464 lines
16 KiB
C++
464 lines
16 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include <time.h>
|
|
#include <gtest/gtest.h>
|
|
#include <google/protobuf/stubs/common.h>
|
|
|
|
#include "olap/field.h"
|
|
#include "olap/column_predicate.h"
|
|
#include "olap/null_predicate.h"
|
|
#include "runtime/mem_pool.h"
|
|
#include "runtime/string_value.hpp"
|
|
#include "runtime/vectorized_row_batch.h"
|
|
#include "util/logging.h"
|
|
|
|
namespace doris {
|
|
|
|
namespace datetime {
|
|
|
|
static uint24_t to_date_timestamp(const char* date_string) {
|
|
tm time_tm;
|
|
strptime(date_string, "%Y-%m-%d", &time_tm);
|
|
|
|
int value = (time_tm.tm_year + 1900) * 16 * 32
|
|
+ (time_tm.tm_mon + 1) * 32
|
|
+ time_tm.tm_mday;
|
|
return uint24_t(value);
|
|
}
|
|
|
|
static uint64_t to_datetime_timestamp(const std::string& value_string) {
|
|
tm time_tm;
|
|
strptime(value_string.c_str(), "%Y-%m-%d %H:%M:%S", &time_tm);
|
|
|
|
uint64_t value = ((time_tm.tm_year + 1900) * 10000L
|
|
+ (time_tm.tm_mon + 1) * 100L
|
|
+ time_tm.tm_mday) * 1000000L
|
|
+ time_tm.tm_hour * 10000L
|
|
+ time_tm.tm_min * 100L
|
|
+ time_tm.tm_sec;
|
|
|
|
return value;
|
|
}
|
|
|
|
};
|
|
|
|
class TestNullPredicate : public testing::Test {
|
|
public:
|
|
TestNullPredicate() : _vectorized_batch(NULL) {
|
|
_mem_tracker.reset(new MemTracker(-1));
|
|
_mem_pool.reset(new MemPool(_mem_tracker.get()));
|
|
}
|
|
|
|
~TestNullPredicate() {
|
|
if (_vectorized_batch != NULL) {
|
|
delete _vectorized_batch;
|
|
}
|
|
}
|
|
|
|
void SetTabletSchema(std::string name,
|
|
std::string type, std::string aggregation,
|
|
uint32_t length, bool is_allow_null, bool is_key, TabletSchema* tablet_schema) {
|
|
TabletSchemaPB tablet_schema_pb;
|
|
static int id = 0;
|
|
ColumnPB* column = tablet_schema_pb.add_column();;
|
|
column->set_unique_id(++id);
|
|
column->set_name(name);
|
|
column->set_type(type);
|
|
column->set_is_key(is_key);
|
|
column->set_is_nullable(is_allow_null);
|
|
column->set_length(length);
|
|
column->set_aggregation(aggregation);
|
|
column->set_precision(1000);
|
|
column->set_frac(1000);
|
|
column->set_is_bf_column(false);
|
|
tablet_schema->init_from_pb(tablet_schema_pb);
|
|
}
|
|
|
|
void InitVectorizedBatch(const TabletSchema* tablet_schema,
|
|
const std::vector<uint32_t>&ids,
|
|
int size) {
|
|
_vectorized_batch = new VectorizedRowBatch(tablet_schema, ids, size);
|
|
_vectorized_batch->set_size(size);
|
|
}
|
|
std::unique_ptr<MemTracker> _mem_tracker;
|
|
std::unique_ptr<MemPool> _mem_pool;
|
|
VectorizedRowBatch* _vectorized_batch;
|
|
};
|
|
|
|
#define TEST_IN_LIST_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \
|
|
TEST_F(TestNullPredicate, TYPE_NAME##_COLUMN) { \
|
|
TabletSchema tablet_schema; \
|
|
SetTabletSchema(std::string("TYPE_NAME##_COLUMN"), FIELD_TYPE, \
|
|
"REPLACE", 1, false, true, &tablet_schema); \
|
|
int size = 10; \
|
|
std::vector<uint32_t> return_columns; \
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) { \
|
|
return_columns.push_back(i); \
|
|
} \
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size); \
|
|
ColumnVector* col_vector = _vectorized_batch->column(0); \
|
|
\
|
|
/* for no nulls */ \
|
|
col_vector->set_no_nulls(true); \
|
|
TYPE* col_data = reinterpret_cast<TYPE*>(_mem_pool->allocate(size * sizeof(TYPE))); \
|
|
col_vector->set_col_data(col_data); \
|
|
for (int i = 0; i < size; ++i) { \
|
|
*(col_data + i) = i; \
|
|
} \
|
|
\
|
|
ColumnPredicate* pred = new NullPredicate(0, true); \
|
|
pred->evaluate(_vectorized_batch); \
|
|
ASSERT_EQ(_vectorized_batch->size(), 0); \
|
|
\
|
|
/* for has nulls */ \
|
|
col_vector->set_no_nulls(false); \
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size)); \
|
|
memset(is_null, 0, size); \
|
|
col_vector->set_is_null(is_null); \
|
|
for (int i = 0; i < size; ++i) { \
|
|
if (i % 2 == 0) { \
|
|
is_null[i] = true; \
|
|
} else { \
|
|
*(col_data + i) = i; \
|
|
} \
|
|
} \
|
|
_vectorized_batch->set_size(size); \
|
|
_vectorized_batch->set_selected_in_use(false); \
|
|
pred->evaluate(_vectorized_batch); \
|
|
ASSERT_EQ(_vectorized_batch->size(), 5); \
|
|
delete pred; \
|
|
} \
|
|
|
|
TEST_IN_LIST_PREDICATE(int8_t, TINYINT, "TINYINT")
|
|
TEST_IN_LIST_PREDICATE(int16_t, SMALLINT, "SMALLINT")
|
|
TEST_IN_LIST_PREDICATE(int32_t, INT, "INT")
|
|
TEST_IN_LIST_PREDICATE(int64_t, BIGINT, "BIGINT")
|
|
TEST_IN_LIST_PREDICATE(int128_t, LARGEINT, "LARGEINT")
|
|
|
|
TEST_F(TestNullPredicate, FLOAT_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
float* col_data = reinterpret_cast<float*>(_mem_pool->allocate(size * sizeof(float)));
|
|
col_vector->set_col_data(col_data);
|
|
for (int i = 0; i < size; ++i) {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 2 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
}
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 5);
|
|
delete pred;
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DOUBLE_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
double* col_data = reinterpret_cast<double*>(_mem_pool->allocate(size * sizeof(double)));
|
|
col_vector->set_col_data(col_data);
|
|
for (int i = 0; i < size; ++i) {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 2 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
}
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 5);
|
|
delete pred;
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DECIMAL_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
decimal12_t* col_data = reinterpret_cast<decimal12_t*>(_mem_pool->allocate(size * sizeof(decimal12_t)));
|
|
col_vector->set_col_data(col_data);
|
|
for (int i = 0; i < size; ++i) {
|
|
(*(col_data + i)).integer = i;
|
|
(*(col_data + i)).fraction = i;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
(*(col_data + i)).integer = i;
|
|
(*(col_data + i)).fraction = i;
|
|
}
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 4);
|
|
delete pred;
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, STRING_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
StringValue* col_data = reinterpret_cast<StringValue*>(_mem_pool->allocate(size * sizeof(StringValue)));
|
|
col_vector->set_col_data(col_data);
|
|
|
|
char* string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
|
|
for (int i = 0; i < size; ++i) {
|
|
for (int j = 0; j <= i; ++j) {
|
|
string_buffer[j] = 'a' + i;
|
|
}
|
|
(*(col_data + i)).len = i + 1;
|
|
(*(col_data + i)).ptr = string_buffer;
|
|
string_buffer += i + 1;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
ASSERT_EQ(_vectorized_batch->size(), 10);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
for (int j = 0; j <= i; ++j) {
|
|
string_buffer[j] = 'a' + i;
|
|
}
|
|
(*(col_data + i)).len = i + 1;
|
|
(*(col_data + i)).ptr = string_buffer;
|
|
}
|
|
string_buffer += i + 1;
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 4);
|
|
delete pred;
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DATE_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DATE_COLUMN"), "DATE",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 6;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
uint24_t* col_data = reinterpret_cast<uint24_t*>(_mem_pool->allocate(size * sizeof(uint24_t)));
|
|
col_vector->set_col_data(col_data);
|
|
|
|
std::vector<std::string> date_array;
|
|
date_array.push_back("2017-09-07");
|
|
date_array.push_back("2017-09-08");
|
|
date_array.push_back("2017-09-09");
|
|
date_array.push_back("2017-09-10");
|
|
date_array.push_back("2017-09-11");
|
|
date_array.push_back("2017-09-12");
|
|
for (int i = 0; i < size; ++i) {
|
|
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 2);
|
|
delete pred;
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DATETIME_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 6;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
uint64_t* col_data = reinterpret_cast<uint64_t*>(_mem_pool->allocate(size * sizeof(uint64_t)));
|
|
col_vector->set_col_data(col_data);
|
|
|
|
std::vector<std::string> date_array;
|
|
date_array.push_back("2017-09-07 00:00:00");
|
|
date_array.push_back("2017-09-08 00:01:00");
|
|
date_array.push_back("2017-09-09 00:00:01");
|
|
date_array.push_back("2017-09-10 01:00:00");
|
|
date_array.push_back("2017-09-11 01:01:00");
|
|
date_array.push_back("2017-09-12 01:01:01");
|
|
for (int i = 0; i < size; ++i) {
|
|
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 2);
|
|
delete pred;
|
|
}
|
|
|
|
} // namespace doris
|
|
|
|
int main(int argc, char** argv) {
|
|
std::string conffile = std::string(getenv("DORIS_HOME")) + "/conf/be.conf";
|
|
if (!doris::config::init(conffile.c_str(), false)) {
|
|
fprintf(stderr, "error read config file. \n");
|
|
return -1;
|
|
}
|
|
doris::init_glog("be-test");
|
|
int ret = doris::OLAP_SUCCESS;
|
|
testing::InitGoogleTest(&argc, argv);
|
|
doris::CpuInfo::init();
|
|
ret = RUN_ALL_TESTS();
|
|
google::protobuf::ShutdownProtobufLibrary();
|
|
return ret;
|
|
}
|