1823 lines
80 KiB
C++
1823 lines
80 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
// This file is copied from
|
|
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Functions/FunctionsConversion.h
|
|
// and modified by Doris
|
|
|
|
#pragma once
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include "udf/udf_internal.h"
|
|
#include "vec/columns/column_array.h"
|
|
#include "vec/columns/column_const.h"
|
|
#include "vec/columns/column_nullable.h"
|
|
#include "vec/columns/column_string.h"
|
|
#include "vec/columns/columns_common.h"
|
|
#include "vec/common/assert_cast.h"
|
|
#include "vec/common/field_visitors.h"
|
|
#include "vec/common/string_buffer.hpp"
|
|
#include "vec/data_types/data_type_decimal.h"
|
|
#include "vec/data_types/data_type_factory.hpp"
|
|
#include "vec/data_types/data_type_jsonb.h"
|
|
#include "vec/data_types/data_type_nullable.h"
|
|
#include "vec/data_types/data_type_number.h"
|
|
#include "vec/data_types/data_type_string.h"
|
|
#include "vec/functions/function.h"
|
|
#include "vec/functions/function_helpers.h"
|
|
#include "vec/io/io_helper.h"
|
|
#include "vec/io/reader_buffer.h"
|
|
#include "vec/runtime/vdatetime_value.h"
|
|
|
|
namespace doris::vectorized {
|
|
/** Type conversion functions.
|
|
* toType - conversion in "natural way";
|
|
*/
|
|
inline UInt32 extract_to_decimal_scale(const ColumnWithTypeAndName& named_column) {
|
|
const auto* arg_type = named_column.type.get();
|
|
bool ok = check_and_get_data_type<DataTypeUInt64>(arg_type) ||
|
|
check_and_get_data_type<DataTypeUInt32>(arg_type) ||
|
|
check_and_get_data_type<DataTypeUInt16>(arg_type) ||
|
|
check_and_get_data_type<DataTypeUInt8>(arg_type);
|
|
if (!ok) {
|
|
LOG(FATAL) << fmt::format("Illegal type of toDecimal() scale {}",
|
|
named_column.type->get_name());
|
|
}
|
|
|
|
Field field;
|
|
named_column.column->get(0, field);
|
|
return field.get<UInt32>();
|
|
}
|
|
|
|
/** Conversion of number types to each other, enums to numbers, dates and datetimes to numbers and back: done by straight assignment.
|
|
* (Date is represented internally as number of days from some day; DateTime - as unix timestamp)
|
|
*/
|
|
template <typename FromDataType, typename ToDataType, typename Name>
|
|
struct ConvertImpl {
|
|
using FromFieldType = typename FromDataType::FieldType;
|
|
using ToFieldType = typename ToDataType::FieldType;
|
|
|
|
template <typename Additions = void*>
|
|
static Status execute(Block& block, const ColumnNumbers& arguments, size_t result,
|
|
size_t /*input_rows_count*/, bool check_overflow [[maybe_unused]] = false,
|
|
Additions additions [[maybe_unused]] = Additions()) {
|
|
const ColumnWithTypeAndName& named_from = block.get_by_position(arguments[0]);
|
|
|
|
using ColVecFrom =
|
|
std::conditional_t<IsDecimalNumber<FromFieldType>, ColumnDecimal<FromFieldType>,
|
|
ColumnVector<FromFieldType>>;
|
|
using ColVecTo = std::conditional_t<IsDecimalNumber<ToFieldType>,
|
|
ColumnDecimal<ToFieldType>, ColumnVector<ToFieldType>>;
|
|
|
|
if constexpr (IsDataTypeDecimal<FromDataType> || IsDataTypeDecimal<ToDataType>) {
|
|
if constexpr (!(IsDataTypeDecimalOrNumber<FromDataType> || IsTimeType<FromDataType> ||
|
|
IsTimeV2Type<FromDataType>) ||
|
|
!IsDataTypeDecimalOrNumber<ToDataType>)
|
|
return Status::RuntimeError("Illegal column {} of first argument of function {}",
|
|
named_from.column->get_name(), Name::name);
|
|
}
|
|
|
|
if (const ColVecFrom* col_from =
|
|
check_and_get_column<ColVecFrom>(named_from.column.get())) {
|
|
typename ColVecTo::MutablePtr col_to = nullptr;
|
|
if constexpr (IsDataTypeDecimal<ToDataType>) {
|
|
UInt32 scale = additions;
|
|
col_to = ColVecTo::create(0, scale);
|
|
} else {
|
|
col_to = ColVecTo::create();
|
|
}
|
|
|
|
const auto& vec_from = col_from->get_data();
|
|
auto& vec_to = col_to->get_data();
|
|
size_t size = vec_from.size();
|
|
vec_to.resize(size);
|
|
|
|
if constexpr (IsDataTypeDecimal<FromDataType> || IsDataTypeDecimal<ToDataType>) {
|
|
ColumnUInt8::MutablePtr col_null_map_to = nullptr;
|
|
UInt8* vec_null_map_to = nullptr;
|
|
if (check_overflow) {
|
|
col_null_map_to = ColumnUInt8::create(size, 0);
|
|
vec_null_map_to = col_null_map_to->get_data().data();
|
|
}
|
|
for (size_t i = 0; i < size; ++i) {
|
|
if constexpr (IsDataTypeDecimal<FromDataType> &&
|
|
IsDataTypeDecimal<ToDataType>) {
|
|
vec_to[i] = convert_decimals<FromDataType, ToDataType>(
|
|
vec_from[i], vec_from.get_scale(), vec_to.get_scale(),
|
|
vec_null_map_to ? &vec_null_map_to[i] : vec_null_map_to);
|
|
} else if constexpr (IsDataTypeDecimal<FromDataType> &&
|
|
IsDataTypeNumber<ToDataType>) {
|
|
vec_to[i] = convert_from_decimal<FromDataType, ToDataType>(
|
|
vec_from[i], vec_from.get_scale());
|
|
} else if constexpr (IsDataTypeNumber<FromDataType> &&
|
|
IsDataTypeDecimal<ToDataType>) {
|
|
vec_to[i] = convert_to_decimal<FromDataType, ToDataType>(
|
|
vec_from[i], vec_to.get_scale(),
|
|
vec_null_map_to ? &vec_null_map_to[i] : vec_null_map_to);
|
|
} else if constexpr (IsTimeType<FromDataType> &&
|
|
IsDataTypeDecimal<ToDataType>) {
|
|
vec_to[i] = convert_to_decimal<DataTypeInt64, ToDataType>(
|
|
reinterpret_cast<const VecDateTimeValue&>(vec_from[i]).to_int64(),
|
|
vec_to.get_scale(),
|
|
vec_null_map_to ? &vec_null_map_to[i] : vec_null_map_to);
|
|
} else if constexpr (IsDateV2Type<FromDataType> &&
|
|
IsDataTypeDecimal<ToDataType>) {
|
|
vec_to[i] = convert_to_decimal<DataTypeUInt32, ToDataType>(
|
|
reinterpret_cast<const DateV2Value<DateV2ValueType>&>(vec_from[i])
|
|
.to_date_int_val(),
|
|
vec_to.get_scale(),
|
|
vec_null_map_to ? &vec_null_map_to[i] : vec_null_map_to);
|
|
} else if constexpr (IsDateTimeV2Type<FromDataType> &&
|
|
IsDataTypeDecimal<ToDataType>) {
|
|
// TODO: should we consider the scale of datetimev2?
|
|
vec_to[i] = convert_to_decimal<DataTypeUInt64, ToDataType>(
|
|
reinterpret_cast<const DateV2Value<DateTimeV2ValueType>&>(
|
|
vec_from[i])
|
|
.to_date_int_val(),
|
|
vec_to.get_scale(),
|
|
vec_null_map_to ? &vec_null_map_to[i] : vec_null_map_to);
|
|
}
|
|
}
|
|
if (check_overflow) {
|
|
block.replace_by_position(
|
|
result,
|
|
ColumnNullable::create(std::move(col_to), std::move(col_null_map_to)));
|
|
} else {
|
|
block.replace_by_position(result, std::move(col_to));
|
|
}
|
|
|
|
return Status::OK();
|
|
} else if constexpr (IsTimeType<FromDataType>) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
if constexpr (IsTimeType<ToDataType>) {
|
|
vec_to[i] = static_cast<ToFieldType>(vec_from[i]);
|
|
if constexpr (IsDateTimeType<ToDataType>) {
|
|
DataTypeDateTime::cast_to_date_time(vec_to[i]);
|
|
} else {
|
|
DataTypeDate::cast_to_date(vec_to[i]);
|
|
}
|
|
} else if constexpr (IsDateV2Type<ToDataType>) {
|
|
DataTypeDateV2::cast_from_date(vec_from[i], vec_to[i]);
|
|
} else if constexpr (IsDateTimeV2Type<ToDataType>) {
|
|
DataTypeDateTimeV2::cast_from_date(vec_from[i], vec_to[i]);
|
|
} else {
|
|
vec_to[i] =
|
|
reinterpret_cast<const VecDateTimeValue&>(vec_from[i]).to_int64();
|
|
}
|
|
}
|
|
} else if constexpr (IsTimeV2Type<FromDataType>) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
if constexpr (IsTimeV2Type<ToDataType>) {
|
|
if constexpr (IsDateTimeV2Type<ToDataType> && IsDateV2Type<FromDataType>) {
|
|
DataTypeDateV2::cast_to_date_time_v2(vec_from[i], vec_to[i]);
|
|
} else if constexpr (IsDateTimeV2Type<FromDataType> &&
|
|
IsDateV2Type<ToDataType>) {
|
|
DataTypeDateTimeV2::cast_to_date_v2(vec_from[i], vec_to[i]);
|
|
} else {
|
|
UInt32 scale = additions;
|
|
vec_to[i] = vec_from[i] / std::pow(10, 6 - scale);
|
|
}
|
|
} else if constexpr (IsTimeType<ToDataType>) {
|
|
if constexpr (IsDateTimeType<ToDataType> && IsDateV2Type<FromDataType>) {
|
|
DataTypeDateV2::cast_to_date_time(vec_from[i], vec_to[i]);
|
|
} else if constexpr (IsDateTimeV2Type<ToDataType> &&
|
|
IsDateV2Type<FromDataType>) {
|
|
DataTypeDateV2::cast_to_date(vec_from[i], vec_to[i]);
|
|
} else if constexpr (IsDateTimeType<ToDataType> &&
|
|
IsDateTimeV2Type<FromDataType>) {
|
|
DataTypeDateTimeV2::cast_to_date_time(vec_from[i], vec_to[i]);
|
|
} else if constexpr (IsDateTimeV2Type<ToDataType> &&
|
|
IsDateTimeV2Type<FromDataType>) {
|
|
DataTypeDateTimeV2::cast_to_date(vec_from[i], vec_to[i]);
|
|
} else if constexpr (IsDateType<ToDataType> && IsDateV2Type<FromDataType>) {
|
|
DataTypeDateV2::cast_to_date(vec_from[i], vec_to[i]);
|
|
}
|
|
} else {
|
|
if constexpr (IsDateTimeV2Type<FromDataType>) {
|
|
vec_to[i] = reinterpret_cast<const DateV2Value<DateTimeV2ValueType>&>(
|
|
vec_from[i])
|
|
.to_int64();
|
|
} else {
|
|
vec_to[i] = reinterpret_cast<const DateV2Value<DateV2ValueType>&>(
|
|
vec_from[i])
|
|
.to_int64();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
vec_to[i] = static_cast<ToFieldType>(vec_from[i]);
|
|
}
|
|
}
|
|
|
|
// TODO: support boolean cast more reasonable
|
|
if constexpr (std::is_same_v<uint8_t, ToFieldType>) {
|
|
for (int i = 0; i < size; ++i) {
|
|
vec_to[i] = static_cast<bool>(vec_to[i]);
|
|
}
|
|
}
|
|
|
|
block.replace_by_position(result, std::move(col_to));
|
|
} else {
|
|
return Status::RuntimeError("Illegal column {} of first argument of function {}",
|
|
named_from.column->get_name(), Name::name);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
/** If types are identical, just take reference to column.
|
|
*/
|
|
template <typename T, typename Name>
|
|
struct ConvertImpl<std::enable_if_t<!T::is_parametric, T>, T, Name> {
|
|
static Status execute(Block& block, const ColumnNumbers& arguments, size_t result,
|
|
size_t /*input_rows_count*/) {
|
|
block.get_by_position(result).column = block.get_by_position(arguments[0]).column;
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
// using other type cast to Date/DateTime, unless String
|
|
// Date/DateTime
|
|
template <typename FromDataType, typename ToDataType, typename Name>
|
|
struct ConvertImplToTimeType {
|
|
using FromFieldType = typename FromDataType::FieldType;
|
|
using ToFieldType = typename ToDataType::FieldType;
|
|
|
|
static Status execute(Block& block, const ColumnNumbers& arguments, size_t result,
|
|
size_t /*input_rows_count*/) {
|
|
const ColumnWithTypeAndName& named_from = block.get_by_position(arguments[0]);
|
|
|
|
using ColVecFrom =
|
|
std::conditional_t<IsDecimalNumber<FromFieldType>, ColumnDecimal<FromFieldType>,
|
|
ColumnVector<FromFieldType>>;
|
|
|
|
using DateValueType = std::conditional_t<
|
|
IsTimeV2Type<ToDataType>,
|
|
std::conditional_t<IsDateV2Type<ToDataType>, DateV2Value<DateV2ValueType>,
|
|
DateV2Value<DateTimeV2ValueType>>,
|
|
VecDateTimeValue>;
|
|
using ColVecTo = ColumnVector<ToFieldType>;
|
|
|
|
if (const ColVecFrom* col_from =
|
|
check_and_get_column<ColVecFrom>(named_from.column.get())) {
|
|
const auto& vec_from = col_from->get_data();
|
|
size_t size = vec_from.size();
|
|
|
|
// create nested column
|
|
auto col_to = ColVecTo::create(size);
|
|
auto& vec_to = col_to->get_data();
|
|
|
|
// create null column
|
|
ColumnUInt8::MutablePtr col_null_map_to;
|
|
col_null_map_to = ColumnUInt8::create(size);
|
|
auto& vec_null_map_to = col_null_map_to->get_data();
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto& date_value = reinterpret_cast<DateValueType&>(vec_to[i]);
|
|
if constexpr (IsDecimalNumber<FromFieldType>) {
|
|
// TODO: should we consider the scale of datetimev2?
|
|
vec_null_map_to[i] = !date_value.from_date_int64(
|
|
convert_from_decimal<FromDataType, DataTypeInt64>(
|
|
vec_from[i], vec_from.get_scale()));
|
|
} else {
|
|
vec_null_map_to[i] = !date_value.from_date_int64(vec_from[i]);
|
|
}
|
|
// DateType of VecDateTimeValue should cast to date
|
|
if constexpr (IsDateType<ToDataType>) {
|
|
date_value.cast_to_date();
|
|
} else if constexpr (IsDateTimeType<ToDataType>) {
|
|
date_value.to_datetime();
|
|
}
|
|
}
|
|
block.get_by_position(result).column =
|
|
ColumnNullable::create(std::move(col_to), std::move(col_null_map_to));
|
|
} else {
|
|
return Status::RuntimeError("Illegal column {} of first argument of function {}",
|
|
named_from.column->get_name(), Name::name);
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
// Generic conversion of any type to String.
|
|
struct ConvertImplGenericToString {
|
|
static Status execute(Block& block, const ColumnNumbers& arguments, size_t result) {
|
|
const auto& col_with_type_and_name = block.get_by_position(arguments[0]);
|
|
const IDataType& type = *col_with_type_and_name.type;
|
|
const IColumn& col_from = *col_with_type_and_name.column;
|
|
|
|
size_t size = col_from.size();
|
|
|
|
auto col_to = ColumnString::create();
|
|
VectorBufferWriter write_buffer(*col_to.get());
|
|
for (size_t i = 0; i < size; ++i) {
|
|
type.to_string(col_from, i, write_buffer);
|
|
write_buffer.commit();
|
|
}
|
|
|
|
block.replace_by_position(result, std::move(col_to));
|
|
return Status::OK();
|
|
}
|
|
|
|
static Status execute2(FunctionContext* /*ctx*/, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t /*input_rows_count*/) {
|
|
return execute(block, arguments, result);
|
|
}
|
|
};
|
|
|
|
template <typename StringColumnType>
|
|
struct ConvertImplGenericFromString {
|
|
static Status execute(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
static_assert(std::is_same_v<StringColumnType, ColumnString>,
|
|
"Can be used only to parse from ColumnString");
|
|
const auto& col_with_type_and_name = block.get_by_position(arguments[0]);
|
|
const IColumn& col_from = *col_with_type_and_name.column;
|
|
// result column must set type
|
|
DCHECK(block.get_by_position(result).type != nullptr);
|
|
auto data_type_to = block.get_by_position(result).type;
|
|
if (const StringColumnType* col_from_string =
|
|
check_and_get_column<StringColumnType>(&col_from)) {
|
|
auto col_to = data_type_to->create_column();
|
|
|
|
size_t size = col_from.size();
|
|
col_to->reserve(size);
|
|
|
|
ColumnUInt8::MutablePtr col_null_map_to = ColumnUInt8::create(size);
|
|
ColumnUInt8::Container* vec_null_map_to = &col_null_map_to->get_data();
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
const auto& val = col_from_string->get_data_at(i);
|
|
// Note: here we should handle the null element
|
|
if (val.size == 0) {
|
|
col_to->insert_default();
|
|
continue;
|
|
}
|
|
ReadBuffer read_buffer((char*)(val.data), val.size);
|
|
Status st = data_type_to->from_string(read_buffer, col_to);
|
|
// if parsing failed, will return null
|
|
(*vec_null_map_to)[i] = !st.ok();
|
|
if (!st.ok()) {
|
|
col_to->insert_default();
|
|
}
|
|
}
|
|
block.get_by_position(result).column =
|
|
ColumnNullable::create(std::move(col_to), std::move(col_null_map_to));
|
|
} else {
|
|
return Status::RuntimeError(
|
|
"Illegal column {} of first argument of conversion function from string",
|
|
col_from.get_name());
|
|
}
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
// Generic conversion of number to jsonb.
|
|
template <typename ColumnType>
|
|
struct ConvertImplNumberToJsonb {
|
|
static Status execute(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
const auto& col_with_type_and_name = block.get_by_position(arguments[0]);
|
|
|
|
auto column_string = ColumnString::create();
|
|
JsonbWriter writer;
|
|
|
|
const auto* col =
|
|
check_and_get_column<const ColumnType>(col_with_type_and_name.column.get());
|
|
const auto& data = col->get_data();
|
|
|
|
for (size_t i = 0; i < input_rows_count; i++) {
|
|
writer.reset();
|
|
if constexpr (std::is_same_v<ColumnUInt8, ColumnType>) {
|
|
writer.writeBool(data[i]);
|
|
} else if constexpr (std::is_same_v<ColumnInt8, ColumnType>) {
|
|
writer.writeInt8(data[i]);
|
|
} else if constexpr (std::is_same_v<ColumnInt16, ColumnType>) {
|
|
writer.writeInt16(data[i]);
|
|
} else if constexpr (std::is_same_v<ColumnInt32, ColumnType>) {
|
|
writer.writeInt32(data[i]);
|
|
} else if constexpr (std::is_same_v<ColumnInt64, ColumnType>) {
|
|
writer.writeInt64(data[i]);
|
|
} else if constexpr (std::is_same_v<ColumnFloat64, ColumnType>) {
|
|
writer.writeDouble(data[i]);
|
|
} else {
|
|
LOG(FATAL) << "unsupported type ";
|
|
}
|
|
column_string->insert_data(writer.getOutput()->getBuffer(),
|
|
writer.getOutput()->getSize());
|
|
}
|
|
|
|
block.replace_by_position(result, std::move(column_string));
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
// Generic conversion of any type to jsonb.
|
|
struct ConvertImplGenericToJsonb {
|
|
static Status execute(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
const auto& col_with_type_and_name = block.get_by_position(arguments[0]);
|
|
const IDataType& type = *col_with_type_and_name.type;
|
|
const IColumn& col_from = *col_with_type_and_name.column;
|
|
|
|
auto column_string = ColumnString::create();
|
|
JsonbWriter writer;
|
|
|
|
auto tmp_col = ColumnString::create();
|
|
for (size_t i = 0; i < input_rows_count; i++) {
|
|
// convert to string
|
|
tmp_col->clear();
|
|
VectorBufferWriter write_buffer(*tmp_col.get());
|
|
type.to_string(col_from, i, write_buffer);
|
|
write_buffer.commit();
|
|
// write string to jsonb
|
|
writer.reset();
|
|
writer.writeStartString();
|
|
auto str_ref = tmp_col->get_data_at(0);
|
|
writer.writeString(str_ref.data, str_ref.size);
|
|
writer.writeEndString();
|
|
column_string->insert_data(writer.getOutput()->getBuffer(),
|
|
writer.getOutput()->getSize());
|
|
}
|
|
|
|
block.replace_by_position(result, std::move(column_string));
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
template <TypeIndex type_index, typename ColumnType>
|
|
struct ConvertImplFromJsonb {
|
|
static Status execute(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
const auto& col_with_type_and_name = block.get_by_position(arguments[0]);
|
|
const IColumn& col_from = *col_with_type_and_name.column;
|
|
// result column must set type
|
|
DCHECK(block.get_by_position(result).type != nullptr);
|
|
auto data_type_to = block.get_by_position(result).type;
|
|
if (const ColumnString* column_string = check_and_get_column<ColumnString>(&col_from)) {
|
|
auto null_map_col = ColumnUInt8::create(input_rows_count, 0);
|
|
auto& null_map = null_map_col->get_data();
|
|
auto col_to = ColumnType::create();
|
|
|
|
//IColumn & col_to = *res;
|
|
// size_t size = col_from.size();
|
|
col_to->reserve(input_rows_count);
|
|
auto& res = col_to->get_data();
|
|
res.resize(input_rows_count);
|
|
|
|
for (size_t i = 0; i < input_rows_count; ++i) {
|
|
const auto& val = column_string->get_data_at(i);
|
|
// ReadBuffer read_buffer((char*)(val.data), val.size);
|
|
// RETURN_IF_ERROR(data_type_to->from_string(read_buffer, col_to));
|
|
|
|
if (val.size == 0) {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
// doc is NOT necessary to be deleted since JsonbDocument will not allocate memory
|
|
JsonbDocument* doc = JsonbDocument::createDocument(val.data, val.size);
|
|
if (UNLIKELY(!doc || !doc->getValue())) {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
// value is NOT necessary to be deleted since JsonbValue will not allocate memory
|
|
JsonbValue* value = doc->getValue();
|
|
if (UNLIKELY(!value)) {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
if constexpr (type_index == TypeIndex::UInt8) {
|
|
if (value->isTrue()) {
|
|
res[i] = 1;
|
|
} else if (value->isFalse()) {
|
|
res[i] = 0;
|
|
} else {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
}
|
|
} else if constexpr (type_index == TypeIndex::Int8) {
|
|
if (value->isInt8()) {
|
|
res[i] = ((const JsonbIntVal*)value)->val();
|
|
} else {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
}
|
|
} else if constexpr (type_index == TypeIndex::Int16) {
|
|
if (value->isInt8() || value->isInt16()) {
|
|
res[i] = (int16_t)((const JsonbIntVal*)value)->val();
|
|
} else {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
}
|
|
} else if constexpr (type_index == TypeIndex::Int32) {
|
|
if (value->isInt8() || value->isInt16() || value->isInt32()) {
|
|
res[i] = (int32_t)((const JsonbIntVal*)value)->val();
|
|
} else {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
}
|
|
} else if constexpr (type_index == TypeIndex::Int64) {
|
|
if (value->isInt8() || value->isInt16() || value->isInt32() ||
|
|
value->isInt64()) {
|
|
res[i] = ((const JsonbIntVal*)value)->val();
|
|
} else {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
}
|
|
} else if constexpr (type_index == TypeIndex::Float64) {
|
|
if (value->isDouble()) {
|
|
res[i] = ((const JsonbDoubleVal*)value)->val();
|
|
} else if (value->isInt8() || value->isInt16() || value->isInt32() ||
|
|
value->isInt64()) {
|
|
res[i] = ((const JsonbIntVal*)value)->val();
|
|
} else {
|
|
null_map[i] = 1;
|
|
res[i] = 0;
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "unsupported type ";
|
|
}
|
|
}
|
|
|
|
block.replace_by_position(
|
|
result, ColumnNullable::create(std::move(col_to), std::move(null_map_col)));
|
|
} else {
|
|
return Status::RuntimeError(
|
|
"Illegal column {} of first argument of conversion function from string",
|
|
col_from.get_name());
|
|
}
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
template <typename ToDataType, typename Name>
|
|
struct ConvertImpl<DataTypeString, ToDataType, Name> {
|
|
template <typename Additions = void*>
|
|
|
|
static Status execute(Block& block, const ColumnNumbers& arguments, size_t result,
|
|
size_t /*input_rows_count*/, bool check_overflow [[maybe_unused]] = false,
|
|
Additions additions [[maybe_unused]] = Additions()) {
|
|
return Status::RuntimeError("not support convert from string");
|
|
}
|
|
};
|
|
|
|
struct NameToString {
|
|
static constexpr auto name = "to_string";
|
|
};
|
|
struct NameToDecimal32 {
|
|
static constexpr auto name = "toDecimal32";
|
|
};
|
|
struct NameToDecimal64 {
|
|
static constexpr auto name = "toDecimal64";
|
|
};
|
|
struct NameToDecimal128 {
|
|
static constexpr auto name = "toDecimal128";
|
|
};
|
|
struct NameToDecimal128I {
|
|
static constexpr auto name = "toDecimal128I";
|
|
};
|
|
struct NameToUInt8 {
|
|
static constexpr auto name = "toUInt8";
|
|
};
|
|
struct NameToUInt16 {
|
|
static constexpr auto name = "toUInt16";
|
|
};
|
|
struct NameToUInt32 {
|
|
static constexpr auto name = "toUInt32";
|
|
};
|
|
struct NameToUInt64 {
|
|
static constexpr auto name = "toUInt64";
|
|
};
|
|
struct NameToInt8 {
|
|
static constexpr auto name = "toInt8";
|
|
};
|
|
struct NameToInt16 {
|
|
static constexpr auto name = "toInt16";
|
|
};
|
|
struct NameToInt32 {
|
|
static constexpr auto name = "toInt32";
|
|
};
|
|
struct NameToInt64 {
|
|
static constexpr auto name = "toInt64";
|
|
};
|
|
struct NameToInt128 {
|
|
static constexpr auto name = "toInt128";
|
|
};
|
|
struct NameToFloat32 {
|
|
static constexpr auto name = "toFloat32";
|
|
};
|
|
struct NameToFloat64 {
|
|
static constexpr auto name = "toFloat64";
|
|
};
|
|
struct NameToDate {
|
|
static constexpr auto name = "toDate";
|
|
};
|
|
struct NameToDateTime {
|
|
static constexpr auto name = "toDateTime";
|
|
};
|
|
|
|
template <typename DataType, typename Additions = void*>
|
|
bool try_parse_impl(typename DataType::FieldType& x, ReadBuffer& rb, const DateLUTImpl*,
|
|
Additions additions [[maybe_unused]] = Additions()) {
|
|
if constexpr (IsDateTimeType<DataType>) {
|
|
return try_read_datetime_text(x, rb);
|
|
}
|
|
|
|
if constexpr (IsDateType<DataType>) {
|
|
return try_read_date_text(x, rb);
|
|
}
|
|
|
|
if constexpr (IsDateV2Type<DataType>) {
|
|
return try_read_date_v2_text(x, rb);
|
|
}
|
|
|
|
if constexpr (IsDateTimeV2Type<DataType>) {
|
|
UInt32 scale = additions;
|
|
return try_read_datetime_v2_text(x, rb, scale);
|
|
}
|
|
|
|
if constexpr (std::is_floating_point_v<typename DataType::FieldType>) {
|
|
return try_read_float_text(x, rb);
|
|
}
|
|
|
|
// uint8_t now use as boolean in doris
|
|
if constexpr (std::is_same_v<typename DataType::FieldType, uint8_t>) {
|
|
return try_read_bool_text(x, rb);
|
|
}
|
|
|
|
if constexpr (std::is_integral_v<typename DataType::FieldType>) {
|
|
return try_read_int_text(x, rb);
|
|
}
|
|
|
|
if constexpr (IsDataTypeDecimal<DataType>) {
|
|
UInt32 scale = additions;
|
|
return try_read_decimal_text(x, rb, DataType::max_precision(), scale);
|
|
}
|
|
}
|
|
|
|
/// Monotonicity.
|
|
|
|
struct PositiveMonotonicity {
|
|
static bool has() { return true; }
|
|
static IFunction::Monotonicity get(const IDataType&, const Field&, const Field&) {
|
|
return {true};
|
|
}
|
|
};
|
|
|
|
struct UnknownMonotonicity {
|
|
static bool has() { return false; }
|
|
static IFunction::Monotonicity get(const IDataType&, const Field&, const Field&) {
|
|
return {false};
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct ToNumberMonotonicity {
|
|
static bool has() { return true; }
|
|
|
|
static UInt64 divide_by_range_of_type(UInt64 x) {
|
|
if constexpr (sizeof(T) < sizeof(UInt64))
|
|
return x >> (sizeof(T) * 8);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static IFunction::Monotonicity get(const IDataType& type, const Field& left,
|
|
const Field& right) {
|
|
if (!type.is_value_represented_by_number()) return {};
|
|
|
|
/// If type is same, the conversion is always monotonic.
|
|
/// (Enum has separate case, because it is different data type)
|
|
if (check_and_get_data_type<DataTypeNumber<T>>(
|
|
&type) /*|| check_and_get_data_type<DataTypeEnum<T>>(&type)*/)
|
|
return {true, true, true};
|
|
|
|
/// Float cases.
|
|
|
|
/// When converting to Float, the conversion is always monotonic.
|
|
if (std::is_floating_point_v<T>) return {true, true, true};
|
|
|
|
/// If converting from Float, for monotonicity, arguments must fit in range of result type.
|
|
if (WhichDataType(type).is_float()) {
|
|
if (left.is_null() || right.is_null()) return {};
|
|
|
|
Float64 left_float = left.get<Float64>();
|
|
Float64 right_float = right.get<Float64>();
|
|
|
|
if (left_float >= std::numeric_limits<T>::min() &&
|
|
left_float <= static_cast<Float64>(std::numeric_limits<T>::max()) &&
|
|
right_float >= std::numeric_limits<T>::min() &&
|
|
right_float <= static_cast<Float64>(std::numeric_limits<T>::max()))
|
|
return {true};
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Integer cases.
|
|
|
|
const bool from_is_unsigned = type.is_value_represented_by_unsigned_integer();
|
|
const bool to_is_unsigned = std::is_unsigned_v<T>;
|
|
|
|
const size_t size_of_from = type.get_size_of_value_in_memory();
|
|
const size_t size_of_to = sizeof(T);
|
|
|
|
const bool left_in_first_half =
|
|
left.is_null() ? from_is_unsigned : (left.get<Int64>() >= 0);
|
|
|
|
const bool right_in_first_half =
|
|
right.is_null() ? !from_is_unsigned : (right.get<Int64>() >= 0);
|
|
|
|
/// Size of type is the same.
|
|
if (size_of_from == size_of_to) {
|
|
if (from_is_unsigned == to_is_unsigned) return {true, true, true};
|
|
|
|
if (left_in_first_half == right_in_first_half) return {true};
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Size of type is expanded.
|
|
if (size_of_from < size_of_to) {
|
|
if (from_is_unsigned == to_is_unsigned) return {true, true, true};
|
|
|
|
if (!to_is_unsigned) return {true, true, true};
|
|
|
|
/// signed -> unsigned. If arguments from the same half, then function is monotonic.
|
|
if (left_in_first_half == right_in_first_half) return {true};
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Size of type is shrinked.
|
|
if (size_of_from > size_of_to) {
|
|
/// Function cannot be monotonic on unbounded ranges.
|
|
if (left.is_null() || right.is_null()) return {};
|
|
|
|
if (from_is_unsigned == to_is_unsigned) {
|
|
/// all bits other than that fits, must be same.
|
|
if (divide_by_range_of_type(left.get<UInt64>()) ==
|
|
divide_by_range_of_type(right.get<UInt64>()))
|
|
return {true};
|
|
|
|
return {};
|
|
} else {
|
|
/// When signedness is changed, it's also required for arguments to be from the same half.
|
|
/// And they must be in the same half after converting to the result type.
|
|
if (left_in_first_half == right_in_first_half &&
|
|
(T(left.get<Int64>()) >= 0) == (T(right.get<Int64>()) >= 0) &&
|
|
divide_by_range_of_type(left.get<UInt64>()) ==
|
|
divide_by_range_of_type(right.get<UInt64>()))
|
|
return {true};
|
|
|
|
return {};
|
|
}
|
|
}
|
|
|
|
__builtin_unreachable();
|
|
}
|
|
};
|
|
|
|
/** The monotonicity for the `to_string` function is mainly determined for test purposes.
|
|
* It is doubtful that anyone is looking to optimize queries with conditions `std::to_string(CounterID) = 34`.
|
|
*/
|
|
struct ToStringMonotonicity {
|
|
static bool has() { return true; }
|
|
|
|
static IFunction::Monotonicity get(const IDataType& type, const Field& left,
|
|
const Field& right) {
|
|
IFunction::Monotonicity positive(true, true);
|
|
IFunction::Monotonicity not_monotonic;
|
|
|
|
if (left.is_null() || right.is_null()) return {};
|
|
|
|
if (left.get_type() == Field::Types::UInt64 && right.get_type() == Field::Types::UInt64) {
|
|
return (left.get<Int64>() == 0 && right.get<Int64>() == 0) ||
|
|
(floor(log10(left.get<UInt64>())) ==
|
|
floor(log10(right.get<UInt64>())))
|
|
? positive
|
|
: not_monotonic;
|
|
}
|
|
|
|
if (left.get_type() == Field::Types::Int64 && right.get_type() == Field::Types::Int64) {
|
|
return (left.get<Int64>() == 0 && right.get<Int64>() == 0) ||
|
|
(left.get<Int64>() > 0 && right.get<Int64>() > 0 &&
|
|
floor(log10(left.get<Int64>())) ==
|
|
floor(log10(right.get<Int64>())))
|
|
? positive
|
|
: not_monotonic;
|
|
}
|
|
|
|
return not_monotonic;
|
|
}
|
|
};
|
|
|
|
template <typename ToDataType, typename Name, typename MonotonicityImpl>
|
|
class FunctionConvert : public IFunction {
|
|
public:
|
|
using Monotonic = MonotonicityImpl;
|
|
|
|
static constexpr auto name = Name::name;
|
|
static constexpr bool to_decimal =
|
|
std::is_same_v<Name, NameToDecimal32> || std::is_same_v<Name, NameToDecimal64> ||
|
|
std::is_same_v<Name, NameToDecimal128> || std::is_same_v<Name, NameToDecimal128I>;
|
|
|
|
static FunctionPtr create() { return std::make_shared<FunctionConvert>(); }
|
|
|
|
String get_name() const override { return name; }
|
|
|
|
bool is_variadic() const override { return true; }
|
|
size_t get_number_of_arguments() const override { return 0; }
|
|
bool get_is_injective(const Block&) override { return std::is_same_v<Name, NameToString>; }
|
|
|
|
// This function should not be called for get DateType Ptr
|
|
// using the FunctionCast::get_return_type_impl
|
|
DataTypePtr get_return_type_impl(const ColumnsWithTypeAndName& arguments) const override {
|
|
return std::make_shared<ToDataType>();
|
|
}
|
|
|
|
bool use_default_implementation_for_constants() const override { return true; }
|
|
ColumnNumbers get_arguments_that_are_always_constant() const override { return {1}; }
|
|
|
|
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
size_t result, size_t input_rows_count) override {
|
|
if (!arguments.size()) {
|
|
return Status::RuntimeError("Function {} expects at least 1 arguments", get_name());
|
|
}
|
|
|
|
const IDataType* from_type = block.get_by_position(arguments[0]).type.get();
|
|
|
|
Status ret_status;
|
|
/// Generic conversion of any type to String.
|
|
if constexpr (std::is_same_v<ToDataType, DataTypeString>) {
|
|
return ConvertImplGenericToString::execute(block, arguments, result);
|
|
} else {
|
|
auto call = [&](const auto& types) -> bool {
|
|
using Types = std::decay_t<decltype(types)>;
|
|
using LeftDataType = typename Types::LeftType;
|
|
using RightDataType = typename Types::RightType;
|
|
|
|
// now, cast to decimal do not execute the code
|
|
if constexpr (IsDataTypeDecimal<RightDataType>) {
|
|
if (arguments.size() != 2) {
|
|
ret_status = Status::RuntimeError(
|
|
"Function {} expects 2 arguments for Decimal.", get_name());
|
|
return true;
|
|
}
|
|
|
|
const ColumnWithTypeAndName& scale_column = block.get_by_position(arguments[1]);
|
|
UInt32 scale = extract_to_decimal_scale(scale_column);
|
|
|
|
ret_status = ConvertImpl<LeftDataType, RightDataType, Name>::execute(
|
|
block, arguments, result, input_rows_count,
|
|
context->impl()->check_overflow_for_decimal(), scale);
|
|
} else if constexpr (IsDataTypeDateTimeV2<RightDataType>) {
|
|
const ColumnWithTypeAndName& scale_column = block.get_by_position(result);
|
|
auto type =
|
|
check_and_get_data_type<DataTypeDateTimeV2>(scale_column.type.get());
|
|
ret_status = ConvertImpl<LeftDataType, RightDataType, Name>::execute(
|
|
block, arguments, result, input_rows_count,
|
|
context->impl()->check_overflow_for_decimal(), type->get_scale());
|
|
} else {
|
|
ret_status = ConvertImpl<LeftDataType, RightDataType, Name>::execute(
|
|
block, arguments, result, input_rows_count);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
bool done = call_on_index_and_data_type<ToDataType>(from_type->get_type_id(), call);
|
|
if (!done) {
|
|
ret_status = Status::RuntimeError(
|
|
"Illegal type {} of argument of function {}",
|
|
block.get_by_position(arguments[0]).type->get_name(), get_name());
|
|
}
|
|
return ret_status;
|
|
}
|
|
}
|
|
|
|
bool has_information_about_monotonicity() const override { return Monotonic::has(); }
|
|
|
|
Monotonicity get_monotonicity_for_range(const IDataType& type, const Field& left,
|
|
const Field& right) const override {
|
|
return Monotonic::get(type, left, right);
|
|
}
|
|
};
|
|
|
|
using FunctionToUInt8 = FunctionConvert<DataTypeUInt8, NameToUInt8, ToNumberMonotonicity<UInt8>>;
|
|
using FunctionToUInt16 =
|
|
FunctionConvert<DataTypeUInt16, NameToUInt16, ToNumberMonotonicity<UInt16>>;
|
|
using FunctionToUInt32 =
|
|
FunctionConvert<DataTypeUInt32, NameToUInt32, ToNumberMonotonicity<UInt32>>;
|
|
using FunctionToUInt64 =
|
|
FunctionConvert<DataTypeUInt64, NameToUInt64, ToNumberMonotonicity<UInt64>>;
|
|
using FunctionToInt8 = FunctionConvert<DataTypeInt8, NameToInt8, ToNumberMonotonicity<Int8>>;
|
|
using FunctionToInt16 = FunctionConvert<DataTypeInt16, NameToInt16, ToNumberMonotonicity<Int16>>;
|
|
using FunctionToInt32 = FunctionConvert<DataTypeInt32, NameToInt32, ToNumberMonotonicity<Int32>>;
|
|
using FunctionToInt64 = FunctionConvert<DataTypeInt64, NameToInt64, ToNumberMonotonicity<Int64>>;
|
|
using FunctionToInt128 =
|
|
FunctionConvert<DataTypeInt128, NameToInt128, ToNumberMonotonicity<Int128>>;
|
|
using FunctionToFloat32 =
|
|
FunctionConvert<DataTypeFloat32, NameToFloat32, ToNumberMonotonicity<Float32>>;
|
|
using FunctionToFloat64 =
|
|
FunctionConvert<DataTypeFloat64, NameToFloat64, ToNumberMonotonicity<Float64>>;
|
|
using FunctionToString = FunctionConvert<DataTypeString, NameToString, ToStringMonotonicity>;
|
|
using FunctionToDecimal32 =
|
|
FunctionConvert<DataTypeDecimal<Decimal32>, NameToDecimal32, UnknownMonotonicity>;
|
|
using FunctionToDecimal64 =
|
|
FunctionConvert<DataTypeDecimal<Decimal64>, NameToDecimal64, UnknownMonotonicity>;
|
|
using FunctionToDecimal128 =
|
|
FunctionConvert<DataTypeDecimal<Decimal128>, NameToDecimal128, UnknownMonotonicity>;
|
|
using FunctionToDecimal128I =
|
|
FunctionConvert<DataTypeDecimal<Decimal128I>, NameToDecimal128I, UnknownMonotonicity>;
|
|
using FunctionToDate = FunctionConvert<DataTypeDate, NameToDate, UnknownMonotonicity>;
|
|
using FunctionToDateTime = FunctionConvert<DataTypeDateTime, NameToDateTime, UnknownMonotonicity>;
|
|
using FunctionToDateV2 = FunctionConvert<DataTypeDateV2, NameToDate, UnknownMonotonicity>;
|
|
using FunctionToDateTimeV2 =
|
|
FunctionConvert<DataTypeDateTimeV2, NameToDateTime, UnknownMonotonicity>;
|
|
|
|
template <typename DataType>
|
|
struct FunctionTo;
|
|
template <>
|
|
struct FunctionTo<DataTypeUInt8> {
|
|
using Type = FunctionToUInt8;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeUInt16> {
|
|
using Type = FunctionToUInt16;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeUInt32> {
|
|
using Type = FunctionToUInt32;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeUInt64> {
|
|
using Type = FunctionToUInt64;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeInt8> {
|
|
using Type = FunctionToInt8;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeInt16> {
|
|
using Type = FunctionToInt16;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeInt32> {
|
|
using Type = FunctionToInt32;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeInt64> {
|
|
using Type = FunctionToInt64;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeInt128> {
|
|
using Type = FunctionToInt128;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeFloat32> {
|
|
using Type = FunctionToFloat32;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeFloat64> {
|
|
using Type = FunctionToFloat64;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDecimal<Decimal32>> {
|
|
using Type = FunctionToDecimal32;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDecimal<Decimal64>> {
|
|
using Type = FunctionToDecimal64;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDecimal<Decimal128>> {
|
|
using Type = FunctionToDecimal128;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDecimal<Decimal128I>> {
|
|
using Type = FunctionToDecimal128I;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDate> {
|
|
using Type = FunctionToDate;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDateTime> {
|
|
using Type = FunctionToDateTime;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDateV2> {
|
|
using Type = FunctionToDateV2;
|
|
};
|
|
template <>
|
|
struct FunctionTo<DataTypeDateTimeV2> {
|
|
using Type = FunctionToDateTimeV2;
|
|
};
|
|
|
|
class PreparedFunctionCast : public PreparedFunctionImpl {
|
|
public:
|
|
using WrapperType = std::function<Status(FunctionContext* context, Block&, const ColumnNumbers&,
|
|
size_t, size_t)>;
|
|
|
|
explicit PreparedFunctionCast(WrapperType&& wrapper_function_, const char* name_)
|
|
: wrapper_function(std::move(wrapper_function_)), name(name_) {}
|
|
|
|
String get_name() const override { return name; }
|
|
|
|
protected:
|
|
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
size_t result, size_t input_rows_count) override {
|
|
/// drop second argument, pass others
|
|
ColumnNumbers new_arguments {arguments.front()};
|
|
if (arguments.size() > 2)
|
|
new_arguments.insert(std::end(new_arguments), std::next(std::begin(arguments), 2),
|
|
std::end(arguments));
|
|
return wrapper_function(context, block, new_arguments, result, input_rows_count);
|
|
}
|
|
|
|
bool use_default_implementation_for_nulls() const override { return false; }
|
|
bool use_default_implementation_for_constants() const override { return true; }
|
|
bool use_default_implementation_for_low_cardinality_columns() const override { return false; }
|
|
ColumnNumbers get_arguments_that_are_always_constant() const override { return {1}; }
|
|
|
|
private:
|
|
WrapperType wrapper_function;
|
|
const char* name;
|
|
};
|
|
|
|
struct NameCast {
|
|
static constexpr auto name = "CAST";
|
|
};
|
|
|
|
template <typename FromDataType, typename ToDataType, typename Name>
|
|
struct ConvertThroughParsing {
|
|
static_assert(std::is_same_v<FromDataType, DataTypeString>,
|
|
"ConvertThroughParsing is only applicable for String or FixedString data types");
|
|
|
|
using ToFieldType = typename ToDataType::FieldType;
|
|
|
|
static bool is_all_read(ReadBuffer& in) { return in.eof(); }
|
|
|
|
template <typename Additions = void*>
|
|
static Status execute(Block& block, const ColumnNumbers& arguments, size_t result,
|
|
size_t input_rows_count, bool check_overflow [[maybe_unused]] = false,
|
|
Additions additions [[maybe_unused]] = Additions()) {
|
|
using ColVecTo = std::conditional_t<IsDecimalNumber<ToFieldType>,
|
|
ColumnDecimal<ToFieldType>, ColumnVector<ToFieldType>>;
|
|
|
|
const DateLUTImpl* local_time_zone [[maybe_unused]] = nullptr;
|
|
const DateLUTImpl* utc_time_zone [[maybe_unused]] = nullptr;
|
|
|
|
const IColumn* col_from = block.get_by_position(arguments[0]).column.get();
|
|
const ColumnString* col_from_string = check_and_get_column<ColumnString>(col_from);
|
|
|
|
if (std::is_same_v<FromDataType, DataTypeString> && !col_from_string) {
|
|
return Status::RuntimeError("Illegal column {} of first argument of function {}",
|
|
col_from->get_name(), Name::name);
|
|
}
|
|
|
|
size_t size = input_rows_count;
|
|
typename ColVecTo::MutablePtr col_to = nullptr;
|
|
|
|
if constexpr (IsDataTypeDecimal<ToDataType>) {
|
|
UInt32 scale = additions;
|
|
col_to = ColVecTo::create(size, scale);
|
|
} else {
|
|
col_to = ColVecTo::create(size);
|
|
}
|
|
|
|
typename ColVecTo::Container& vec_to = col_to->get_data();
|
|
|
|
ColumnUInt8::MutablePtr col_null_map_to;
|
|
ColumnUInt8::Container* vec_null_map_to [[maybe_unused]] = nullptr;
|
|
col_null_map_to = ColumnUInt8::create(size);
|
|
vec_null_map_to = &col_null_map_to->get_data();
|
|
|
|
const ColumnString::Chars* chars = nullptr;
|
|
const IColumn::Offsets* offsets = nullptr;
|
|
size_t fixed_string_size = 0;
|
|
|
|
if constexpr (std::is_same_v<FromDataType, DataTypeString>) {
|
|
chars = &col_from_string->get_chars();
|
|
offsets = &col_from_string->get_offsets();
|
|
}
|
|
|
|
size_t current_offset = 0;
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
size_t next_offset = std::is_same_v<FromDataType, DataTypeString>
|
|
? (*offsets)[i]
|
|
: (current_offset + fixed_string_size);
|
|
size_t string_size = std::is_same_v<FromDataType, DataTypeString>
|
|
? next_offset - current_offset
|
|
: fixed_string_size;
|
|
|
|
ReadBuffer read_buffer(&(*chars)[current_offset], string_size);
|
|
|
|
bool parsed;
|
|
if constexpr (IsDataTypeDecimal<ToDataType>) {
|
|
parsed = try_parse_impl<ToDataType>(vec_to[i], read_buffer, local_time_zone,
|
|
vec_to.get_scale());
|
|
} else if constexpr (IsDataTypeDateTimeV2<ToDataType>) {
|
|
auto type = check_and_get_data_type<DataTypeDateTimeV2>(
|
|
block.get_by_position(result).type.get());
|
|
parsed = try_parse_impl<ToDataType>(vec_to[i], read_buffer, local_time_zone,
|
|
type->get_scale());
|
|
} else {
|
|
parsed = try_parse_impl<ToDataType>(vec_to[i], read_buffer, local_time_zone);
|
|
}
|
|
(*vec_null_map_to)[i] = !parsed || !is_all_read(read_buffer);
|
|
|
|
current_offset = next_offset;
|
|
}
|
|
|
|
block.get_by_position(result).column =
|
|
ColumnNullable::create(std::move(col_to), std::move(col_null_map_to));
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
template <typename Name>
|
|
struct ConvertImpl<DataTypeString, DataTypeDecimal<Decimal32>, Name>
|
|
: ConvertThroughParsing<DataTypeString, DataTypeDecimal<Decimal32>, Name> {};
|
|
template <typename Name>
|
|
struct ConvertImpl<DataTypeString, DataTypeDecimal<Decimal64>, Name>
|
|
: ConvertThroughParsing<DataTypeString, DataTypeDecimal<Decimal64>, Name> {};
|
|
template <typename Name>
|
|
struct ConvertImpl<DataTypeString, DataTypeDecimal<Decimal128>, Name>
|
|
: ConvertThroughParsing<DataTypeString, DataTypeDecimal<Decimal128>, Name> {};
|
|
template <typename Name>
|
|
struct ConvertImpl<DataTypeString, DataTypeDecimal<Decimal128I>, Name>
|
|
: ConvertThroughParsing<DataTypeString, DataTypeDecimal<Decimal128I>, Name> {};
|
|
|
|
template <typename ToDataType, typename Name>
|
|
class FunctionConvertFromString : public IFunction {
|
|
public:
|
|
static constexpr auto name = Name::name;
|
|
static FunctionPtr create() { return std::make_shared<FunctionConvertFromString>(); }
|
|
String get_name() const override { return name; }
|
|
|
|
bool is_variadic() const override { return true; }
|
|
size_t get_number_of_arguments() const override { return 0; }
|
|
|
|
bool use_default_implementation_for_constants() const override { return true; }
|
|
ColumnNumbers get_arguments_that_are_always_constant() const override { return {1}; }
|
|
|
|
// This function should not be called for get DateType Ptr
|
|
// using the FunctionCast::get_return_type_impl
|
|
DataTypePtr get_return_type_impl(const ColumnsWithTypeAndName& arguments) const override {
|
|
DataTypePtr res;
|
|
if constexpr (IsDataTypeDecimal<ToDataType>) {
|
|
LOG(FATAL) << "Someting wrong with toDecimalNNOrZero() or toDecimalNNOrNull()";
|
|
|
|
} else
|
|
res = std::make_shared<ToDataType>();
|
|
|
|
return res;
|
|
}
|
|
|
|
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
size_t result, size_t input_rows_count) override {
|
|
const IDataType* from_type = block.get_by_position(arguments[0]).type.get();
|
|
|
|
if (check_and_get_data_type<DataTypeString>(from_type)) {
|
|
return ConvertThroughParsing<DataTypeString, ToDataType, Name>::execute(
|
|
block, arguments, result, input_rows_count);
|
|
}
|
|
|
|
return Status::RuntimeError(
|
|
"Illegal type {} of argument of function {} . Only String or FixedString "
|
|
"argument is accepted for try-conversion function. For other arguments, use "
|
|
"function without 'orZero' or 'orNull'.",
|
|
block.get_by_position(arguments[0]).type->get_name(), get_name());
|
|
}
|
|
};
|
|
|
|
template <typename ToDataType, typename Name>
|
|
class FunctionConvertToTimeType : public IFunction {
|
|
public:
|
|
static constexpr auto name = Name::name;
|
|
static FunctionPtr create() { return std::make_shared<FunctionConvertToTimeType>(); }
|
|
|
|
String get_name() const override { return name; }
|
|
|
|
bool is_variadic() const override { return true; }
|
|
size_t get_number_of_arguments() const override { return 0; }
|
|
|
|
bool use_default_implementation_for_constants() const override { return true; }
|
|
ColumnNumbers get_arguments_that_are_always_constant() const override { return {1}; }
|
|
|
|
// This function should not be called for get DateType Ptr
|
|
// using the FunctionCast::get_return_type_impl
|
|
DataTypePtr get_return_type_impl(const ColumnsWithTypeAndName& arguments) const override {
|
|
return std::make_shared<ToDataType>();
|
|
}
|
|
|
|
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
size_t result, size_t input_rows_count) override {
|
|
Status ret_status = Status::OK();
|
|
const IDataType* from_type = block.get_by_position(arguments[0]).type.get();
|
|
auto call = [&](const auto& types) -> bool {
|
|
using Types = std::decay_t<decltype(types)>;
|
|
using LeftDataType = typename Types::LeftType;
|
|
using RightDataType = typename Types::RightType;
|
|
|
|
ret_status = ConvertImplToTimeType<LeftDataType, RightDataType, Name>::execute(
|
|
block, arguments, result, input_rows_count);
|
|
return true;
|
|
};
|
|
|
|
bool done = call_on_index_and_number_data_type<ToDataType>(from_type->get_type_id(), call);
|
|
if (!done) {
|
|
return Status::RuntimeError("Illegal type {} of argument of function {}",
|
|
block.get_by_position(arguments[0]).type->get_name(),
|
|
get_name());
|
|
}
|
|
|
|
return ret_status;
|
|
}
|
|
};
|
|
|
|
class FunctionCast final : public IFunctionBase {
|
|
public:
|
|
using WrapperType =
|
|
std::function<Status(FunctionContext*, Block&, const ColumnNumbers&, size_t, size_t)>;
|
|
using MonotonicityForRange =
|
|
std::function<Monotonicity(const IDataType&, const Field&, const Field&)>;
|
|
|
|
FunctionCast(const char* name_, MonotonicityForRange&& monotonicity_for_range_,
|
|
const DataTypes& argument_types_, const DataTypePtr& return_type_)
|
|
: name(name_),
|
|
monotonicity_for_range(monotonicity_for_range_),
|
|
argument_types(argument_types_),
|
|
return_type(return_type_) {}
|
|
|
|
const DataTypes& get_argument_types() const override { return argument_types; }
|
|
const DataTypePtr& get_return_type() const override { return return_type; }
|
|
|
|
PreparedFunctionPtr prepare(FunctionContext* context, const Block& /*sample_block*/,
|
|
const ColumnNumbers& /*arguments*/,
|
|
size_t /*result*/) const override {
|
|
return std::make_shared<PreparedFunctionCast>(
|
|
prepare_unpack_dictionaries(context, get_argument_types()[0], get_return_type()),
|
|
name);
|
|
}
|
|
|
|
String get_name() const override { return name; }
|
|
|
|
bool is_deterministic() const override { return true; }
|
|
bool is_deterministic_in_scope_of_query() const override { return true; }
|
|
|
|
bool has_information_about_monotonicity() const override {
|
|
return static_cast<bool>(monotonicity_for_range);
|
|
}
|
|
|
|
Monotonicity get_monotonicity_for_range(const IDataType& type, const Field& left,
|
|
const Field& right) const override {
|
|
return monotonicity_for_range(type, left, right);
|
|
}
|
|
|
|
private:
|
|
const char* name;
|
|
MonotonicityForRange monotonicity_for_range;
|
|
|
|
DataTypes argument_types;
|
|
DataTypePtr return_type;
|
|
|
|
template <typename DataType>
|
|
WrapperType create_wrapper(const DataTypePtr& from_type, const DataType* const,
|
|
bool requested_result_is_nullable) const {
|
|
FunctionPtr function;
|
|
|
|
if (requested_result_is_nullable &&
|
|
check_and_get_data_type<DataTypeString>(from_type.get())) {
|
|
/// In case when converting to Nullable type, we apply different parsing rule,
|
|
/// that will not throw an exception but return NULL in case of malformed input.
|
|
function = FunctionConvertFromString<DataType, NameCast>::create();
|
|
} else if (requested_result_is_nullable &&
|
|
(IsTimeType<DataType> || IsTimeV2Type<DataType>)&&!(
|
|
check_and_get_data_type<DataTypeDateTime>(from_type.get()) ||
|
|
check_and_get_data_type<DataTypeDate>(from_type.get()) ||
|
|
check_and_get_data_type<DataTypeDateV2>(from_type.get()) ||
|
|
check_and_get_data_type<DataTypeDateTimeV2>(from_type.get()))) {
|
|
function = FunctionConvertToTimeType<DataType, NameCast>::create();
|
|
} else {
|
|
function = FunctionTo<DataType>::Type::create();
|
|
}
|
|
|
|
/// Check conversion using underlying function
|
|
{ function->get_return_type(ColumnsWithTypeAndName(1, {nullptr, from_type, ""})); }
|
|
|
|
return [function](FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
return function->execute(context, block, arguments, result, input_rows_count);
|
|
};
|
|
}
|
|
|
|
WrapperType create_string_wrapper(const DataTypePtr& from_type) const {
|
|
FunctionPtr function = FunctionToString::create();
|
|
|
|
/// Check conversion using underlying function
|
|
{ function->get_return_type(ColumnsWithTypeAndName(1, {nullptr, from_type, ""})); }
|
|
|
|
return [function](FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
return function->execute(context, block, arguments, result, input_rows_count);
|
|
};
|
|
}
|
|
|
|
template <typename FieldType>
|
|
WrapperType create_decimal_wrapper(const DataTypePtr& from_type,
|
|
const DataTypeDecimal<FieldType>* to_type) const {
|
|
using ToDataType = DataTypeDecimal<FieldType>;
|
|
|
|
TypeIndex type_index = from_type->get_type_id();
|
|
UInt32 precision = to_type->get_precision();
|
|
UInt32 scale = to_type->get_scale();
|
|
|
|
WhichDataType which(type_index);
|
|
bool ok = which.is_int() || which.is_native_uint() || which.is_decimal() ||
|
|
which.is_float() || which.is_date_or_datetime() ||
|
|
which.is_date_v2_or_datetime_v2() || which.is_string_or_fixed_string();
|
|
if (!ok) {
|
|
return create_unsupport_wrapper(from_type->get_name(), to_type->get_name());
|
|
}
|
|
|
|
return [type_index, precision, scale](FunctionContext* context, Block& block,
|
|
const ColumnNumbers& arguments, const size_t result,
|
|
size_t input_rows_count) {
|
|
auto res = call_on_index_and_data_type<ToDataType>(
|
|
type_index, [&](const auto& types) -> bool {
|
|
using Types = std::decay_t<decltype(types)>;
|
|
using LeftDataType = typename Types::LeftType;
|
|
using RightDataType = typename Types::RightType;
|
|
|
|
ConvertImpl<LeftDataType, RightDataType, NameCast>::execute(
|
|
block, arguments, result, input_rows_count,
|
|
context->impl()->check_overflow_for_decimal(), scale);
|
|
return true;
|
|
});
|
|
|
|
/// Additionally check if call_on_index_and_data_type wasn't called at all.
|
|
if (!res) {
|
|
auto to = DataTypeDecimal<FieldType>(precision, scale);
|
|
return Status::RuntimeError("Conversion from {} to {} is not supported",
|
|
getTypeName(type_index), to.get_name());
|
|
}
|
|
return Status::OK();
|
|
};
|
|
}
|
|
|
|
WrapperType create_identity_wrapper(const DataTypePtr&) const {
|
|
return [](FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t /*input_rows_count*/) {
|
|
block.get_by_position(result).column = block.get_by_position(arguments.front()).column;
|
|
return Status::OK();
|
|
};
|
|
}
|
|
|
|
WrapperType create_nothing_wrapper(const IDataType* to_type) const {
|
|
ColumnPtr res = to_type->create_column_const_with_default_value(1);
|
|
return [res](FunctionContext* context, Block& block, const ColumnNumbers&,
|
|
const size_t result, size_t input_rows_count) {
|
|
/// Column of Nothing type is trivially convertible to any other column
|
|
block.get_by_position(result).column =
|
|
res->clone_resized(input_rows_count)->convert_to_full_column_if_const();
|
|
return Status::OK();
|
|
};
|
|
}
|
|
|
|
WrapperType create_unsupport_wrapper(const String error_msg) const {
|
|
LOG(WARNING) << error_msg;
|
|
return [error_msg](FunctionContext* /*context*/, Block& /*block*/,
|
|
const ColumnNumbers& /*arguments*/, const size_t /*result*/,
|
|
size_t /*input_rows_count*/) {
|
|
return Status::InvalidArgument(error_msg);
|
|
};
|
|
}
|
|
|
|
WrapperType create_unsupport_wrapper(const String from_type_name,
|
|
const String to_type_name) const {
|
|
const String error_msg = fmt::format("Conversion from {} to {} is not supported",
|
|
from_type_name, to_type_name);
|
|
return create_unsupport_wrapper(error_msg);
|
|
}
|
|
|
|
WrapperType create_array_wrapper(FunctionContext* context, const DataTypePtr& from_type_untyped,
|
|
const DataTypeArray& to_type) const {
|
|
/// Conversion from String through parsing.
|
|
if (check_and_get_data_type<DataTypeString>(from_type_untyped.get())) {
|
|
return &ConvertImplGenericFromString<ColumnString>::execute;
|
|
}
|
|
|
|
const auto* from_type = check_and_get_data_type<DataTypeArray>(from_type_untyped.get());
|
|
|
|
if (!from_type) {
|
|
return create_unsupport_wrapper(
|
|
"CAST AS Array can only be performed between same-dimensional Array, String "
|
|
"types");
|
|
}
|
|
|
|
DataTypePtr from_nested_type = from_type->get_nested_type();
|
|
|
|
/// In query SELECT CAST([] AS Array(Array(String))) from type is Array(Nothing)
|
|
bool from_empty_array = is_nothing(from_nested_type);
|
|
|
|
if (from_type->get_number_of_dimensions() != to_type.get_number_of_dimensions() &&
|
|
!from_empty_array) {
|
|
return create_unsupport_wrapper(
|
|
"CAST AS Array can only be performed between same-dimensional array types");
|
|
}
|
|
|
|
const DataTypePtr& to_nested_type = to_type.get_nested_type();
|
|
|
|
/// Prepare nested type conversion
|
|
const auto nested_function =
|
|
prepare_unpack_dictionaries(context, from_nested_type, to_nested_type);
|
|
|
|
return [nested_function, from_nested_type, to_nested_type](
|
|
FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
const size_t result, size_t /*input_rows_count*/) -> Status {
|
|
auto& from_column = block.get_by_position(arguments.front()).column;
|
|
|
|
const ColumnArray* from_col_array =
|
|
check_and_get_column<ColumnArray>(from_column.get());
|
|
|
|
if (from_col_array) {
|
|
/// create columns for converting nested column containing original and result columns
|
|
ColumnWithTypeAndName from_nested_column {from_col_array->get_data_ptr(),
|
|
from_nested_type, ""};
|
|
|
|
/// convert nested column
|
|
ColumnNumbers new_arguments {block.columns()};
|
|
block.insert(from_nested_column);
|
|
|
|
size_t nested_result = block.columns();
|
|
block.insert({to_nested_type, ""});
|
|
RETURN_IF_ERROR(nested_function(context, block, new_arguments, nested_result,
|
|
from_col_array->get_data_ptr()->size()));
|
|
auto nested_result_column = block.get_by_position(nested_result).column;
|
|
|
|
/// set converted nested column to result
|
|
block.get_by_position(result).column = ColumnArray::create(
|
|
nested_result_column, from_col_array->get_offsets_ptr());
|
|
} else {
|
|
return Status::RuntimeError("Illegal column {} for function CAST AS Array",
|
|
from_column->get_name());
|
|
}
|
|
return Status::OK();
|
|
};
|
|
}
|
|
|
|
// check jsonb value type and get to_type value
|
|
WrapperType create_jsonb_wrapper(const DataTypeJsonb& from_type,
|
|
const DataTypePtr& to_type) const {
|
|
// Conversion from String through parsing.
|
|
if (check_and_get_data_type<DataTypeString>(to_type.get())) {
|
|
return &ConvertImplGenericToString::execute2;
|
|
}
|
|
|
|
switch (to_type->get_type_id()) {
|
|
case TypeIndex::UInt8:
|
|
return &ConvertImplFromJsonb<TypeIndex::UInt8, ColumnUInt8>::execute;
|
|
case TypeIndex::Int8:
|
|
return &ConvertImplFromJsonb<TypeIndex::Int8, ColumnInt8>::execute;
|
|
case TypeIndex::Int16:
|
|
return &ConvertImplFromJsonb<TypeIndex::Int16, ColumnInt16>::execute;
|
|
case TypeIndex::Int32:
|
|
return &ConvertImplFromJsonb<TypeIndex::Int32, ColumnInt32>::execute;
|
|
case TypeIndex::Int64:
|
|
return &ConvertImplFromJsonb<TypeIndex::Int64, ColumnInt64>::execute;
|
|
case TypeIndex::Float64:
|
|
return &ConvertImplFromJsonb<TypeIndex::Float64, ColumnFloat64>::execute;
|
|
default:
|
|
return create_unsupport_wrapper(from_type.get_name(), to_type->get_name());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// create cresponding jsonb value with type to_type
|
|
// use jsonb writer to create jsonb value
|
|
WrapperType create_jsonb_wrapper(const DataTypePtr& from_type,
|
|
const DataTypeJsonb& to_type) const {
|
|
switch (from_type->get_type_id()) {
|
|
case TypeIndex::UInt8:
|
|
return &ConvertImplNumberToJsonb<ColumnUInt8>::execute;
|
|
case TypeIndex::Int8:
|
|
return &ConvertImplNumberToJsonb<ColumnInt8>::execute;
|
|
case TypeIndex::Int16:
|
|
return &ConvertImplNumberToJsonb<ColumnInt16>::execute;
|
|
case TypeIndex::Int32:
|
|
return &ConvertImplNumberToJsonb<ColumnInt32>::execute;
|
|
case TypeIndex::Int64:
|
|
return &ConvertImplNumberToJsonb<ColumnInt64>::execute;
|
|
case TypeIndex::Float64:
|
|
return &ConvertImplNumberToJsonb<ColumnFloat64>::execute;
|
|
case TypeIndex::String:
|
|
return &ConvertImplGenericFromString<ColumnString>::execute;
|
|
default:
|
|
return &ConvertImplGenericToJsonb::execute;
|
|
}
|
|
}
|
|
|
|
WrapperType prepare_unpack_dictionaries(FunctionContext* context, const DataTypePtr& from_type,
|
|
const DataTypePtr& to_type) const {
|
|
const auto& from_nested = from_type;
|
|
const auto& to_nested = to_type;
|
|
|
|
if (from_type->only_null()) {
|
|
if (!to_nested->is_nullable()) {
|
|
return create_unsupport_wrapper("Cannot convert NULL to a non-nullable type");
|
|
}
|
|
|
|
return [](FunctionContext* context, Block& block, const ColumnNumbers&,
|
|
const size_t result, size_t input_rows_count) {
|
|
auto& res = block.get_by_position(result);
|
|
res.column = res.type->create_column_const_with_default_value(input_rows_count)
|
|
->convert_to_full_column_if_const();
|
|
return Status::OK();
|
|
};
|
|
}
|
|
|
|
constexpr bool skip_not_null_check = false;
|
|
|
|
auto wrapper =
|
|
prepare_remove_nullable(context, from_nested, to_nested, skip_not_null_check);
|
|
|
|
return wrapper;
|
|
}
|
|
|
|
WrapperType prepare_remove_nullable(FunctionContext* context, const DataTypePtr& from_type,
|
|
const DataTypePtr& to_type,
|
|
bool skip_not_null_check) const {
|
|
/// Determine whether pre-processing and/or post-processing must take place during conversion.
|
|
bool source_is_nullable = from_type->is_nullable();
|
|
bool result_is_nullable = to_type->is_nullable();
|
|
|
|
auto wrapper = prepare_impl(context, remove_nullable(from_type), remove_nullable(to_type),
|
|
result_is_nullable);
|
|
|
|
if (result_is_nullable) {
|
|
return [wrapper, source_is_nullable](FunctionContext* context, Block& block,
|
|
const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
/// Create a temporary block on which to perform the operation.
|
|
auto& res = block.get_by_position(result);
|
|
const auto& ret_type = res.type;
|
|
const auto& nullable_type = static_cast<const DataTypeNullable&>(*ret_type);
|
|
const auto& nested_type = nullable_type.get_nested_type();
|
|
|
|
Block tmp_block;
|
|
size_t tmp_res_index = 0;
|
|
if (source_is_nullable) {
|
|
auto [t_block, tmp_args] =
|
|
create_block_with_nested_columns(block, arguments, true);
|
|
tmp_block = std::move(t_block);
|
|
tmp_res_index = tmp_block.columns();
|
|
tmp_block.insert({nullptr, nested_type, ""});
|
|
|
|
/// Perform the requested conversion.
|
|
RETURN_IF_ERROR(
|
|
wrapper(context, tmp_block, {0}, tmp_res_index, input_rows_count));
|
|
} else {
|
|
tmp_block = block;
|
|
|
|
tmp_res_index = block.columns();
|
|
tmp_block.insert({nullptr, nested_type, ""});
|
|
|
|
/// Perform the requested conversion.
|
|
RETURN_IF_ERROR(wrapper(context, tmp_block, arguments, tmp_res_index,
|
|
input_rows_count));
|
|
}
|
|
|
|
// Note: here we should return the nullable result column
|
|
const auto& tmp_res = tmp_block.get_by_position(tmp_res_index);
|
|
res.column = wrap_in_nullable(tmp_res.column,
|
|
Block({block.get_by_position(arguments[0]), tmp_res}),
|
|
{0}, 1, input_rows_count);
|
|
|
|
return Status::OK();
|
|
};
|
|
} else if (source_is_nullable) {
|
|
/// Conversion from Nullable to non-Nullable.
|
|
|
|
return [wrapper, skip_not_null_check](FunctionContext* context, Block& block,
|
|
const ColumnNumbers& arguments,
|
|
const size_t result, size_t input_rows_count) {
|
|
auto [tmp_block, tmp_args, tmp_res] =
|
|
create_block_with_nested_columns(block, arguments, result);
|
|
|
|
/// Check that all values are not-NULL.
|
|
/// Check can be skipped in case if LowCardinality dictionary is transformed.
|
|
/// In that case, correctness will be checked beforehand.
|
|
if (!skip_not_null_check) {
|
|
const auto& col = block.get_by_position(arguments[0]).column;
|
|
const auto& nullable_col = assert_cast<const ColumnNullable&>(*col);
|
|
const auto& null_map = nullable_col.get_null_map_data();
|
|
|
|
if (!memory_is_zero(null_map.data(), null_map.size())) {
|
|
return Status::RuntimeError(
|
|
"Cannot convert NULL value to non-Nullable type");
|
|
}
|
|
}
|
|
|
|
RETURN_IF_ERROR(wrapper(context, tmp_block, tmp_args, tmp_res, input_rows_count));
|
|
block.get_by_position(result).column = tmp_block.get_by_position(tmp_res).column;
|
|
return Status::OK();
|
|
};
|
|
} else {
|
|
return wrapper;
|
|
}
|
|
}
|
|
|
|
/// 'from_type' and 'to_type' are nested types in case of Nullable.
|
|
/// 'requested_result_is_nullable' is true if CAST to Nullable type is requested.
|
|
WrapperType prepare_impl(FunctionContext* context, const DataTypePtr& from_type,
|
|
const DataTypePtr& to_type, bool requested_result_is_nullable) const {
|
|
if (from_type->equals(*to_type))
|
|
return create_identity_wrapper(from_type);
|
|
else if (WhichDataType(from_type).is_nothing())
|
|
return create_nothing_wrapper(to_type.get());
|
|
|
|
if (from_type->get_type_id() == TypeIndex::JSONB) {
|
|
return create_jsonb_wrapper(static_cast<const DataTypeJsonb&>(*from_type), to_type);
|
|
}
|
|
if (to_type->get_type_id() == TypeIndex::JSONB) {
|
|
return create_jsonb_wrapper(from_type, static_cast<const DataTypeJsonb&>(*to_type));
|
|
}
|
|
|
|
WrapperType ret;
|
|
|
|
auto make_default_wrapper = [&](const auto& types) -> bool {
|
|
using Types = std::decay_t<decltype(types)>;
|
|
using ToDataType = typename Types::LeftType;
|
|
|
|
if constexpr (std::is_same_v<ToDataType, DataTypeUInt8> ||
|
|
std::is_same_v<ToDataType, DataTypeUInt16> ||
|
|
std::is_same_v<ToDataType, DataTypeUInt32> ||
|
|
std::is_same_v<ToDataType, DataTypeUInt64> ||
|
|
std::is_same_v<ToDataType, DataTypeInt8> ||
|
|
std::is_same_v<ToDataType, DataTypeInt16> ||
|
|
std::is_same_v<ToDataType, DataTypeInt32> ||
|
|
std::is_same_v<ToDataType, DataTypeInt64> ||
|
|
std::is_same_v<ToDataType, DataTypeInt128> ||
|
|
std::is_same_v<ToDataType, DataTypeFloat32> ||
|
|
std::is_same_v<ToDataType, DataTypeFloat64> ||
|
|
std::is_same_v<ToDataType, DataTypeDate> ||
|
|
std::is_same_v<ToDataType, DataTypeDateTime> ||
|
|
std::is_same_v<ToDataType, DataTypeDateV2> ||
|
|
std::is_same_v<ToDataType, DataTypeDateTimeV2>) {
|
|
ret = create_wrapper(from_type, check_and_get_data_type<ToDataType>(to_type.get()),
|
|
requested_result_is_nullable);
|
|
return true;
|
|
}
|
|
|
|
if constexpr (std::is_same_v<ToDataType, DataTypeDecimal<Decimal32>> ||
|
|
std::is_same_v<ToDataType, DataTypeDecimal<Decimal64>> ||
|
|
std::is_same_v<ToDataType, DataTypeDecimal<Decimal128>> ||
|
|
std::is_same_v<ToDataType, DataTypeDecimal<Decimal128I>>) {
|
|
ret = create_decimal_wrapper(from_type,
|
|
check_and_get_data_type<ToDataType>(to_type.get()));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
if (call_on_index_and_data_type<void>(to_type->get_type_id(), make_default_wrapper))
|
|
return ret;
|
|
|
|
switch (to_type->get_type_id()) {
|
|
case TypeIndex::String:
|
|
return create_string_wrapper(from_type);
|
|
case TypeIndex::Array:
|
|
return create_array_wrapper(context, from_type,
|
|
static_cast<const DataTypeArray&>(*to_type));
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return create_unsupport_wrapper(from_type->get_name(), to_type->get_name());
|
|
}
|
|
};
|
|
|
|
class FunctionBuilderCast : public FunctionBuilderImpl {
|
|
public:
|
|
using MonotonicityForRange = FunctionCast::MonotonicityForRange;
|
|
|
|
static constexpr auto name = "CAST";
|
|
static FunctionBuilderPtr create() { return std::make_shared<FunctionBuilderCast>(); }
|
|
|
|
FunctionBuilderCast() {}
|
|
|
|
String get_name() const override { return name; }
|
|
|
|
size_t get_number_of_arguments() const override { return 2; }
|
|
|
|
ColumnNumbers get_arguments_that_are_always_constant() const override { return {1}; }
|
|
|
|
protected:
|
|
FunctionBasePtr build_impl(const ColumnsWithTypeAndName& arguments,
|
|
const DataTypePtr& return_type) const override {
|
|
DataTypes data_types(arguments.size());
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i) data_types[i] = arguments[i].type;
|
|
|
|
auto monotonicity = get_monotonicity_information(arguments.front().type, return_type.get());
|
|
return std::make_shared<FunctionCast>(name, std::move(monotonicity), data_types,
|
|
return_type);
|
|
}
|
|
|
|
DataTypePtr get_return_type_impl(const ColumnsWithTypeAndName& arguments) const override {
|
|
const auto type_col =
|
|
check_and_get_column_const<ColumnString>(arguments.back().column.get());
|
|
if (!type_col) {
|
|
LOG(FATAL) << fmt::format(
|
|
"Second argument to {} must be a constant string describing type", get_name());
|
|
}
|
|
auto type = DataTypeFactory::instance().get(type_col->get_value<String>());
|
|
DCHECK(type != nullptr);
|
|
|
|
bool need_to_be_nullable = false;
|
|
// 1. from_type is nullable
|
|
need_to_be_nullable |= arguments[0].type->is_nullable();
|
|
// 2. from_type is string, to_type is not string
|
|
need_to_be_nullable |= (arguments[0].type->get_type_id() == TypeIndex::String) &&
|
|
(type->get_type_id() != TypeIndex::String);
|
|
// 3. from_type is not DateTime/Date, to_type is DateTime/Date
|
|
need_to_be_nullable |= (arguments[0].type->get_type_id() != TypeIndex::Date &&
|
|
arguments[0].type->get_type_id() != TypeIndex::DateTime) &&
|
|
(type->get_type_id() == TypeIndex::Date ||
|
|
type->get_type_id() == TypeIndex::DateTime);
|
|
// 4. from_type is not DateTimeV2/DateV2, to_type is DateTimeV2/DateV2
|
|
need_to_be_nullable |= (arguments[0].type->get_type_id() != TypeIndex::DateV2 &&
|
|
arguments[0].type->get_type_id() != TypeIndex::DateTimeV2) &&
|
|
(type->get_type_id() == TypeIndex::DateV2 ||
|
|
type->get_type_id() == TypeIndex::DateTimeV2);
|
|
if (need_to_be_nullable) {
|
|
return make_nullable(type);
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
bool use_default_implementation_for_nulls() const override { return false; }
|
|
bool use_default_implementation_for_low_cardinality_columns() const override { return false; }
|
|
|
|
private:
|
|
template <typename DataType>
|
|
static auto monotonicity_for_type(const DataType* const) {
|
|
return FunctionTo<DataType>::Type::Monotonic::get;
|
|
}
|
|
|
|
MonotonicityForRange get_monotonicity_information(const DataTypePtr& from_type,
|
|
const IDataType* to_type) const {
|
|
if (const auto type = check_and_get_data_type<DataTypeUInt8>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeUInt16>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeUInt32>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeUInt64>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeInt8>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeInt16>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeInt32>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeInt64>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeFloat32>(to_type))
|
|
return monotonicity_for_type(type);
|
|
if (const auto type = check_and_get_data_type<DataTypeFloat64>(to_type))
|
|
return monotonicity_for_type(type);
|
|
/// other types like Null, FixedString, Array and Tuple have no monotonicity defined
|
|
return {};
|
|
}
|
|
};
|
|
|
|
} // namespace doris::vectorized
|