Files
doris/be/src/vec/exec/volap_scan_node.cpp
Kang e807e8b108 [improvement](memory) fix olap table scan and sink memory usage problem (#8451)
Due to unlimited queue in OlapScanNode and NodeChannel, memory usage can be
very large for reading and writing large table, e.g 'insert into tableB select * from tableA'.
2022-03-13 22:12:15 +08:00

619 lines
24 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exec/volap_scan_node.h"
#include "gen_cpp/PlanNodes_types.h"
#include "runtime/descriptors.h"
#include "runtime/exec_env.h"
#include "runtime/runtime_filter_mgr.h"
#include "util/priority_thread_pool.hpp"
#include "vec/core/block.h"
#include "vec/exec/volap_scanner.h"
#include "vec/exprs/vexpr.h"
namespace doris::vectorized {
VOlapScanNode::VOlapScanNode(ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs)
: OlapScanNode(pool, tnode, descs),
_max_materialized_blocks(config::doris_scanner_queue_size) {
_materialized_blocks.reserve(_max_materialized_blocks);
_free_blocks.reserve(_max_materialized_blocks);
}
void VOlapScanNode::transfer_thread(RuntimeState* state) {
// scanner open pushdown to scanThread
Status status = Status::OK();
if (_vconjunct_ctx_ptr) {
for (auto scanner : _volap_scanners) {
status = (*_vconjunct_ctx_ptr)->clone(state, scanner->vconjunct_ctx_ptr());
if (!status.ok()) {
std::lock_guard<SpinLock> guard(_status_mutex);
_status = status;
break;
}
}
}
/*********************************
* 优先级调度基本策略:
* 1. 通过查询拆分的Range个数来确定初始nice值
* Range个数越多,越倾向于认定为大查询,nice值越小
* 2. 通过查询累计读取的数据量来调整nice值
* 读取的数据越多,越倾向于认定为大查询,nice值越小
* 3. 通过nice值来判断查询的优先级
* nice值越大的,越优先获得的查询资源
* 4. 定期提高队列内残留任务的优先级,避免大查询完全饿死
*********************************/
_total_assign_num = 0;
_nice = 18 + std::max(0, 2 - (int)_volap_scanners.size() / 5);
auto doris_scanner_row_num =
_limit == -1 ? config::doris_scanner_row_num
: std::min(static_cast<int64_t>(config::doris_scanner_row_num), _limit);
auto block_size = _limit == -1 ? state->batch_size()
: std::min(static_cast<int64_t>(state->batch_size()), _limit);
auto block_per_scanner = (doris_scanner_row_num + (block_size - 1)) / block_size;
auto pre_block_count =
std::min(_volap_scanners.size(),
static_cast<size_t>(config::doris_scanner_thread_pool_thread_num)) *
block_per_scanner;
for (int i = 0; i < pre_block_count; ++i) {
auto block = new Block;
for (const auto slot_desc : _tuple_desc->slots()) {
auto column_ptr = slot_desc->get_empty_mutable_column();
column_ptr->reserve(block_size);
block->insert(ColumnWithTypeAndName(
std::move(column_ptr), slot_desc->get_data_type_ptr(), slot_desc->col_name()));
}
_free_blocks.emplace_back(block);
_buffered_bytes += block->allocated_bytes();
}
_mem_tracker->consume(_buffered_bytes);
// read from scanner
while (LIKELY(status.ok())) {
int assigned_thread_num = _start_scanner_thread_task(state, block_per_scanner);
std::vector<Block*> blocks;
{
// 1 scanner idle task not empty, assign new scanner task
std::unique_lock<std::mutex> l(_scan_blocks_lock);
// scanner_row_num = 16k
// 16k * 10 * 12 * 8 = 15M(>2s) --> nice=10
// 16k * 20 * 22 * 8 = 55M(>6s) --> nice=0
while (_nice > 0 && _total_assign_num > (22 - _nice) * (20 - _nice) * 6) {
--_nice;
}
// 2 wait when all scanner are running & no result in queue
while (UNLIKELY(_running_thread == assigned_thread_num && _scan_blocks.empty() &&
!_scanner_done)) {
SCOPED_TIMER(_scanner_wait_batch_timer);
_scan_block_added_cv.wait(l);
}
// 3 transfer result block when queue is not empty
if (LIKELY(!_scan_blocks.empty())) {
blocks.swap(_scan_blocks);
for (auto b : blocks) {
_scan_row_batches_bytes -= b->allocated_bytes();
}
// delete scan_block if transfer thread should be stopped
// because scan_block wouldn't be useful anymore
if (UNLIKELY(_transfer_done)) {
std::for_each(blocks.begin(), blocks.end(), std::default_delete<Block>());
blocks.clear();
}
} else {
if (_scanner_done) {
break;
}
}
}
if (!blocks.empty()) {
_add_blocks(blocks);
}
}
VLOG_CRITICAL << "TransferThread finish.";
_transfer_done = true;
_block_added_cv.notify_all();
{
std::unique_lock<std::mutex> l(_scan_blocks_lock);
_scan_thread_exit_cv.wait(l, [this] { return _running_thread == 0; });
}
VLOG_CRITICAL << "Scanner threads have been exited. TransferThread exit.";
}
void VOlapScanNode::scanner_thread(VOlapScanner* scanner) {
int64_t wait_time = scanner->update_wait_worker_timer();
// Do not use ScopedTimer. There is no guarantee that, the counter
// (_scan_cpu_timer, the class member) is not destroyed after `_running_thread==0`.
ThreadCpuStopWatch cpu_watch;
cpu_watch.start();
Status status = Status::OK();
bool eos = false;
RuntimeState* state = scanner->runtime_state();
DCHECK(NULL != state);
if (!scanner->is_open()) {
status = scanner->open();
if (!status.ok()) {
std::lock_guard<SpinLock> guard(_status_mutex);
_status = status;
eos = true;
}
scanner->set_opened();
}
std::vector<ExprContext*> contexts;
auto& scanner_filter_apply_marks = *scanner->mutable_runtime_filter_marks();
DCHECK(scanner_filter_apply_marks.size() == _runtime_filter_descs.size());
for (size_t i = 0; i < scanner_filter_apply_marks.size(); i++) {
if (!scanner_filter_apply_marks[i] && !_runtime_filter_ctxs[i].apply_mark) {
IRuntimeFilter* runtime_filter = nullptr;
state->runtime_filter_mgr()->get_consume_filter(_runtime_filter_descs[i].filter_id,
&runtime_filter);
DCHECK(runtime_filter != nullptr);
bool ready = runtime_filter->is_ready();
if (ready) {
runtime_filter->get_prepared_context(&contexts, row_desc(), _expr_mem_tracker);
_runtime_filter_ctxs[i].apply_mark = true;
}
}
}
if (!contexts.empty()) {
std::vector<ExprContext*> new_contexts;
auto& scanner_conjunct_ctxs = *scanner->conjunct_ctxs();
Expr::clone_if_not_exists(contexts, state, &new_contexts);
scanner_conjunct_ctxs.insert(scanner_conjunct_ctxs.end(), new_contexts.begin(),
new_contexts.end());
scanner->set_use_pushdown_conjuncts(true);
}
std::vector<Block*> blocks;
// Because we use thread pool to scan data from storage. One scanner can't
// use this thread too long, this can starve other query's scanner. So, we
// need yield this thread when we do enough work. However, OlapStorage read
// data in pre-aggregate mode, then we can't use storage returned data to
// judge if we need to yield. So we record all raw data read in this round
// scan, if this exceed row number or bytes threshold, we yield this thread.
int64_t raw_rows_read = scanner->raw_rows_read();
int64_t raw_rows_threshold = raw_rows_read + config::doris_scanner_row_num;
int64_t raw_bytes_read = 0;
int64_t raw_bytes_threshold = config::doris_scanner_row_bytes;
bool get_free_block = true;
while (!eos && raw_rows_read < raw_rows_threshold &&
raw_bytes_read < raw_bytes_threshold && get_free_block) {
if (UNLIKELY(_transfer_done)) {
eos = true;
status = Status::Cancelled("Cancelled");
LOG(INFO) << "Scan thread cancelled, cause query done, maybe reach limit.";
break;
}
auto block = _alloc_block(get_free_block);
status = scanner->get_block(_runtime_state, block, &eos);
VLOG_ROW << "VOlapScanNode input rows: " << block->rows();
if (!status.ok()) {
LOG(WARNING) << "Scan thread read OlapScanner failed: " << status.to_string();
// Add block ptr in blocks, prevent mem leak in read failed
blocks.push_back(block);
eos = true;
break;
}
raw_bytes_read += block->allocated_bytes();
// 4. if status not ok, change status_.
if (UNLIKELY(block->rows() == 0)) {
std::lock_guard<std::mutex> l(_free_blocks_lock);
_free_blocks.emplace_back(block);
} else {
if (!blocks.empty() && blocks.back()->rows() + block->rows() <= _runtime_state->batch_size()) {
MutableBlock(blocks.back()).merge(*block);
block->clear_column_data();
std::lock_guard<std::mutex> l(_free_blocks_lock);
_free_blocks.emplace_back(block);
} else {
blocks.push_back(block);
}
}
raw_rows_read = scanner->raw_rows_read();
}
{
// if we failed, check status.
if (UNLIKELY(!status.ok())) {
_transfer_done = true;
std::lock_guard<SpinLock> guard(_status_mutex);
if (LIKELY(_status.ok())) {
_status = status;
}
}
bool global_status_ok = false;
{
std::lock_guard<SpinLock> guard(_status_mutex);
global_status_ok = _status.ok();
}
if (UNLIKELY(!global_status_ok)) {
eos = true;
std::for_each(blocks.begin(), blocks.end(), std::default_delete<Block>());
} else {
std::lock_guard<std::mutex> l(_scan_blocks_lock);
_scan_blocks.insert(_scan_blocks.end(), blocks.begin(), blocks.end());
for (auto b : blocks) {
_scan_row_batches_bytes += b->allocated_bytes();
}
}
// If eos is true, we will process out of this lock block.
if (eos) {
scanner->mark_to_need_to_close();
}
std::lock_guard<std::mutex> l(_volap_scanners_lock);
_volap_scanners.push_front(scanner);
}
if (eos) {
std::lock_guard<std::mutex> l(_scan_blocks_lock);
_progress.update(1);
if (_progress.done()) {
// this is the right out
_scanner_done = true;
}
}
_scan_cpu_timer->update(cpu_watch.elapsed_time());
_scanner_wait_worker_timer->update(wait_time);
std::unique_lock<std::mutex> l(_scan_blocks_lock);
_running_thread--;
// The transfer thead will wait for `_running_thread==0`, to make sure all scanner threads won't access class members.
// Do not access class members after this code.
_scan_block_added_cv.notify_one();
_scan_thread_exit_cv.notify_one();
}
Status VOlapScanNode::_add_blocks(std::vector<Block*>& block) {
{
std::unique_lock<std::mutex> l(_blocks_lock);
// check queue limit for both block queue size and bytes
while (UNLIKELY((_materialized_blocks.size() >= _max_materialized_blocks ||
_materialized_row_batches_bytes >= _max_scanner_queue_size_bytes / 2) &&
!_transfer_done)) {
_block_consumed_cv.wait(l);
}
VLOG_CRITICAL << "Push block to materialized_blocks";
_materialized_blocks.insert(_materialized_blocks.end(), block.cbegin(), block.cend());
for (auto b : block) {
_materialized_row_batches_bytes += b->allocated_bytes();
}
}
// remove one block, notify main thread
_block_added_cv.notify_one();
return Status::OK();
}
Status VOlapScanNode::start_scan_thread(RuntimeState* state) {
if (_scan_ranges.empty()) {
_transfer_done = true;
return Status::OK();
}
// ranges constructed from scan keys
std::vector<std::unique_ptr<OlapScanRange>> cond_ranges;
RETURN_IF_ERROR(_scan_keys.get_key_range(&cond_ranges));
// if we can't get ranges from conditions, we give it a total range
if (cond_ranges.empty()) {
cond_ranges.emplace_back(new OlapScanRange());
}
int scanners_per_tablet = std::max(1, 64 / (int)_scan_ranges.size());
std::unordered_set<std::string> disk_set;
for (auto& scan_range : _scan_ranges) {
auto tablet_id = scan_range->tablet_id;
int32_t schema_hash = strtoul(scan_range->schema_hash.c_str(), nullptr, 10);
std::string err;
TabletSharedPtr tablet = StorageEngine::instance()->tablet_manager()->get_tablet(
tablet_id, schema_hash, true, &err);
if (tablet == nullptr) {
std::stringstream ss;
ss << "failed to get tablet: " << tablet_id << " with schema hash: " << schema_hash
<< ", reason: " << err;
LOG(WARNING) << ss.str();
return Status::InternalError(ss.str());
}
int size_based_scanners_per_tablet = 1;
if (config::doris_scan_range_max_mb > 0) {
size_based_scanners_per_tablet = std::max(
1, (int)tablet->tablet_footprint() / config::doris_scan_range_max_mb << 20);
}
int ranges_per_scanner =
std::max(1, (int)cond_ranges.size() /
std::min(scanners_per_tablet, size_based_scanners_per_tablet));
int num_ranges = cond_ranges.size();
for (int i = 0; i < num_ranges;) {
std::vector<OlapScanRange*> scanner_ranges;
scanner_ranges.push_back(cond_ranges[i].get());
++i;
for (int j = 1; i < num_ranges && j < ranges_per_scanner &&
cond_ranges[i]->end_include == cond_ranges[i - 1]->end_include;
++j, ++i) {
scanner_ranges.push_back(cond_ranges[i].get());
}
VOlapScanner* scanner =
new VOlapScanner(state, this, _olap_scan_node.is_preaggregation,
_need_agg_finalize, *scan_range, _scanner_mem_tracker);
// add scanner to pool before doing prepare.
// so that scanner can be automatically deconstructed if prepare failed.
_scanner_pool.add(scanner);
RETURN_IF_ERROR(scanner->prepare(*scan_range, scanner_ranges, _olap_filter,
_bloom_filters_push_down));
_volap_scanners.push_back(scanner);
disk_set.insert(scanner->scan_disk());
}
}
COUNTER_SET(_num_disks_accessed_counter, static_cast<int64_t>(disk_set.size()));
COUNTER_SET(_num_scanners, static_cast<int64_t>(_volap_scanners.size()));
// init progress
std::stringstream ss;
ss << "ScanThread complete (node=" << id() << "):";
_progress = ProgressUpdater(ss.str(), _volap_scanners.size(), 1);
_transfer_thread.reset(new std::thread(&VOlapScanNode::transfer_thread, this, state));
return Status::OK();
}
Status VOlapScanNode::close(RuntimeState* state) {
if (is_closed()) {
return Status::OK();
}
RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::CLOSE));
// change done status
{
std::unique_lock<std::mutex> l(_blocks_lock);
_transfer_done = true;
}
// notify all scanner thread
_block_consumed_cv.notify_all();
_block_added_cv.notify_all();
_scan_block_added_cv.notify_all();
// join transfer thread
if (_transfer_thread) _transfer_thread->join();
// clear some block in queue
// TODO: The presence of transfer_thread here may cause Block's memory alloc and be released not in a thread,
// which may lead to potential performance problems. we should rethink whether to delete the transfer thread
std::for_each(_materialized_blocks.begin(), _materialized_blocks.end(),
std::default_delete<Block>());
_materialized_row_batches_bytes = 0;
std::for_each(_scan_blocks.begin(), _scan_blocks.end(), std::default_delete<Block>());
_scan_row_batches_bytes = 0;
std::for_each(_free_blocks.begin(), _free_blocks.end(), std::default_delete<Block>());
_mem_tracker->release(_buffered_bytes);
// OlapScanNode terminate by exception
// so that initiative close the Scanner
for (auto scanner : _volap_scanners) {
scanner->close(state);
}
for (auto& filter_desc : _runtime_filter_descs) {
IRuntimeFilter* runtime_filter = nullptr;
state->runtime_filter_mgr()->get_consume_filter(filter_desc.filter_id, &runtime_filter);
DCHECK(runtime_filter != nullptr);
runtime_filter->consumer_close();
}
VLOG_CRITICAL << "VOlapScanNode::close()";
return ScanNode::close(state);
}
Status VOlapScanNode::get_next(RuntimeState* state, Block* block, bool* eos) {
RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::GETNEXT));
SCOPED_TIMER(_runtime_profile->total_time_counter());
// check if Canceled.
if (state->is_cancelled()) {
std::unique_lock<std::mutex> l(_blocks_lock);
_transfer_done = true;
std::lock_guard<SpinLock> guard(_status_mutex);
if (LIKELY(_status.ok())) {
_status = Status::Cancelled("Cancelled");
}
return _status;
}
// check if started.
if (!_start) {
Status status = start_scan(state);
if (!status.ok()) {
LOG(ERROR) << "StartScan Failed cause " << status.get_error_msg();
*eos = true;
return status;
}
_start = true;
}
// some conjuncts will be disposed in start_scan function, so
// we should check _eos after call start_scan
if (_eos) {
*eos = true;
return Status::OK();
}
// wait for block from queue
Block* materialized_block = NULL;
{
std::unique_lock<std::mutex> l(_blocks_lock);
SCOPED_TIMER(_olap_wait_batch_queue_timer);
while (_materialized_blocks.empty() && !_transfer_done) {
if (state->is_cancelled()) {
_transfer_done = true;
}
// use wait_for, not wait, in case to capture the state->is_cancelled()
_block_added_cv.wait_for(l, std::chrono::seconds(1));
}
if (!_materialized_blocks.empty()) {
materialized_block = _materialized_blocks.back();
DCHECK(materialized_block != NULL);
_materialized_blocks.pop_back();
_materialized_row_batches_bytes -= materialized_block->allocated_bytes();
}
}
// return block
if (NULL != materialized_block) {
// notify scanner
_block_consumed_cv.notify_one();
// get scanner's block memory
block->swap(*materialized_block);
VLOG_ROW << "VOlapScanNode output rows: " << block->rows();
reached_limit(block, eos);
// reach scan node limit
if (*eos) {
{
std::unique_lock<std::mutex> l(_blocks_lock);
_transfer_done = true;
}
_block_consumed_cv.notify_all();
*eos = true;
LOG(INFO) << "VOlapScanNode ReachedLimit.";
} else {
*eos = false;
}
{
// ReThink whether the SpinLock Better
std::lock_guard<std::mutex> l(_free_blocks_lock);
_free_blocks.emplace_back(materialized_block);
}
return Status::OK();
}
// all scanner done, change *eos to true
*eos = true;
std::lock_guard<SpinLock> guard(_status_mutex);
return _status;
}
// TODO: we should register the mem cost of new Block in
// alloc block
Block* VOlapScanNode::_alloc_block(bool& get_free_block) {
{
std::lock_guard<std::mutex> l(_free_blocks_lock);
if (!_free_blocks.empty()) {
auto block = _free_blocks.back();
_free_blocks.pop_back();
return block;
}
}
get_free_block = false;
return new Block();
}
int VOlapScanNode::_start_scanner_thread_task(RuntimeState* state, int block_per_scanner) {
std::list<VOlapScanner*> olap_scanners;
int assigned_thread_num = _running_thread;
size_t max_thread = std::min(_volap_scanners.size(),
static_cast<size_t>(config::doris_scanner_thread_pool_thread_num));
// copy to local
{
// How many thread can apply to this query
size_t thread_slot_num = 0;
{
if (_scan_row_batches_bytes < _max_scanner_queue_size_bytes / 2) {
std::lock_guard<std::mutex> l(_free_blocks_lock);
thread_slot_num = _free_blocks.size() / block_per_scanner;
thread_slot_num += (_free_blocks.size() % block_per_scanner != 0);
thread_slot_num = std::min(thread_slot_num, max_thread - assigned_thread_num);
if (thread_slot_num <= 0) thread_slot_num = 1;
} else {
std::lock_guard<std::mutex> l(_scan_blocks_lock);
if (_scan_blocks.empty()) {
// Just for notify if _scan_blocks is empty and no running thread
if (assigned_thread_num == 0) {
thread_slot_num = 1;
// NOTE: if olap_scanners_ is empty, scanner_done_ should be true
}
}
}
}
{
std::lock_guard<std::mutex> l(_volap_scanners_lock);
thread_slot_num = std::min(thread_slot_num, _volap_scanners.size());
for (int i = 0; i < thread_slot_num && !_volap_scanners.empty();) {
auto scanner = _volap_scanners.front();
_volap_scanners.pop_front();
if (scanner->need_to_close())
scanner->close(state);
else {
olap_scanners.push_back(scanner);
_running_thread++;
assigned_thread_num++;
i++;
}
}
}
}
// post volap scanners to thread-pool
PriorityThreadPool* thread_pool = state->exec_env()->scan_thread_pool();
auto iter = olap_scanners.begin();
while (iter != olap_scanners.end()) {
PriorityThreadPool::Task task;
task.work_function = std::bind(&VOlapScanNode::scanner_thread, this, *iter);
task.priority = _nice;
task.queue_id = state->exec_env()->store_path_to_index((*iter)->scan_disk());
(*iter)->start_wait_worker_timer();
if (thread_pool->offer(task)) {
olap_scanners.erase(iter++);
} else {
LOG(FATAL) << "Failed to assign scanner task to thread pool!";
}
++_total_assign_num;
}
return assigned_thread_num;
}
} // namespace doris::vectorized