Files
doris/be/src/util/aes_util.cpp
Zhengguo Yang 6c6380969b [refactor] replace boost smart ptr with stl (#6856)
1. replace all boost::shared_ptr to std::shared_ptr
2. replace all boost::scopted_ptr to std::unique_ptr
3. replace all boost::scoped_array to std::unique<T[]>
4. replace all boost:thread to std::thread
2021-11-17 10:18:35 +08:00

178 lines
6.0 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "aes_util.h"
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <cstring>
#include <iostream>
#include <memory>
#include <string>
namespace doris {
static const int AES_MAX_KEY_LENGTH = 256;
const EVP_CIPHER* get_evp_type(const AesMode mode) {
switch (mode) {
case AES_128_ECB:
return EVP_aes_128_ecb();
case AES_128_CBC:
return EVP_aes_128_cbc();
case AES_192_ECB:
return EVP_aes_192_ecb();
case AES_192_CBC:
return EVP_aes_192_cbc();
case AES_256_ECB:
return EVP_aes_256_ecb();
case AES_256_CBC:
return EVP_aes_256_cbc();
default:
return nullptr;
}
}
static uint aes_mode_key_sizes[] = {
128 /* AES_128_ECB */, 192 /* AES_192_ECB */, 256 /* AES_256_ECB */,
128 /* AES_128_CBC */, 192 /* AES_192_CBC */, 256 /* AES_256_CBC */
};
static void aes_create_key(const unsigned char* origin_key, uint32_t key_length,
uint8_t* encrypt_key, AesMode mode) {
const uint key_size = aes_mode_key_sizes[mode] / 8;
uint8_t* origin_key_end = ((uint8_t*)origin_key) + key_length; /* origin key boundary*/
uint8_t* encrypt_key_end; /* encrypt key boundary */
encrypt_key_end = encrypt_key + key_size;
std::memset(encrypt_key, 0, key_size); /* initialize key */
uint8_t* ptr; /* Start of the encrypt key*/
uint8_t* origin_ptr; /* Start of the origin key */
for (ptr = encrypt_key, origin_ptr = (uint8_t*)origin_key; origin_ptr < origin_key_end;
ptr++, origin_ptr++) {
if (ptr == encrypt_key_end) {
/* loop over origin key until we used all key */
ptr = encrypt_key;
}
*ptr ^= *origin_ptr;
}
}
static int do_encrypt(EVP_CIPHER_CTX* aes_ctx, const EVP_CIPHER* cipher,
const unsigned char* source, uint32_t source_length,
const unsigned char* encrypt_key, const unsigned char* iv, bool padding,
unsigned char* encrypt, int* length_ptr) {
int ret = EVP_EncryptInit(aes_ctx, cipher, encrypt_key, iv);
if (ret == 0) {
return ret;
}
ret = EVP_CIPHER_CTX_set_padding(aes_ctx, padding);
if (ret == 0) {
return ret;
}
int u_len = 0;
ret = EVP_EncryptUpdate(aes_ctx, encrypt, &u_len, source, source_length);
if (ret == 0) {
return ret;
}
int f_len = 0;
ret = EVP_EncryptFinal(aes_ctx, encrypt + u_len, &f_len);
*length_ptr = u_len + f_len;
return ret;
}
int AesUtil::encrypt(AesMode mode, const unsigned char* source, uint32_t source_length,
const unsigned char* key, uint32_t key_length, const unsigned char* iv,
bool padding, unsigned char* encrypt) {
EVP_CIPHER_CTX aes_ctx;
const EVP_CIPHER* cipher = get_evp_type(mode);
/* The encrypt key to be used for encryption */
unsigned char encrypt_key[AES_MAX_KEY_LENGTH / 8];
aes_create_key(key, key_length, encrypt_key, mode);
if (cipher == nullptr || (EVP_CIPHER_iv_length(cipher) > 0 && !iv)) {
return AES_BAD_DATA;
}
EVP_CIPHER_CTX_init(&aes_ctx);
int length = 0;
int ret = do_encrypt(&aes_ctx, cipher, source, source_length, encrypt_key, iv, padding, encrypt,
&length);
EVP_CIPHER_CTX_cleanup(&aes_ctx);
if (ret == 0) {
ERR_clear_error();
return AES_BAD_DATA;
} else {
return length;
}
}
static int do_decrypt(EVP_CIPHER_CTX* aes_ctx, const EVP_CIPHER* cipher,
const unsigned char* encrypt, uint32_t encrypt_length,
const unsigned char* encrypt_key, const unsigned char* iv, bool padding,
unsigned char* decrypt_content, int* length_ptr) {
int ret = EVP_DecryptInit(aes_ctx, cipher, encrypt_key, iv);
if (ret == 0) {
return ret;
}
ret = EVP_CIPHER_CTX_set_padding(aes_ctx, padding);
if (ret == 0) {
return ret;
}
int u_len = 0;
ret = EVP_DecryptUpdate(aes_ctx, decrypt_content, &u_len, encrypt, encrypt_length);
if (ret == 0) {
return ret;
}
int f_len = 0;
ret = EVP_DecryptFinal_ex(aes_ctx, decrypt_content + u_len, &f_len);
*length_ptr = u_len + f_len;
return ret;
}
int AesUtil::decrypt(AesMode mode, const unsigned char* encrypt, uint32_t encrypt_length,
const unsigned char* key, uint32_t key_length, const unsigned char* iv,
bool padding, unsigned char* decrypt_content) {
EVP_CIPHER_CTX aes_ctx;
const EVP_CIPHER* cipher = get_evp_type(mode);
/* The encrypt key to be used for decryption */
unsigned char encrypt_key[AES_MAX_KEY_LENGTH / 8];
aes_create_key(key, key_length, encrypt_key, mode);
if (cipher == nullptr || (EVP_CIPHER_iv_length(cipher) > 0 && !iv)) {
return AES_BAD_DATA;
}
EVP_CIPHER_CTX_init(&aes_ctx);
int length = 0;
int ret = do_decrypt(&aes_ctx, cipher, encrypt, encrypt_length, encrypt_key, iv, padding,
decrypt_content, &length);
EVP_CIPHER_CTX_cleanup(&aes_ctx);
if (ret > 0) {
return length;
} else {
ERR_clear_error();
return AES_BAD_DATA;
}
}
} // namespace doris