Files
doris/be/src/pipeline/exec/analytic_source_operator.cpp

496 lines
22 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "analytic_source_operator.h"
#include <string>
#include "pipeline/exec/operator.h"
namespace doris::pipeline {
OPERATOR_CODE_GENERATOR(AnalyticSourceOperator, SourceOperator)
AnalyticLocalState::AnalyticLocalState(RuntimeState* state, OperatorXBase* parent)
: PipelineXLocalState<AnalyticDependency>(state, parent),
_output_block_index(0),
_window_end_position(0),
_next_partition(false),
_rows_start_offset(0),
_rows_end_offset(0),
_fn_place_ptr(nullptr),
_agg_functions_size(0),
_agg_functions_created(false) {}
Status AnalyticLocalState::init(RuntimeState* state, LocalStateInfo& info) {
RETURN_IF_ERROR(PipelineXLocalState<AnalyticDependency>::init(state, info));
SCOPED_TIMER(profile()->total_time_counter());
SCOPED_TIMER(_open_timer);
_agg_arena_pool = std::make_unique<vectorized::Arena>();
auto& p = _parent->cast<AnalyticSourceOperatorX>();
_agg_functions_size = p._agg_functions.size();
_memory_usage_counter = ADD_LABEL_COUNTER(profile(), "MemoryUsage");
_blocks_memory_usage =
profile()->AddHighWaterMarkCounter("Blocks", TUnit::BYTES, "MemoryUsage");
_evaluation_timer = ADD_TIMER(profile(), "EvaluationTime");
_agg_functions.resize(p._agg_functions.size());
for (size_t i = 0; i < _agg_functions.size(); i++) {
_agg_functions[i] = p._agg_functions[i]->clone(state, state->obj_pool());
}
_fn_place_ptr = _agg_arena_pool->aligned_alloc(p._total_size_of_aggregate_states,
p._align_aggregate_states);
if (!p._has_window) { //haven't set window, Unbounded: [unbounded preceding,unbounded following]
_executor.get_next = std::bind<Status>(&AnalyticLocalState::_get_next_for_partition, this,
std::placeholders::_1);
} else if (p._has_range_window) {
if (!p._has_window_end) { //haven't set end, so same as PARTITION, [unbounded preceding, unbounded following]
_executor.get_next = std::bind<Status>(&AnalyticLocalState::_get_next_for_partition,
this, std::placeholders::_1);
} else {
_executor.get_next = std::bind<Status>(&AnalyticLocalState::_get_next_for_range, this,
std::placeholders::_1);
}
} else {
if (!p._has_window_start &&
!p._has_window_end) { //haven't set start and end, same as PARTITION
_executor.get_next = std::bind<Status>(&AnalyticLocalState::_get_next_for_partition,
this, std::placeholders::_1);
} else {
if (p._has_window_start) { //calculate start boundary
TAnalyticWindowBoundary b = p._window.window_start;
if (b.__isset.rows_offset_value) { //[offset , ]
_rows_start_offset = b.rows_offset_value;
if (b.type == TAnalyticWindowBoundaryType::PRECEDING) {
_rows_start_offset *= -1; //preceding--> negative
} //current_row 0
} else { //following positive
DCHECK_EQ(b.type, TAnalyticWindowBoundaryType::CURRENT_ROW); //[current row, ]
_rows_start_offset = 0;
}
}
if (p._has_window_end) { //calculate end boundary
TAnalyticWindowBoundary b = p._window.window_end;
if (b.__isset.rows_offset_value) { //[ , offset]
_rows_end_offset = b.rows_offset_value;
if (b.type == TAnalyticWindowBoundaryType::PRECEDING) {
_rows_end_offset *= -1;
}
} else {
DCHECK_EQ(b.type, TAnalyticWindowBoundaryType::CURRENT_ROW); //[ ,current row]
_rows_end_offset = 0;
}
}
_executor.get_next = std::bind<Status>(&AnalyticLocalState::_get_next_for_rows, this,
std::placeholders::_1);
}
}
_executor.insert_result =
std::bind<void>(&AnalyticLocalState::_insert_result_info, this, std::placeholders::_1);
_executor.execute =
std::bind<void>(&AnalyticLocalState::_execute_for_win_func, this, std::placeholders::_1,
std::placeholders::_2, std::placeholders::_3, std::placeholders::_4);
RETURN_IF_CATCH_EXCEPTION(_create_agg_status());
return Status::OK();
}
Status AnalyticLocalState::_reset_agg_status() {
for (size_t i = 0; i < _agg_functions_size; ++i) {
_agg_functions[i]->reset(
_fn_place_ptr +
_parent->cast<AnalyticSourceOperatorX>()._offsets_of_aggregate_states[i]);
}
return Status::OK();
}
Status AnalyticLocalState::_create_agg_status() {
for (size_t i = 0; i < _agg_functions_size; ++i) {
try {
_agg_functions[i]->create(
_fn_place_ptr +
_parent->cast<AnalyticSourceOperatorX>()._offsets_of_aggregate_states[i]);
} catch (...) {
for (int j = 0; j < i; ++j) {
_agg_functions[j]->destroy(
_fn_place_ptr +
_parent->cast<AnalyticSourceOperatorX>()._offsets_of_aggregate_states[j]);
}
throw;
}
}
_agg_functions_created = true;
return Status::OK();
}
Status AnalyticLocalState::_destroy_agg_status() {
if (UNLIKELY(_fn_place_ptr == nullptr || !_agg_functions_created)) {
return Status::OK();
}
for (size_t i = 0; i < _agg_functions_size; ++i) {
_agg_functions[i]->destroy(
_fn_place_ptr +
_parent->cast<AnalyticSourceOperatorX>()._offsets_of_aggregate_states[i]);
}
return Status::OK();
}
//now is execute for lead/lag row_number/rank/dense_rank/ntile functions
//sum min max count avg first_value last_value functions
void AnalyticLocalState::_execute_for_win_func(int64_t partition_start, int64_t partition_end,
int64_t frame_start, int64_t frame_end) {
for (size_t i = 0; i < _agg_functions_size; ++i) {
std::vector<const vectorized::IColumn*> agg_columns;
for (int j = 0; j < _shared_state->agg_input_columns[i].size(); ++j) {
agg_columns.push_back(_shared_state->agg_input_columns[i][j].get());
}
_agg_functions[i]->function()->add_range_single_place(
partition_start, partition_end, frame_start, frame_end,
_fn_place_ptr +
_parent->cast<AnalyticSourceOperatorX>()._offsets_of_aggregate_states[i],
agg_columns.data(), nullptr);
}
}
void AnalyticLocalState::_insert_result_info(int64_t current_block_rows) {
int64_t current_block_row_pos =
_shared_state->input_block_first_row_positions[_output_block_index];
int64_t get_result_start = _shared_state->current_row_position - current_block_row_pos;
if (_parent->cast<AnalyticSourceOperatorX>()._fn_scope ==
vectorized::AnalyticFnScope::PARTITION) {
int64_t get_result_end =
std::min<int64_t>(_shared_state->current_row_position + current_block_rows,
_shared_state->partition_by_end.pos);
_window_end_position =
std::min<int64_t>(get_result_end - current_block_row_pos, current_block_rows);
_shared_state->current_row_position += (_window_end_position - get_result_start);
} else if (_parent->cast<AnalyticSourceOperatorX>()._fn_scope ==
vectorized::AnalyticFnScope::RANGE) {
_window_end_position =
std::min<int64_t>(_order_by_end.pos - current_block_row_pos, current_block_rows);
_shared_state->current_row_position += (_window_end_position - get_result_start);
} else {
_window_end_position++;
_shared_state->current_row_position++;
}
for (int i = 0; i < _agg_functions_size; ++i) {
for (int j = get_result_start; j < _window_end_position; ++j) {
_agg_functions[i]->insert_result_info(
_fn_place_ptr + _parent->cast<AnalyticSourceOperatorX>()
._offsets_of_aggregate_states[i],
_result_window_columns[i].get());
}
}
}
Status AnalyticLocalState::_get_next_for_rows(size_t current_block_rows) {
while (_shared_state->current_row_position < _shared_state->partition_by_end.pos &&
_window_end_position < current_block_rows) {
int64_t range_start, range_end;
if (!_parent->cast<AnalyticSourceOperatorX>()._window.__isset.window_start &&
_parent->cast<AnalyticSourceOperatorX>()._window.window_end.type ==
TAnalyticWindowBoundaryType::
CURRENT_ROW) { //[preceding, current_row],[current_row, following]
range_start = _shared_state->current_row_position;
range_end = _shared_state->current_row_position +
1; //going on calculate,add up data, no need to reset state
} else {
_reset_agg_status();
if (!_parent->cast<AnalyticSourceOperatorX>()
._window.__isset
.window_start) { //[preceding, offset] --unbound: [preceding, following]
range_start = _partition_by_start.pos;
} else {
range_start = _shared_state->current_row_position + _rows_start_offset;
}
range_end = _shared_state->current_row_position + _rows_end_offset + 1;
}
_executor.execute(_partition_by_start.pos, _shared_state->partition_by_end.pos, range_start,
range_end);
_executor.insert_result(current_block_rows);
}
return Status::OK();
}
Status AnalyticLocalState::_get_next_for_partition(size_t current_block_rows) {
if (_next_partition) {
_executor.execute(_partition_by_start.pos, _shared_state->partition_by_end.pos,
_partition_by_start.pos, _shared_state->partition_by_end.pos);
}
_executor.insert_result(current_block_rows);
return Status::OK();
}
Status AnalyticLocalState::_get_next_for_range(size_t current_block_rows) {
while (_shared_state->current_row_position < _shared_state->partition_by_end.pos &&
_window_end_position < current_block_rows) {
if (_shared_state->current_row_position >= _order_by_end.pos) {
_update_order_by_range();
_executor.execute(_order_by_start.pos, _order_by_end.pos, _order_by_start.pos,
_order_by_end.pos);
}
_executor.insert_result(current_block_rows);
}
return Status::OK();
}
void AnalyticLocalState::_update_order_by_range() {
_order_by_start = _order_by_end;
_order_by_end = _shared_state->partition_by_end;
for (size_t i = 0; i < _shared_state->order_by_eq_expr_ctxs.size(); ++i) {
_order_by_end = _dependency->compare_row_to_find_end(_shared_state->ordey_by_column_idxs[i],
_order_by_start, _order_by_end, true);
}
_order_by_start.pos =
_shared_state->input_block_first_row_positions[_order_by_start.block_num] +
_order_by_start.row_num;
_order_by_end.pos = _shared_state->input_block_first_row_positions[_order_by_end.block_num] +
_order_by_end.row_num;
// `_order_by_end` will be assigned to `_order_by_start` next time,
// so make it a valid position.
if (_order_by_end.row_num == _shared_state->input_blocks[_order_by_end.block_num].rows()) {
_order_by_end.block_num++;
_order_by_end.row_num = 0;
}
}
Status AnalyticLocalState::init_result_columns() {
if (!_window_end_position) {
_result_window_columns.resize(_agg_functions_size);
for (size_t i = 0; i < _agg_functions_size; ++i) {
_result_window_columns[i] =
_agg_functions[i]->data_type()->create_column(); //return type
}
}
return Status::OK();
}
//calculate pos have arrive partition end, so it's needed to init next partition, and update the boundary of partition
bool AnalyticLocalState::init_next_partition(vectorized::BlockRowPos found_partition_end) {
if ((_shared_state->current_row_position >= _shared_state->partition_by_end.pos) &&
((_shared_state->partition_by_end.pos == 0) ||
(_shared_state->partition_by_end.pos != found_partition_end.pos))) {
_partition_by_start = _shared_state->partition_by_end;
_shared_state->partition_by_end = found_partition_end;
_shared_state->current_row_position = _partition_by_start.pos;
_reset_agg_status();
return true;
}
return false;
}
Status AnalyticLocalState::output_current_block(vectorized::Block* block) {
block->swap(std::move(_shared_state->input_blocks[_output_block_index]));
_blocks_memory_usage->add(-block->allocated_bytes());
mem_tracker()->consume(-block->allocated_bytes());
if (_shared_state->origin_cols.size() < block->columns()) {
block->erase_not_in(_shared_state->origin_cols);
}
DCHECK(_parent->cast<AnalyticSourceOperatorX>()._change_to_nullable_flags.size() ==
_result_window_columns.size());
for (size_t i = 0; i < _result_window_columns.size(); ++i) {
if (_parent->cast<AnalyticSourceOperatorX>()._change_to_nullable_flags[i]) {
block->insert({make_nullable(std::move(_result_window_columns[i])),
make_nullable(_agg_functions[i]->data_type()), ""});
} else {
block->insert(
{std::move(_result_window_columns[i]), _agg_functions[i]->data_type(), ""});
}
}
_output_block_index++;
_window_end_position = 0;
return Status::OK();
}
void AnalyticLocalState::release_mem() {
_agg_arena_pool = nullptr;
std::vector<vectorized::Block> tmp_input_blocks;
_shared_state->input_blocks.swap(tmp_input_blocks);
std::vector<std::vector<vectorized::MutableColumnPtr>> tmp_agg_input_columns;
_shared_state->agg_input_columns.swap(tmp_agg_input_columns);
std::vector<vectorized::MutableColumnPtr> tmp_result_window_columns;
_result_window_columns.swap(tmp_result_window_columns);
}
AnalyticSourceOperatorX::AnalyticSourceOperatorX(ObjectPool* pool, const TPlanNode& tnode,
const DescriptorTbl& descs)
: OperatorX<AnalyticLocalState>(pool, tnode, descs),
_window(tnode.analytic_node.window),
_intermediate_tuple_id(tnode.analytic_node.intermediate_tuple_id),
_output_tuple_id(tnode.analytic_node.output_tuple_id),
_has_window(tnode.analytic_node.__isset.window),
_has_range_window(tnode.analytic_node.window.type == TAnalyticWindowType::RANGE),
_has_window_start(tnode.analytic_node.window.__isset.window_start),
_has_window_end(tnode.analytic_node.window.__isset.window_end) {
_fn_scope = vectorized::AnalyticFnScope::PARTITION;
if (tnode.analytic_node.__isset.window &&
tnode.analytic_node.window.type == TAnalyticWindowType::RANGE) {
DCHECK(!_window.__isset.window_start) << "RANGE windows must have UNBOUNDED PRECEDING";
DCHECK(!_window.__isset.window_end ||
_window.window_end.type == TAnalyticWindowBoundaryType::CURRENT_ROW)
<< "RANGE window end bound must be CURRENT ROW or UNBOUNDED FOLLOWING";
if (_window.__isset
.window_end) { //haven't set end, so same as PARTITION, [unbounded preceding, unbounded following]
_fn_scope =
vectorized::AnalyticFnScope::RANGE; //range: [unbounded preceding,current row]
}
} else if (tnode.analytic_node.__isset.window) {
if (_window.__isset.window_start || _window.__isset.window_end) {
_fn_scope = vectorized::AnalyticFnScope::ROWS;
}
}
}
Status AnalyticSourceOperatorX::init(const TPlanNode& tnode, RuntimeState* state) {
RETURN_IF_ERROR(OperatorX<AnalyticLocalState>::init(tnode, state));
const TAnalyticNode& analytic_node = tnode.analytic_node;
size_t agg_size = analytic_node.analytic_functions.size();
for (int i = 0; i < agg_size; ++i) {
vectorized::AggFnEvaluator* evaluator = nullptr;
RETURN_IF_ERROR(vectorized::AggFnEvaluator::create(
_pool, analytic_node.analytic_functions[i], {}, &evaluator));
_agg_functions.emplace_back(evaluator);
}
return Status::OK();
}
Status AnalyticSourceOperatorX::get_block(RuntimeState* state, vectorized::Block* block,
SourceState& source_state) {
auto& local_state = state->get_local_state(id())->cast<AnalyticLocalState>();
SCOPED_TIMER(local_state.profile()->total_time_counter());
if (local_state._shared_state->input_eos &&
(local_state._output_block_index == local_state._shared_state->input_blocks.size() ||
local_state._shared_state->input_total_rows == 0)) {
source_state = SourceState::FINISHED;
return Status::OK();
}
while (!local_state._shared_state->input_eos ||
local_state._output_block_index < local_state._shared_state->input_blocks.size()) {
{
SCOPED_TIMER(local_state._evaluation_timer);
local_state._shared_state->found_partition_end =
local_state._dependency->get_partition_by_end();
}
if (local_state._dependency->refresh_need_more_input()) {
return Status::OK();
}
local_state._next_partition =
local_state.init_next_partition(local_state._shared_state->found_partition_end);
local_state.init_result_columns();
size_t current_block_rows =
local_state._shared_state->input_blocks[local_state._output_block_index].rows();
local_state._executor.get_next(current_block_rows);
if (local_state._window_end_position == current_block_rows) {
break;
}
}
RETURN_IF_ERROR(local_state.output_current_block(block));
RETURN_IF_ERROR(vectorized::VExprContext::filter_block(local_state._conjuncts, block,
block->columns()));
local_state.reached_limit(block, source_state);
return Status::OK();
}
Dependency* AnalyticSourceOperatorX::wait_for_dependency(RuntimeState* state) {
auto& local_state = state->get_local_state(id())->cast<AnalyticLocalState>();
return local_state._dependency->read_blocked_by();
}
Status AnalyticLocalState::close(RuntimeState* state) {
SCOPED_TIMER(profile()->total_time_counter());
SCOPED_TIMER(_close_timer);
if (_closed) {
return Status::OK();
}
for (auto* agg_function : _agg_functions) {
agg_function->close(state);
}
_destroy_agg_status();
release_mem();
return PipelineXLocalState<AnalyticDependency>::close(state);
}
Status AnalyticSourceOperatorX::prepare(RuntimeState* state) {
RETURN_IF_ERROR(OperatorX<AnalyticLocalState>::prepare(state));
DCHECK(_child_x->row_desc().is_prefix_of(_row_descriptor));
_intermediate_tuple_desc = state->desc_tbl().get_tuple_descriptor(_intermediate_tuple_id);
_output_tuple_desc = state->desc_tbl().get_tuple_descriptor(_output_tuple_id);
for (size_t i = 0; i < _agg_functions.size(); ++i) {
SlotDescriptor* intermediate_slot_desc = _intermediate_tuple_desc->slots()[i];
SlotDescriptor* output_slot_desc = _output_tuple_desc->slots()[i];
RETURN_IF_ERROR(_agg_functions[i]->prepare(state, _child_x->row_desc(),
intermediate_slot_desc, output_slot_desc));
_change_to_nullable_flags.push_back(output_slot_desc->is_nullable() &&
!_agg_functions[i]->data_type()->is_nullable());
}
_offsets_of_aggregate_states.resize(_agg_functions.size());
for (size_t i = 0; i < _agg_functions.size(); ++i) {
_offsets_of_aggregate_states[i] = _total_size_of_aggregate_states;
const auto& agg_function = _agg_functions[i]->function();
// aggregate states are aligned based on maximum requirement
_align_aggregate_states = std::max(_align_aggregate_states, agg_function->align_of_data());
_total_size_of_aggregate_states += agg_function->size_of_data();
// If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned.
if (i + 1 < _agg_functions.size()) {
size_t alignment_of_next_state = _agg_functions[i + 1]->function()->align_of_data();
if ((alignment_of_next_state & (alignment_of_next_state - 1)) != 0) {
return Status::RuntimeError("Logical error: align_of_data is not 2^N");
}
/// Extend total_size to next alignment requirement
/// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state.
_total_size_of_aggregate_states =
(_total_size_of_aggregate_states + alignment_of_next_state - 1) /
alignment_of_next_state * alignment_of_next_state;
}
}
return Status::OK();
}
Status AnalyticSourceOperatorX::open(RuntimeState* state) {
RETURN_IF_ERROR(OperatorX<AnalyticLocalState>::open(state));
for (auto* agg_function : _agg_functions) {
RETURN_IF_ERROR(agg_function->open(state));
}
return Status::OK();
}
} // namespace doris::pipeline