Refactoring the filtering conditions in the current ExecNode from an expression tree to an array can simplify the process of adding runtime filters. It eliminates the need for complex merge operations and removes the requirement for the frontend to combine expressions into a single entity. By representing the filtering conditions as an array, each condition can be treated individually, making it easier to add runtime filters without the need for complex merging logic. The array can store the individual conditions, and the runtime filter logic can iterate through the array to apply the filters as needed. This refactoring simplifies the codebase, improves readability, and reduces the complexity associated with handling filtering conditions and adding runtime filters. It separates the conditions into discrete entities, enabling more straightforward manipulation and management within the execution node.
456 lines
18 KiB
C++
456 lines
18 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "exec/tablet_info.h"
|
|
|
|
#include <butil/fast_rand.h>
|
|
#include <gen_cpp/Descriptors_types.h>
|
|
#include <gen_cpp/Exprs_types.h>
|
|
#include <gen_cpp/Types_types.h>
|
|
#include <gen_cpp/descriptors.pb.h>
|
|
#include <glog/logging.h>
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <ostream>
|
|
|
|
#include "olap/tablet_schema.h"
|
|
#include "runtime/descriptors.h"
|
|
#include "runtime/large_int_value.h"
|
|
#include "runtime/memory/mem_tracker.h"
|
|
#include "runtime/raw_value.h"
|
|
#include "runtime/types.h"
|
|
#include "util/hash_util.hpp"
|
|
#include "util/string_parser.hpp"
|
|
#include "vec/common/string_ref.h"
|
|
#include "vec/exprs/vexpr.h"
|
|
#include "vec/runtime/vdatetime_value.h"
|
|
|
|
namespace doris {
|
|
|
|
void OlapTableIndexSchema::to_protobuf(POlapTableIndexSchema* pindex) const {
|
|
pindex->set_id(index_id);
|
|
pindex->set_schema_hash(schema_hash);
|
|
for (auto slot : slots) {
|
|
pindex->add_columns(slot->col_name());
|
|
}
|
|
for (auto column : columns) {
|
|
column->to_schema_pb(pindex->add_columns_desc());
|
|
}
|
|
for (auto index : indexes) {
|
|
index->to_schema_pb(pindex->add_indexes_desc());
|
|
}
|
|
}
|
|
|
|
Status OlapTableSchemaParam::init(const POlapTableSchemaParam& pschema) {
|
|
_db_id = pschema.db_id();
|
|
_table_id = pschema.table_id();
|
|
_version = pschema.version();
|
|
_is_partial_update = pschema.partial_update();
|
|
|
|
for (auto& col : pschema.partial_update_input_columns()) {
|
|
_partial_update_input_columns.insert(col);
|
|
}
|
|
std::map<std::string, SlotDescriptor*> slots_map;
|
|
_tuple_desc = _obj_pool.add(new TupleDescriptor(pschema.tuple_desc()));
|
|
|
|
for (auto& p_slot_desc : pschema.slot_descs()) {
|
|
auto slot_desc = _obj_pool.add(new SlotDescriptor(p_slot_desc));
|
|
_tuple_desc->add_slot(slot_desc);
|
|
slots_map.emplace(slot_desc->col_name(), slot_desc);
|
|
}
|
|
|
|
for (auto& p_index : pschema.indexes()) {
|
|
auto index = _obj_pool.add(new OlapTableIndexSchema());
|
|
index->index_id = p_index.id();
|
|
index->schema_hash = p_index.schema_hash();
|
|
for (auto& col : p_index.columns()) {
|
|
if (_is_partial_update && _partial_update_input_columns.count(col) == 0) {
|
|
continue;
|
|
}
|
|
auto it = slots_map.find(col);
|
|
if (it == std::end(slots_map)) {
|
|
return Status::InternalError("unknown index column, column={}", col);
|
|
}
|
|
index->slots.emplace_back(it->second);
|
|
}
|
|
for (auto& pcolumn_desc : p_index.columns_desc()) {
|
|
TabletColumn* tc = _obj_pool.add(new TabletColumn());
|
|
tc->init_from_pb(pcolumn_desc);
|
|
index->columns.emplace_back(tc);
|
|
}
|
|
for (auto& pindex_desc : p_index.indexes_desc()) {
|
|
TabletIndex* ti = _obj_pool.add(new TabletIndex());
|
|
ti->init_from_pb(pindex_desc);
|
|
index->indexes.emplace_back(ti);
|
|
}
|
|
_indexes.emplace_back(index);
|
|
}
|
|
|
|
std::sort(_indexes.begin(), _indexes.end(),
|
|
[](const OlapTableIndexSchema* lhs, const OlapTableIndexSchema* rhs) {
|
|
return lhs->index_id < rhs->index_id;
|
|
});
|
|
return Status::OK();
|
|
}
|
|
|
|
Status OlapTableSchemaParam::init(const TOlapTableSchemaParam& tschema) {
|
|
_db_id = tschema.db_id;
|
|
_table_id = tschema.table_id;
|
|
_version = tschema.version;
|
|
_is_dynamic_schema = tschema.is_dynamic_schema;
|
|
_is_partial_update = tschema.is_partial_update;
|
|
|
|
for (auto& tcolumn : tschema.partial_update_input_columns) {
|
|
_partial_update_input_columns.insert(tcolumn);
|
|
}
|
|
std::map<std::string, SlotDescriptor*> slots_map;
|
|
_tuple_desc = _obj_pool.add(new TupleDescriptor(tschema.tuple_desc));
|
|
for (auto& t_slot_desc : tschema.slot_descs) {
|
|
auto slot_desc = _obj_pool.add(new SlotDescriptor(t_slot_desc));
|
|
_tuple_desc->add_slot(slot_desc);
|
|
slots_map.emplace(slot_desc->col_name(), slot_desc);
|
|
}
|
|
|
|
for (auto& t_index : tschema.indexes) {
|
|
auto index = _obj_pool.add(new OlapTableIndexSchema());
|
|
index->index_id = t_index.id;
|
|
index->schema_hash = t_index.schema_hash;
|
|
for (auto& col : t_index.columns) {
|
|
if (_is_partial_update && _partial_update_input_columns.count(col) == 0) {
|
|
continue;
|
|
}
|
|
auto it = slots_map.find(col);
|
|
if (it == std::end(slots_map)) {
|
|
return Status::InternalError("unknown index column, column={}", col);
|
|
}
|
|
index->slots.emplace_back(it->second);
|
|
}
|
|
if (t_index.__isset.columns_desc) {
|
|
for (auto& tcolumn_desc : t_index.columns_desc) {
|
|
TabletColumn* tc = _obj_pool.add(new TabletColumn());
|
|
tc->init_from_thrift(tcolumn_desc);
|
|
index->columns.emplace_back(tc);
|
|
}
|
|
}
|
|
if (t_index.__isset.indexes_desc) {
|
|
for (auto& tindex_desc : t_index.indexes_desc) {
|
|
std::vector<int32_t> column_unique_ids(tindex_desc.columns.size());
|
|
for (size_t i = 0; i < tindex_desc.columns.size(); i++) {
|
|
auto it = slots_map.find(tindex_desc.columns[i]);
|
|
if (it != std::end(slots_map)) {
|
|
column_unique_ids[i] = it->second->col_unique_id();
|
|
}
|
|
}
|
|
TabletIndex* ti = _obj_pool.add(new TabletIndex());
|
|
ti->init_from_thrift(tindex_desc, column_unique_ids);
|
|
index->indexes.emplace_back(ti);
|
|
}
|
|
}
|
|
if (t_index.__isset.where_clause) {
|
|
RETURN_IF_ERROR(
|
|
vectorized::VExpr::create_expr_tree(t_index.where_clause, index->where_clause));
|
|
}
|
|
_indexes.emplace_back(index);
|
|
}
|
|
|
|
std::sort(_indexes.begin(), _indexes.end(),
|
|
[](const OlapTableIndexSchema* lhs, const OlapTableIndexSchema* rhs) {
|
|
return lhs->index_id < rhs->index_id;
|
|
});
|
|
return Status::OK();
|
|
}
|
|
|
|
void OlapTableSchemaParam::to_protobuf(POlapTableSchemaParam* pschema) const {
|
|
pschema->set_db_id(_db_id);
|
|
pschema->set_table_id(_table_id);
|
|
pschema->set_version(_version);
|
|
pschema->set_partial_update(_is_partial_update);
|
|
for (auto col : _partial_update_input_columns) {
|
|
*pschema->add_partial_update_input_columns() = col;
|
|
}
|
|
_tuple_desc->to_protobuf(pschema->mutable_tuple_desc());
|
|
for (auto slot : _tuple_desc->slots()) {
|
|
slot->to_protobuf(pschema->add_slot_descs());
|
|
}
|
|
for (auto index : _indexes) {
|
|
index->to_protobuf(pschema->add_indexes());
|
|
}
|
|
}
|
|
|
|
std::string OlapTableSchemaParam::debug_string() const {
|
|
std::stringstream ss;
|
|
ss << "tuple_desc=" << _tuple_desc->debug_string();
|
|
return ss.str();
|
|
}
|
|
|
|
VOlapTablePartitionParam::VOlapTablePartitionParam(std::shared_ptr<OlapTableSchemaParam>& schema,
|
|
const TOlapTablePartitionParam& t_param)
|
|
: _schema(schema),
|
|
_t_param(t_param),
|
|
_slots(_schema->tuple_desc()->slots()),
|
|
_mem_tracker(std::make_unique<MemTracker>("OlapTablePartitionParam")) {
|
|
for (auto slot : _slots) {
|
|
_partition_block.insert(
|
|
{slot->get_empty_mutable_column(), slot->get_data_type_ptr(), slot->col_name()});
|
|
}
|
|
}
|
|
|
|
VOlapTablePartitionParam::~VOlapTablePartitionParam() {
|
|
_mem_tracker->release(_mem_usage);
|
|
}
|
|
|
|
Status VOlapTablePartitionParam::init() {
|
|
std::vector<std::string> slot_column_names;
|
|
for (auto slot_desc : _schema->tuple_desc()->slots()) {
|
|
slot_column_names.emplace_back(slot_desc->col_name());
|
|
}
|
|
|
|
auto find_slot_locs = [&slot_column_names](const std::string& slot_name,
|
|
std::vector<uint16_t>& locs,
|
|
const std::string& column_type) {
|
|
auto it = std::find(slot_column_names.begin(), slot_column_names.end(), slot_name);
|
|
if (it == slot_column_names.end()) {
|
|
return Status::InternalError("{} column not found, column ={}", column_type, slot_name);
|
|
}
|
|
locs.emplace_back(it - slot_column_names.begin());
|
|
return Status::OK();
|
|
};
|
|
|
|
if (_t_param.__isset.partition_columns) {
|
|
for (auto& part_col : _t_param.partition_columns) {
|
|
RETURN_IF_ERROR(find_slot_locs(part_col, _partition_slot_locs, "partition"));
|
|
}
|
|
}
|
|
|
|
_partitions_map.reset(
|
|
new std::map<BlockRow*, VOlapTablePartition*, VOlapTablePartKeyComparator>(
|
|
VOlapTablePartKeyComparator(_partition_slot_locs)));
|
|
if (_t_param.__isset.distributed_columns) {
|
|
for (auto& col : _t_param.distributed_columns) {
|
|
RETURN_IF_ERROR(find_slot_locs(col, _distributed_slot_locs, "distributed"));
|
|
}
|
|
}
|
|
if (_distributed_slot_locs.empty()) {
|
|
_compute_tablet_index = [](BlockRow* key, int64_t num_buckets) -> uint32_t {
|
|
return butil::fast_rand() % num_buckets;
|
|
};
|
|
} else {
|
|
_compute_tablet_index = [this](BlockRow* key, int64_t num_buckets) -> uint32_t {
|
|
uint32_t hash_val = 0;
|
|
for (int i = 0; i < _distributed_slot_locs.size(); ++i) {
|
|
auto slot_desc = _slots[_distributed_slot_locs[i]];
|
|
auto& column = key->first->get_by_position(_distributed_slot_locs[i]).column;
|
|
auto val = column->get_data_at(key->second);
|
|
if (val.data != nullptr) {
|
|
hash_val = RawValue::zlib_crc32(val.data, val.size, slot_desc->type().type,
|
|
hash_val);
|
|
} else {
|
|
hash_val = HashUtil::zlib_crc_hash_null(hash_val);
|
|
}
|
|
}
|
|
return hash_val % num_buckets;
|
|
};
|
|
}
|
|
|
|
DCHECK(!_t_param.partitions.empty()) << "must have at least 1 partition";
|
|
_is_in_partition = _t_param.partitions[0].__isset.in_keys;
|
|
|
|
// initial partitions
|
|
for (int i = 0; i < _t_param.partitions.size(); ++i) {
|
|
const TOlapTablePartition& t_part = _t_param.partitions[i];
|
|
auto part = _obj_pool.add(new VOlapTablePartition(&_partition_block));
|
|
part->id = t_part.id;
|
|
part->is_mutable = t_part.is_mutable;
|
|
|
|
if (!_is_in_partition) {
|
|
if (t_part.__isset.start_keys) {
|
|
RETURN_IF_ERROR(_create_partition_keys(t_part.start_keys, &part->start_key));
|
|
}
|
|
|
|
if (t_part.__isset.end_keys) {
|
|
RETURN_IF_ERROR(_create_partition_keys(t_part.end_keys, &part->end_key));
|
|
}
|
|
} else {
|
|
for (const auto& keys : t_part.in_keys) {
|
|
RETURN_IF_ERROR(_create_partition_keys(
|
|
keys, &part->in_keys.emplace_back(&_partition_block, -1)));
|
|
}
|
|
if (t_part.__isset.is_default_partition && t_part.is_default_partition) {
|
|
_default_partition = part;
|
|
}
|
|
}
|
|
|
|
part->num_buckets = t_part.num_buckets;
|
|
auto num_indexes = _schema->indexes().size();
|
|
if (t_part.indexes.size() != num_indexes) {
|
|
return Status::InternalError(
|
|
"number of partition's index is not equal with schema's"
|
|
", num_part_indexes={}, num_schema_indexes={}",
|
|
t_part.indexes.size(), num_indexes);
|
|
}
|
|
part->indexes = t_part.indexes;
|
|
std::sort(part->indexes.begin(), part->indexes.end(),
|
|
[](const OlapTableIndexTablets& lhs, const OlapTableIndexTablets& rhs) {
|
|
return lhs.index_id < rhs.index_id;
|
|
});
|
|
// check index
|
|
for (int j = 0; j < num_indexes; ++j) {
|
|
if (part->indexes[j].index_id != _schema->indexes()[j]->index_id) {
|
|
std::stringstream ss;
|
|
ss << "partition's index is not equal with schema's"
|
|
<< ", part_index=" << part->indexes[j].index_id
|
|
<< ", schema_index=" << _schema->indexes()[j]->index_id;
|
|
return Status::InternalError(
|
|
"partition's index is not equal with schema's"
|
|
", part_index={}, schema_index={}",
|
|
part->indexes[j].index_id, _schema->indexes()[j]->index_id);
|
|
}
|
|
}
|
|
_partitions.emplace_back(part);
|
|
if (_is_in_partition) {
|
|
for (auto& in_key : part->in_keys) {
|
|
_partitions_map->emplace(&in_key, part);
|
|
}
|
|
} else {
|
|
_partitions_map->emplace(&part->end_key, part);
|
|
}
|
|
}
|
|
|
|
_mem_usage = _partition_block.allocated_bytes();
|
|
_mem_tracker->consume(_mem_usage);
|
|
return Status::OK();
|
|
}
|
|
|
|
bool VOlapTablePartitionParam::find_partition(BlockRow* block_row,
|
|
const VOlapTablePartition** partition) const {
|
|
auto it = _is_in_partition ? _partitions_map->find(block_row)
|
|
: _partitions_map->upper_bound(block_row);
|
|
// for list partition it might result in default partition
|
|
if (_is_in_partition) {
|
|
*partition = (it != _partitions_map->end()) ? it->second : _default_partition;
|
|
it = _partitions_map->end();
|
|
}
|
|
if (it != _partitions_map->end() && _part_contains(it->second, block_row)) {
|
|
*partition = it->second;
|
|
}
|
|
return (*partition != nullptr);
|
|
}
|
|
|
|
uint32_t VOlapTablePartitionParam::find_tablet(BlockRow* block_row,
|
|
const VOlapTablePartition& partition) const {
|
|
return _compute_tablet_index(block_row, partition.num_buckets);
|
|
}
|
|
|
|
Status VOlapTablePartitionParam::_create_partition_keys(const std::vector<TExprNode>& t_exprs,
|
|
BlockRow* part_key) {
|
|
for (int i = 0; i < t_exprs.size(); i++) {
|
|
RETURN_IF_ERROR(_create_partition_key(t_exprs[i], part_key, _partition_slot_locs[i]));
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
Status VOlapTablePartitionParam::_create_partition_key(const TExprNode& t_expr, BlockRow* part_key,
|
|
uint16_t pos) {
|
|
auto column = std::move(*part_key->first->get_by_position(pos).column).mutate();
|
|
switch (t_expr.node_type) {
|
|
case TExprNodeType::DATE_LITERAL: {
|
|
if (TypeDescriptor::from_thrift(t_expr.type).is_date_v2_type()) {
|
|
vectorized::DateV2Value<doris::vectorized::DateV2ValueType> dt;
|
|
if (!dt.from_date_str(t_expr.date_literal.value.c_str(),
|
|
t_expr.date_literal.value.size())) {
|
|
std::stringstream ss;
|
|
ss << "invalid date literal in partition column, date=" << t_expr.date_literal;
|
|
return Status::InternalError(ss.str());
|
|
}
|
|
column->insert_data(reinterpret_cast<const char*>(&dt), 0);
|
|
} else if (TypeDescriptor::from_thrift(t_expr.type).is_datetime_v2_type()) {
|
|
vectorized::DateV2Value<doris::vectorized::DateTimeV2ValueType> dt;
|
|
if (!dt.from_date_str(t_expr.date_literal.value.c_str(),
|
|
t_expr.date_literal.value.size())) {
|
|
std::stringstream ss;
|
|
ss << "invalid date literal in partition column, date=" << t_expr.date_literal;
|
|
return Status::InternalError(ss.str());
|
|
}
|
|
column->insert_data(reinterpret_cast<const char*>(&dt), 0);
|
|
} else {
|
|
vectorized::VecDateTimeValue dt;
|
|
if (!dt.from_date_str(t_expr.date_literal.value.c_str(),
|
|
t_expr.date_literal.value.size())) {
|
|
std::stringstream ss;
|
|
ss << "invalid date literal in partition column, date=" << t_expr.date_literal;
|
|
return Status::InternalError(ss.str());
|
|
}
|
|
column->insert_data(reinterpret_cast<const char*>(&dt), 0);
|
|
}
|
|
break;
|
|
}
|
|
case TExprNodeType::INT_LITERAL: {
|
|
switch (t_expr.type.types[0].scalar_type.type) {
|
|
case TPrimitiveType::TINYINT: {
|
|
int8_t value = t_expr.int_literal.value;
|
|
column->insert_data(reinterpret_cast<const char*>(&value), 0);
|
|
break;
|
|
}
|
|
case TPrimitiveType::SMALLINT: {
|
|
int16_t value = t_expr.int_literal.value;
|
|
column->insert_data(reinterpret_cast<const char*>(&value), 0);
|
|
break;
|
|
}
|
|
case TPrimitiveType::INT: {
|
|
int32_t value = t_expr.int_literal.value;
|
|
column->insert_data(reinterpret_cast<const char*>(&value), 0);
|
|
break;
|
|
}
|
|
default:
|
|
int64_t value = t_expr.int_literal.value;
|
|
column->insert_data(reinterpret_cast<const char*>(&value), 0);
|
|
}
|
|
break;
|
|
}
|
|
case TExprNodeType::LARGE_INT_LITERAL: {
|
|
StringParser::ParseResult parse_result = StringParser::PARSE_SUCCESS;
|
|
__int128 value = StringParser::string_to_int<__int128>(
|
|
t_expr.large_int_literal.value.c_str(), t_expr.large_int_literal.value.size(),
|
|
&parse_result);
|
|
if (parse_result != StringParser::PARSE_SUCCESS) {
|
|
value = MAX_INT128;
|
|
}
|
|
column->insert_data(reinterpret_cast<const char*>(&value), 0);
|
|
break;
|
|
}
|
|
case TExprNodeType::STRING_LITERAL: {
|
|
int len = t_expr.string_literal.value.size();
|
|
const char* str_val = t_expr.string_literal.value.c_str();
|
|
column->insert_data(str_val, len);
|
|
break;
|
|
}
|
|
case TExprNodeType::BOOL_LITERAL: {
|
|
column->insert_data(reinterpret_cast<const char*>(&t_expr.bool_literal.value), 0);
|
|
break;
|
|
}
|
|
default: {
|
|
return Status::InternalError("unsupported partition column node type, type={}",
|
|
t_expr.node_type);
|
|
}
|
|
}
|
|
part_key->second = column->size() - 1;
|
|
return Status::OK();
|
|
}
|
|
|
|
} // namespace doris
|