Files
doris/be/src/util/condition_variable.h
sduzh 6fedf5881b [CodeFormat] Clang-format cpp sources (#4965)
Clang-format all c++ source files.
2020-11-28 18:36:49 +08:00

115 lines
4.6 KiB
C++

// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// ConditionVariable wraps pthreads condition variable synchronization or, on
// Windows, simulates it. This functionality is very helpful for having
// several threads wait for an event, as is common with a thread pool managed
// by a master. The meaning of such an event in the (worker) thread pool
// scenario is that additional tasks are now available for processing. It is
// used in Chrome in the DNS prefetching system to notify worker threads that
// a queue now has items (tasks) which need to be tended to. A related use
// would have a pool manager waiting on a ConditionVariable, waiting for a
// thread in the pool to announce (signal) that there is now more room in a
// (bounded size) communications queue for the manager to deposit tasks, or,
// as a second example, that the queue of tasks is completely empty and all
// workers are waiting.
//
// USAGE NOTE 1: spurious signal events are possible with this and
// most implementations of condition variables. As a result, be
// *sure* to retest your condition before proceeding. The following
// is a good example of doing this correctly:
//
// while (!work_to_be_done()) Wait(...);
//
// In contrast do NOT do the following:
//
// if (!work_to_be_done()) Wait(...); // Don't do this.
//
// Especially avoid the above if you are relying on some other thread only
// issuing a signal up *if* there is work-to-do. There can/will
// be spurious signals. Recheck state on waiting thread before
// assuming the signal was intentional. Caveat caller ;-).
//
// USAGE NOTE 2: notify_all() frees up all waiting threads at once,
// which leads to contention for the locks they all held when they
// called wait(). This results in POOR performance. A much better
// approach to getting a lot of threads out of wait() is to have each
// thread (upon exiting wait()) call notify_one() to free up another
// Waiting thread. Look at condition_variable_unittest.cc for
// both examples.
//
// notify_all() can be used nicely during teardown, as it gets the job
// done, and leaves no sleeping threads... and performance is less
// critical at that point.
//
// The semantics of notify_all() are carefully crafted so that *all*
// threads that were waiting when the request was made will indeed
// get signaled. Some implementations mess up, and don't signal them
// all, while others allow the wait to be effectively turned off (for
// a while while waiting threads come around). This implementation
// appears correct, as it will not "lose" any signals, and will guarantee
// that all threads get signaled by notify_all().
//
// This implementation offers support for "performance" in its selection of
// which thread to revive. Performance, in direct contrast with "fairness,"
// assures that the thread that most recently began to wait() is selected by
// Signal to revive. Fairness would (if publicly supported) assure that the
// thread that has wait()ed the longest is selected. The default policy
// may improve performance, as the selected thread may have a greater chance of
// having some of its stack data in various CPU caches.
//
// For a discussion of the many very subtle implementation details, see the FAQ
// at the end of condition_variable_win.cc.
#ifndef DORIS_BE_SRC_UTIL_CONDITION_VARIABLE_H
#define DORIS_BE_SRC_UTIL_CONDITION_VARIABLE_H
#include <pthread.h>
#include "olap/olap_define.h"
namespace doris {
class MonoDelta;
class MonoTime;
class Mutex;
class ConditionVariable {
public:
// Construct a cv for use with ONLY one user lock.
explicit ConditionVariable(Mutex* user_lock);
~ConditionVariable();
// wait() releases the caller's critical section atomically as it starts to
// sleep, and the reacquires it when it is signaled.
void wait() const;
// Like wait(), but only waits up to a certain point in time.
//
// Returns true if we were notify_one()'ed, or false if we reached 'until'.
bool wait_until(const MonoTime& until) const;
// Like wait(), but only waits up to a limited amount of time.
//
// Returns true if we were notify_one()'ed, or false if 'delta' elapsed.
bool wait_for(const MonoDelta& delta) const;
// notify_all() revives all waiting threads.
void notify_all();
// notify_one() revives one waiting thread.
void notify_one();
private:
mutable pthread_cond_t _condition;
pthread_mutex_t* _user_mutex;
DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
};
} // namespace doris
#endif // DORIS_BE_SRC_UTIL_CONDITION_VARIABLE_H