Files
doris/be/src/util/bit_util.h
HappenLee 6651d3bf2a SIMD instruction speed up the storage layer (#6089)
* SIMD instruction speed up the storage layer

* 1. add DECHECK in power of 2 int32
2. change vector to array deduce the cost
2021-06-25 11:04:32 +08:00

336 lines
12 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#ifndef DORIS_BE_SRC_COMMON_UTIL_BIT_UTIL_H
#define DORIS_BE_SRC_COMMON_UTIL_BIT_UTIL_H
#include <endian.h>
#include "common/compiler_util.h"
#include "gutil/bits.h"
#include "gutil/port.h"
#include "util/cpu_info.h"
namespace doris {
// Utility class to do standard bit tricks
// TODO: is this in boost or something else like that?
class BitUtil {
public:
// Returns the ceil of value/divisor
static inline int64_t ceil(int64_t value, int64_t divisor) {
return value / divisor + (value % divisor != 0);
}
// Returns 'value' rounded up to the nearest multiple of 'factor'
static inline int64_t round_up(int64_t value, int64_t factor) {
return (value + (factor - 1)) / factor * factor;
}
// Returns the smallest power of two that contains v. Taken from
// http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
// TODO: Pick a better name, as it is not clear what happens when the input is
// already a power of two.
static inline int64_t next_power_of_two(int64_t v) {
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
++v;
return v;
}
// Non hw accelerated pop count.
// TODO: we don't use this in any perf sensitive code paths currently. There
// might be a much faster way to implement this.
static inline int popcount_no_hw(uint64_t x) {
int count = 0;
for (; x != 0; ++count) {
x &= x - 1;
}
return count;
}
// Returns the number of set bits in x
static inline int popcount(uint64_t x) {
if (LIKELY(CpuInfo::is_supported(CpuInfo::POPCNT))) {
return __builtin_popcountl(x);
} else {
return popcount_no_hw(x);
}
}
// Returns the 'num_bits' least-significant bits of 'v'.
static inline uint64_t trailing_bits(uint64_t v, int num_bits) {
if (UNLIKELY(num_bits == 0)) {
return 0;
}
if (UNLIKELY(num_bits >= 64)) {
return v;
}
int n = 64 - num_bits;
return (v << n) >> n;
}
// Returns ceil(log2(x)).
// TODO: this could be faster if we use __builtin_clz. Fix this if this ever shows up
// in a hot path.
static inline int log2(uint64_t x) {
DCHECK_GT(x, 0);
if (x == 1) {
return 0;
}
// Compute result = ceil(log2(x))
// = floor(log2(x - 1)) + 1, for x > 1
// by finding the position of the most significant bit (1-indexed) of x - 1
// (floor(log2(n)) = MSB(n) (0-indexed))
--x;
int result = 1;
while (x >>= 1) {
++result;
}
return result;
}
// Swaps the byte order (i.e. endianess)
static inline int64_t byte_swap(int64_t value) { return __builtin_bswap64(value); }
static inline uint64_t byte_swap(uint64_t value) {
return static_cast<uint64_t>(__builtin_bswap64(value));
}
static inline int32_t byte_swap(int32_t value) { return __builtin_bswap32(value); }
static inline uint32_t byte_swap(uint32_t value) {
return static_cast<uint32_t>(__builtin_bswap32(value));
}
static inline int16_t byte_swap(int16_t value) {
return (((value >> 8) & 0xff) | ((value & 0xff) << 8));
}
static inline uint16_t byte_swap(uint16_t value) {
return static_cast<uint16_t>(byte_swap(static_cast<int16_t>(value)));
}
// Write the swapped bytes into dst. len must be 1, 2, 4 or 8.
static inline void byte_swap(void* dst, void* src, int len) {
switch (len) {
case 1:
*reinterpret_cast<int8_t*>(dst) = *reinterpret_cast<int8_t*>(src);
break;
case 2:
*reinterpret_cast<int16_t*>(dst) = byte_swap(*reinterpret_cast<int16_t*>(src));
break;
case 4:
*reinterpret_cast<int32_t*>(dst) = byte_swap(*reinterpret_cast<int32_t*>(src));
break;
case 8:
*reinterpret_cast<int64_t*>(dst) = byte_swap(*reinterpret_cast<int64_t*>(src));
break;
default:
DCHECK(false);
}
}
// Returns the rounded up to 64 multiple. Used for conversions of bits to i64.
static inline uint32_t round_up_numi64(uint32_t bits) { return (bits + 63) >> 6; }
#if __BYTE_ORDER == __LITTLE_ENDIAN
// Converts to big endian format (if not already in big endian).
static inline int64_t big_endian(int64_t value) { return byte_swap(value); }
static inline uint64_t big_endian(uint64_t value) { return byte_swap(value); }
static inline int32_t big_endian(int32_t value) { return byte_swap(value); }
static inline uint32_t big_endian(uint32_t value) { return byte_swap(value); }
static inline int16_t big_endian(int16_t value) { return byte_swap(value); }
static inline uint16_t big_endian(uint16_t value) { return byte_swap(value); }
#else
static inline int64_t big_endian(int64_t val) { return val; }
static inline uint64_t big_endian(uint64_t val) { return val; }
static inline int32_t big_endian(int32_t val) { return val; }
static inline uint32_t big_endian(uint32_t val) { return val; }
static inline int16_t big_endian(int16_t val) { return val; }
static inline uint16_t big_endian(uint16_t val) { return val; }
#endif
/// Returns the smallest power of two that contains v. If v is a power of two, v is
/// returned. Taken from
/// http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
static inline int64_t RoundUpToPowerOfTwo(int64_t v) {
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
++v;
return v;
}
// Wrap the gutil/ version for convenience.
static inline int Log2FloorNonZero64(uint64_t n) { return Bits::Log2FloorNonZero64(n); }
// Wrap the gutil/ version for convenience.
static inline int Log2Floor64(uint64_t n) { return Bits::Log2Floor64(n); }
static inline int Log2Ceiling64(uint64_t n) {
int floor = Log2Floor64(n);
// Check if zero or a power of two. This pattern is recognised by gcc and optimised
// into branch-free code.
if (0 == (n & (n - 1))) {
return floor;
} else {
return floor + 1;
}
}
static inline int Log2CeilingNonZero64(uint64_t n) {
int floor = Log2FloorNonZero64(n);
// Check if zero or a power of two. This pattern is recognised by gcc and optimised
// into branch-free code.
if (0 == (n & (n - 1))) {
return floor;
} else {
return floor + 1;
}
}
// Returns the rounded up to 64 multiple. Used for conversions of bits to i64.
static inline uint32_t round_up_numi_64(uint32_t bits) { return (bits + 63) >> 6; }
constexpr static inline int64_t Ceil(int64_t value, int64_t divisor) {
return value / divisor + (value % divisor != 0);
}
constexpr static inline bool IsPowerOf2(int64_t value) { return (value & (value - 1)) == 0; }
constexpr static inline int64_t RoundDown(int64_t value, int64_t factor) {
return (value / factor) * factor;
}
/// Specialized round up and down functions for frequently used factors,
/// like 8 (bits->bytes), 32 (bits->i32), and 64 (bits->i64)
/// Returns the rounded up number of bytes that fit the number of bits.
constexpr static inline uint32_t RoundUpNumBytes(uint32_t bits) { return (bits + 7) >> 3; }
/// Non hw accelerated pop count.
/// TODO: we don't use this in any perf sensitive code paths currently. There
/// might be a much faster way to implement this.
static inline int PopcountNoHw(uint64_t x) {
int count = 0;
for (; x != 0; ++count) x &= x - 1;
return count;
}
/// Returns the number of set bits in x
static inline int Popcount(uint64_t x) {
//if (LIKELY(CpuInfo::is_supported(CpuInfo::POPCNT))) {
// return POPCNT_popcnt_u64(x);
//} else {
return PopcountNoHw(x);
// }
}
// Compute correct population count for various-width signed integers
template <typename T>
static inline int PopcountSigned(T v) {
// Converting to same-width unsigned then extending preserves the bit pattern.
return BitUtil::Popcount(static_cast<typename std::make_unsigned<T>::type>(v));
}
/// Logical right shift for signed integer types
/// This is needed because the C >> operator does arithmetic right shift
/// Negative shift amounts lead to undefined behavior
template <typename T>
constexpr static T ShiftRightLogical(T v, int shift) {
// Conversion to unsigned ensures most significant bits always filled with 0's
return static_cast<typename std::make_unsigned<T>::type>(v) >> shift;
}
/// Get an specific bit of a numeric type
template <typename T>
static inline int8_t GetBit(T v, int bitpos) {
T masked = v & (static_cast<T>(0x1) << bitpos);
return static_cast<int8_t>(ShiftRightLogical(masked, bitpos));
}
/// Set a specific bit to 1
/// Behavior when bitpos is negative is undefined
template <typename T>
constexpr static T SetBit(T v, int bitpos) {
return v | (static_cast<T>(0x1) << bitpos);
}
/// Set a specific bit to 0
/// Behavior when bitpos is negative is undefined
template <typename T>
constexpr static T UnsetBit(T v, int bitpos) {
return v & ~(static_cast<T>(0x1) << bitpos);
}
/// Returns 'value' rounded up to the nearest multiple of 'factor' when factor is
/// a power of two
static inline int64_t RoundUpToPowerOf2(int64_t value, int64_t factor) {
DCHECK((factor > 0) && ((factor & (factor - 1)) == 0));
return (value + (factor - 1)) & ~(factor - 1);
}
// speed up function compute for SIMD
static inline size_t RoundUpToPowerOf2Int32(size_t value, size_t factor) {
DCHECK((factor > 0) && ((factor & (factor - 1)) == 0));
return (value + (factor - 1)) & ~(factor - 1);
}
// Returns the ceil of value/divisor
static inline int Ceil(int value, int divisor) {
return value / divisor + (value % divisor != 0);
}
// Returns the 'num_bits' least-significant bits of 'v'.
static inline uint64_t TrailingBits(uint64_t v, int num_bits) {
if (PREDICT_FALSE(num_bits == 0)) return 0;
if (PREDICT_FALSE(num_bits >= 64)) return v;
int n = 64 - num_bits;
return (v << n) >> n;
}
static inline uint64_t ShiftLeftZeroOnOverflow(uint64_t v, int num_bits) {
if (PREDICT_FALSE(num_bits >= 64)) return 0;
return v << num_bits;
}
static inline uint64_t ShiftRightZeroOnOverflow(uint64_t v, int num_bits) {
if (PREDICT_FALSE(num_bits >= 64)) return 0;
return v >> num_bits;
}
};
} // namespace doris
#endif