Files
doris/be/src/vec/columns/column_dictionary.h
starocean999 c4341d3d43 [fix](like)prevent null pointer by unimplemented like_vec functions (#12910)
* [fix](like)prevent null pointer by unimplemented like_vec functions

* fix pushed like predicate on dict encoded column bug
2022-09-27 10:02:10 +08:00

458 lines
18 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <parallel_hashmap/phmap.h>
#include <algorithm>
#include "runtime/string_value.h"
#include "vec/columns/column.h"
#include "vec/columns/column_string.h"
#include "vec/columns/predicate_column.h"
#include "vec/core/types.h"
namespace doris::vectorized {
/**
* For low cardinality string columns, using ColumnDictionary can reduce memory
* usage and improve query efficiency.
* For equal predicate comparisons, convert the predicate constant to encodings
* according to the dictionary, so that encoding comparisons are used instead
* of string comparisons to improve performance.
* For range comparison predicates, it is necessary to sort the dictionary
* contents, convert the encoding column, and then compare the encoding directly.
* If the read data page contains plain-encoded data pages, the dictionary
* columns are converted into PredicateColumn for processing.
* Currently ColumnDictionary is only used for storage layer.
*/
template <typename T>
class ColumnDictionary final : public COWHelper<IColumn, ColumnDictionary<T>> {
static_assert(IsNumber<T>);
private:
friend class COWHelper<IColumn, ColumnDictionary>;
ColumnDictionary() {}
ColumnDictionary(const size_t n) : _codes(n) {}
ColumnDictionary(const ColumnDictionary& src) : _codes(src._codes.begin(), src._codes.end()) {}
ColumnDictionary(FieldType type) : _type(type) {}
public:
using Self = ColumnDictionary;
using value_type = T;
using Container = PaddedPODArray<value_type>;
using DictContainer = PaddedPODArray<StringValue>;
using HashValueContainer = PaddedPODArray<uint32_t>; // used for bloom filter
bool is_column_dictionary() const override { return true; }
size_t size() const override { return _codes.size(); }
[[noreturn]] StringRef get_data_at(size_t n) const override {
LOG(FATAL) << "get_data_at not supported in ColumnDictionary";
}
void insert_from(const IColumn& src, size_t n) override {
LOG(FATAL) << "insert_from not supported in ColumnDictionary";
}
void insert_range_from(const IColumn& src, size_t start, size_t length) override {
LOG(FATAL) << "insert_range_from not supported in ColumnDictionary";
}
void insert_indices_from(const IColumn& src, const int* indices_begin,
const int* indices_end) override {
LOG(FATAL) << "insert_indices_from not supported in ColumnDictionary";
}
void pop_back(size_t n) override { LOG(FATAL) << "pop_back not supported in ColumnDictionary"; }
void update_hash_with_value(size_t n, SipHash& hash) const override {
LOG(FATAL) << "update_hash_with_value not supported in ColumnDictionary";
}
void insert_data(const char* pos, size_t /*length*/) override {
LOG(FATAL) << "insert_data not supported in ColumnDictionary";
}
void insert_default() override { _codes.push_back(_dict.get_null_code()); }
void clear() override {
_codes.clear();
_dict_code_converted = false;
_dict.clear_hash_values();
}
// TODO: Make dict memory usage more precise
size_t byte_size() const override { return _codes.size() * sizeof(_codes[0]); }
size_t allocated_bytes() const override { return byte_size(); }
void protect() override {}
void get_permutation(bool reverse, size_t limit, int nan_direction_hint,
IColumn::Permutation& res) const override {
LOG(FATAL) << "get_permutation not supported in ColumnDictionary";
}
void reserve(size_t n) override {
_reserve_size = n;
_codes.reserve(n);
}
const char* get_family_name() const override { return "ColumnDictionary"; }
[[noreturn]] MutableColumnPtr clone_resized(size_t size) const override {
LOG(FATAL) << "clone_resized not supported in ColumnDictionary";
}
void insert(const Field& x) override {
LOG(FATAL) << "insert not supported in ColumnDictionary";
}
Field operator[](size_t n) const override { return _codes[n]; }
void get(size_t n, Field& res) const override { res = (*this)[n]; }
Container& get_data() { return _codes; }
const Container& get_data() const { return _codes; }
// it's impossable to use ComplexType as key , so we don't have to implemnt them
[[noreturn]] StringRef serialize_value_into_arena(size_t n, Arena& arena,
char const*& begin) const override {
LOG(FATAL) << "serialize_value_into_arena not supported in ColumnDictionary";
}
[[noreturn]] const char* deserialize_and_insert_from_arena(const char* pos) override {
LOG(FATAL) << "deserialize_and_insert_from_arena not supported in ColumnDictionary";
}
[[noreturn]] int compare_at(size_t n, size_t m, const IColumn& rhs,
int nan_direction_hint) const override {
LOG(FATAL) << "compare_at not supported in ColumnDictionary";
}
void get_extremes(Field& min, Field& max) const override {
LOG(FATAL) << "get_extremes not supported in ColumnDictionary";
}
bool can_be_inside_nullable() const override { return true; }
bool is_fixed_and_contiguous() const override { return true; }
size_t size_of_value_if_fixed() const override { return sizeof(T); }
[[noreturn]] StringRef get_raw_data() const override {
LOG(FATAL) << "get_raw_data not supported in ColumnDictionary";
}
[[noreturn]] bool structure_equals(const IColumn& rhs) const override {
LOG(FATAL) << "structure_equals not supported in ColumnDictionary";
}
[[noreturn]] ColumnPtr filter(const IColumn::Filter& filt,
ssize_t result_size_hint) const override {
LOG(FATAL) << "filter not supported in ColumnDictionary";
};
[[noreturn]] ColumnPtr permute(const IColumn::Permutation& perm, size_t limit) const override {
LOG(FATAL) << "permute not supported in ColumnDictionary";
};
[[noreturn]] ColumnPtr replicate(const IColumn::Offsets& replicate_offsets) const override {
LOG(FATAL) << "replicate not supported in ColumnDictionary";
};
[[noreturn]] MutableColumns scatter(IColumn::ColumnIndex num_columns,
const IColumn::Selector& selector) const override {
LOG(FATAL) << "scatter not supported in ColumnDictionary";
}
void append_data_by_selector(MutableColumnPtr& res,
const IColumn::Selector& selector) const override {
LOG(FATAL) << "append_data_by_selector is not supported in ColumnDictionary!";
}
Status filter_by_selector(const uint16_t* sel, size_t sel_size, IColumn* col_ptr) override {
auto* res_col = reinterpret_cast<vectorized::ColumnString*>(col_ptr);
res_col->get_offsets().reserve(sel_size);
res_col->get_chars().reserve(_dict.avg_str_len() * sel_size);
for (size_t i = 0; i < sel_size; i++) {
uint16_t n = sel[i];
auto& code = reinterpret_cast<T&>(_codes[n]);
auto value = _dict.get_value(code);
res_col->insert_data_without_reserve(value.ptr, value.len);
}
return Status::OK();
}
void replace_column_data(const IColumn&, size_t row, size_t self_row = 0) override {
LOG(FATAL) << "should not call replace_column_data in ColumnDictionary";
}
void replace_column_data_default(size_t self_row = 0) override {
LOG(FATAL) << "should not call replace_column_data_default in ColumnDictionary";
}
void insert_many_dict_data(const int32_t* data_array, size_t start_index,
const StringRef* dict_array, size_t data_num,
uint32_t dict_num) override {
if (_dict.empty()) {
_dict.reserve(dict_num);
for (uint32_t i = 0; i < dict_num; ++i) {
auto value = StringValue(dict_array[i].data, dict_array[i].size);
_dict.insert_value(value);
}
}
char* end_ptr = (char*)_codes.get_end_ptr();
memcpy(end_ptr, data_array + start_index, data_num * sizeof(T));
end_ptr += data_num * sizeof(T);
_codes.set_end_ptr(end_ptr);
}
void convert_dict_codes_if_necessary() override {
if (!is_dict_sorted()) {
_dict.sort();
_dict_sorted = true;
}
if (!is_dict_code_converted()) {
for (size_t i = 0; i < size(); ++i) {
_codes[i] = _dict.convert_code(_codes[i]);
}
_dict_code_converted = true;
}
}
int32_t find_code(const StringValue& value) const { return _dict.find_code(value); }
int32_t find_code_by_bound(const StringValue& value, bool greater, bool eq) const {
return _dict.find_code_by_bound(value, greater, eq);
}
void generate_hash_values_for_runtime_filter() override {
_dict.generate_hash_values_for_runtime_filter(_type);
}
uint32_t get_hash_value(uint32_t idx) const { return _dict.get_hash_value(_codes[idx]); }
void find_codes(const phmap::flat_hash_set<StringValue>& values,
std::vector<vectorized::UInt8>& selected) const {
return _dict.find_codes(values, selected);
}
bool is_dict_sorted() const { return _dict_sorted; }
bool is_dict_code_converted() const { return _dict_code_converted; }
MutableColumnPtr convert_to_predicate_column_if_dictionary() override {
if (is_dict_sorted() && !is_dict_code_converted()) {
convert_dict_codes_if_necessary();
}
auto res = vectorized::PredicateColumnType<TYPE_STRING>::create();
res->reserve(_reserve_size);
for (size_t i = 0; i < _codes.size(); ++i) {
auto& code = reinterpret_cast<T&>(_codes[i]);
auto value = _dict.get_value(code);
res->insert_data(value.ptr, value.len);
}
clear();
_dict.clear();
return res;
}
inline const StringValue& get_value(value_type code) const { return _dict.get_value(code); }
inline StringValue get_shrink_value(value_type code) const {
StringValue result = _dict.get_value(code);
if (_type == OLAP_FIELD_TYPE_CHAR) {
result.len = strnlen(result.ptr, result.len);
}
return result;
}
class Dictionary {
public:
Dictionary() : _dict_data(new DictContainer()), _total_str_len(0) {};
void reserve(size_t n) { _dict_data->reserve(n); }
void insert_value(StringValue& value) {
_dict_data->push_back_without_reserve(value);
_total_str_len += value.len;
}
int32_t find_code(const StringValue& value) const {
for (size_t i = 0; i < _dict_data->size(); i++) {
if ((*_dict_data)[i] == value) {
return i;
}
}
return -2; // -1 is null code
}
T get_null_code() const { return -1; }
inline StringValue& get_value(T code) { return (*_dict_data)[code]; }
inline const StringValue& get_value(T code) const { return (*_dict_data)[code]; }
// The function is only used in the runtime filter feature
inline void generate_hash_values_for_runtime_filter(FieldType type) {
if (_hash_values.empty()) {
_hash_values.resize(_dict_data->size());
for (size_t i = 0; i < _dict_data->size(); i++) {
auto& sv = (*_dict_data)[i];
// The char data is stored in the disk with the schema length,
// and zeros are filled if the length is insufficient
// When reading data, use shrink_char_type_column_suffix_zero(_char_type_idx)
// Remove the suffix 0
// When writing data, use the CharField::consume function to fill in the trailing 0.
// For dictionary data of char type, sv.len is the schema length,
// so use strnlen to remove the 0 at the end to get the actual length.
int32_t len = sv.len;
if (type == OLAP_FIELD_TYPE_CHAR) {
len = strnlen(sv.ptr, sv.len);
}
uint32_t hash_val = HashUtil::murmur_hash3_32(sv.ptr, len, 0);
_hash_values[i] = hash_val;
}
}
}
inline uint32_t get_hash_value(T code) const { return _hash_values[code]; }
// For > , code takes upper_bound - 1; For >= , code takes upper_bound
// For < , code takes upper_bound; For <=, code takes upper_bound - 1
// For example a sorted dict: <'b',0> <'c',1> <'d',2>
// Now the predicate value is 'ccc', 'ccc' is not in the dict, 'ccc' is between 'c' and 'd'.
// std::upper_bound(..., 'ccc') - begin, will return the encoding of 'd', which is 2
// If the predicate is col > 'ccc' and the value of upper_bound-1 is 1,
// then evaluate code > 1 and the result is 'd'.
// If the predicate is col < 'ccc' and the value of upper_bound is 2,
// evaluate code < 2, and the return result is 'b'.
// If the predicate is col >= 'ccc' and the value of upper_bound is 2,
// evaluate code >= 2, and the return result is 'd'.
// If the predicate is col <= 'ccc' and the value of upper_bound-1 is 1,
// evaluate code <= 1, and the returned result is 'b'.
// If the predicate is col < 'a', 'a' is also not in the dict, and 'a' is less than 'b',
// so upper_bound is the code 0 of b, then evaluate code < 0 and returns empty
// If the predicate is col <= 'a' and upper_bound-1 is -1,
// then evaluate code <= -1 and returns empty
int32_t find_code_by_bound(const StringValue& value, bool greater, bool eq) const {
auto code = find_code(value);
if (code >= 0) {
return code;
}
auto bound = std::upper_bound(_dict_data->begin(), _dict_data->end(), value) -
_dict_data->begin();
return greater ? bound - greater + eq : bound - eq;
}
void find_codes(const phmap::flat_hash_set<StringValue>& values,
std::vector<vectorized::UInt8>& selected) const {
size_t dict_word_num = _dict_data->size();
selected.resize(dict_word_num);
selected.assign(dict_word_num, false);
for (size_t i = 0; i < _dict_data->size(); i++) {
if (values.find((*_dict_data)[i]) != values.end()) {
selected[i] = true;
}
}
}
void clear() {
_dict_data->clear();
_code_convert_table.clear();
_hash_values.clear();
}
void clear_hash_values() { _hash_values.clear(); }
void sort() {
size_t dict_size = _dict_data->size();
_code_convert_table.reserve(dict_size);
_perm.resize(dict_size);
for (size_t i = 0; i < dict_size; ++i) {
_perm[i] = i;
}
std::sort(_perm.begin(), _perm.end(),
[&dict_data = *_dict_data, &comparator = _comparator](const size_t a,
const size_t b) {
return comparator(dict_data[a], dict_data[b]);
});
auto new_dict_data = new DictContainer(dict_size);
for (size_t i = 0; i < dict_size; ++i) {
_code_convert_table[_perm[i]] = (T)i;
(*new_dict_data)[i] = (*_dict_data)[_perm[i]];
}
_dict_data.reset(new_dict_data);
}
T convert_code(const T& code) const {
if (get_null_code() == code) {
return code;
}
return _code_convert_table[code];
}
size_t byte_size() { return _dict_data->size() * sizeof((*_dict_data)[0]); }
bool empty() { return _dict_data->empty(); }
size_t avg_str_len() { return empty() ? 0 : _total_str_len / _dict_data->size(); }
private:
StringValue _null_value = StringValue();
StringValue::Comparator _comparator;
// dict code -> dict value
std::unique_ptr<DictContainer> _dict_data;
std::vector<T> _code_convert_table;
// hash value of origin string , used for bloom filter
// It's a trade-off of space for performance
// But in TPC-DS 1GB q60,we see no significant improvement.
// This may because the magnitude of the data is not large enough(in q60, only about 80k rows data is filtered for largest table)
// So we may need more test here.
HashValueContainer _hash_values;
IColumn::Permutation _perm;
size_t _total_str_len;
};
private:
size_t _reserve_size;
bool _dict_sorted = false;
bool _dict_code_converted = false;
Dictionary _dict;
Container _codes;
FieldType _type;
};
template class ColumnDictionary<int32_t>;
using ColumnDictI32 = vectorized::ColumnDictionary<doris::vectorized::Int32>;
} // namespace doris::vectorized