|
|
|
|
double delta = source_data - mean;
|
|
double r = delta / (1 + count);
|
|
mean += r;
|
|
m2 += count * delta * r;
|
|
count += 1;
|
|
}
|
|
|
|
static DataTypePtr get_return_type() { return std::make_shared<DataTypeNumber<Float64>>(); }
|
|
|
|
double mean;
|
|
double m2;
|
|
int64_t count;
|
|
};
|
|
|
|
template <typename T, bool is_stddev>
|
|
struct BaseDatadecimal {
|
|
BaseDatadecimal() : mean(0), m2(0), count(0) {}
|
|
virtual ~BaseDatadecimal() = default;
|
|
|
|
void write(BufferWritable& buf) const {
|
|
write_binary(mean, buf);
|
|
write_binary(m2, buf);
|
|
write_binary(count, buf);
|
|
}
|
|
|
|
void read(BufferReadable& buf) {
|
|
read_binary(mean, buf);
|
|
read_binary(m2, buf);
|
|
read_binary(count, buf);
|
|
}
|
|
|
|
void reset() {
|
|
mean = DecimalV2Value();
|
|
m2 = DecimalV2Value();
|
|
count = {};
|
|
}
|
|
|
|
DecimalV2Value get_result(DecimalV2Value res) const {
|
|
if constexpr (is_stddev) {
|
|
return DecimalV2Value::sqrt(res);
|
|
} else {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
DecimalV2Value get_pop_result() const {
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
if (count == 1) {
|
|
return new_count;
|
|
}
|
|
DecimalV2Value res = m2 / new_count.assign_from_double(count);
|
|
return get_result(res);
|
|
}
|
|
|
|
DecimalV2Value get_samp_result() const {
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
DecimalV2Value res = m2 / new_count.assign_from_double(count - 1);
|
|
return get_result(res);
|
|
}
|
|
|
|
void merge(const BaseDatadecimal& rhs) {
|
|
if (rhs.count == 0) {
|
|
return;
|
|
}
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
new_count.assign_from_double(count);
|
|
DecimalV2Value rhs_count = DecimalV2Value();
|
|
rhs_count.assign_from_double(rhs.count);
|
|
|
|
DecimalV2Value delta = mean - rhs.mean;
|
|
DecimalV2Value sum_count = new_count + rhs_count;
|
|
mean = rhs.mean + delta * (new_count / sum_count);
|
|
m2 = rhs.m2 + m2 + (delta * delta) * (rhs_count * new_count / sum_count);
|
|
count += rhs.count;
|
|
}
|
|
|
|
void add(const IColumn* column, size_t row_num) {
|
|
const auto& sources = static_cast<const ColumnDecimal<T>&>(*column);
|
|
Field field = sources[row_num];
|
|
auto decimal_field = field.template get<DecimalField<T>>();
|
|
int128_t value;
|
|
if (decimal_field.get_scale() > DecimalV2Value::SCALE) {
|
|
value = static_cast<int128_t>(decimal_field.get_value()) /
|
|
(decimal_field.get_scale_multiplier() / DecimalV2Value::ONE_BILLION);
|
|
} else {
|
|
value = static_cast<int128_t>(decimal_field.get_value()) *
|
|
(DecimalV2Value::ONE_BILLION / decimal_field.get_scale_multiplier());
|
|
}
|
|
DecimalV2Value source_data = DecimalV2Value(value);
|
|
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
new_count.assign_from_double(count);
|
|
DecimalV2Value increase_count = DecimalV2Value();
|
|
increase_count.assign_from_double(1 + count);
|
|
|
|
DecimalV2Value delta = source_data - mean;
|
|
DecimalV2Value r = delta / increase_count;
|
|
mean += r;
|
|
m2 += new_count * delta * r;
|
|
count += 1;
|
|
}
|
|
|
|
static DataTypePtr get_return_type() {
|
|
return std::make_shared<DataTypeDecimal<Decimal128>>(27, 9);
|
|
}
|
|
|
|
DecimalV2Value mean;
|
|
DecimalV2Value m2;
|
|
int64_t count;
|
|
};
|
|
|
|
template <typename T, typename Data>
|
|
struct PopData : Data {
|
|
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<Decimal128>,
|
|
ColumnVector<Float64>>;
|
|
void insert_result_into(IColumn& to) const {
|
|
auto& col = assert_cast<ColVecResult&>(to);
|
|
if constexpr (IsDecimalNumber<T>) {
|
|
col.get_data().push_back(this->get_pop_result().value());
|
|
} else {
|
|
col.get_data().push_back(this->get_pop_result());
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Data>
|
|
struct StddevName : Data {
|
|
static const char* name() { return "stddev"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
struct VarianceName : Data {
|
|
static const char* name() { return "variance"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
struct VarianceSampName : Data {
|
|
static const char* name() { return "variance_samp"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
struct StddevSampName : Data {
|
|
static const char* name() { return "stddev_samp"; }
|
|
};
|
|
|
|
template <typename T, typename Data>
|
|
struct SampData : Data {
|
|
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<Decimal128>,
|
|
ColumnVector<Float64>>;
|
|
void insert_result_into(IColumn& to) const {
|
|
ColumnNullable& nullable_column = assert_cast<ColumnNullable&>(to);
|
|
if (this->count == 1 || this->count == 0) {
|
|
nullable_column.insert_default();
|
|
} else {
|
|
auto& col = static_cast<ColVecResult&>(nullable_column.get_nested_column());
|
|
if constexpr (IsDecimalNumber<T>) {
|
|
col.get_data().push_back(this->get_samp_result().value());
|
|
} else {
|
|
col.get_data().push_back(this->get_samp_result());
|
|
}
|
|
nullable_column.get_null_map_data().push_back(0);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <bool is_pop, typename Data, bool is_nullable>
|
|
class AggregateFunctionSampVariance
|
|
: public IAggregateFunctionDataHelper<
|
|
Data, AggregateFunctionSampVariance<is_pop, Data, is_nullable>> {
|
|
public:
|
|
AggregateFunctionSampVariance(const DataTypes& argument_types_)
|
|
: IAggregateFunctionDataHelper<
|
|
Data, AggregateFunctionSampVariance<is_pop, Data, is_nullable>>(
|
|
argument_types_, {}) {}
|
|
|
|
String get_name() const override { return Data::name(); }
|
|
|
|
DataTypePtr get_return_type() const override {
|
|
if constexpr (is_pop) {
|
|
return Data::get_return_type();
|
|
} else {
|
|
return make_nullable(Data::get_return_type());
|
|
}
|
|
}
|
|
|
|
void add(AggregateDataPtr __restrict place, const IColumn** columns, size_t row_num,
|
|
Arena*) const override {
|
|
if constexpr (is_pop) {
|
|
this->data(place).add(columns[0], row_num);
|
|
} else {
|
|
if constexpr (is_nullable) {
|
|
const auto* nullable_column = check_and_get_column<ColumnNullable>(columns[0]);
|
|
if (!nullable_column->is_null_at(row_num)) {
|
|
this->data(place).add(&nullable_column->get_nested_column(), row_num);
|
|
}
|
|
} else {
|
|
this->data(place).add(columns[0], row_num);
|
|
}
|
|
}
|
|
}
|
|
|
|
void reset(AggregateDataPtr __restrict place) const override { this->data(place).reset(); }
|
|
|
|
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs,
|
|
Arena*) const override {
|
|
this->data(place).merge(this->data(rhs));
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr __restrict place, BufferWritable& buf) const override {
|
|
this->data(place).write(buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr __restrict place, BufferReadable& buf,
|
|
Arena*) const override {
|
|
this->data(place).read(buf);
|
|
}
|
|
|
|
void insert_result_into(ConstAggregateDataPtr __restrict place, IColumn& to) const override {
|
|
this->data(place).insert_result_into(to);
|
|
}
|
|
};
|
|
|
|
//samp function it's always nullables, it's need to handle nullable column
|
|
//so return type and add function should processing null values
|
|
template <typename Data, bool is_nullable>
|
|
class AggregateFunctionSamp final : public AggregateFunctionSampVariance<false, Data, is_nullable> {
|
|
public:
|
|
AggregateFunctionSamp(const DataTypes& argument_types_)
|
|
: AggregateFunctionSampVariance<false, Data, is_nullable>(argument_types_) {}
|
|
};
|
|
|
|
//pop function have use AggregateFunctionNullBase function, so needn't processing null values
|
|
template <typename Data, bool is_nullable>
|
|
class AggregateFunctionPop final : public AggregateFunctionSampVariance<true, Data, is_nullable> {
|
|
public:
|
|
AggregateFunctionPop(const DataTypes& argument_types_)
|
|
: AggregateFunctionSampVariance<true, Data, is_nullable>(argument_types_) {}
|
|
};
|
|
|
|
} // namespace doris::vectorized
|