325 lines
13 KiB
C++
325 lines
13 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "common/status.h"
|
|
#include "olap/hll.h"
|
|
#include "util/hash_util.hpp"
|
|
#include "util/url_coding.h"
|
|
#include "vec/columns/column.h"
|
|
#include "vec/columns/column_complex.h"
|
|
#include "vec/columns/column_nullable.h"
|
|
#include "vec/columns/column_string.h"
|
|
#include "vec/columns/column_vector.h"
|
|
#include "vec/columns/columns_number.h"
|
|
#include "vec/core/block.h"
|
|
#include "vec/core/column_numbers.h"
|
|
#include "vec/core/column_with_type_and_name.h"
|
|
#include "vec/core/types.h"
|
|
#include "vec/data_types/data_type.h"
|
|
#include "vec/data_types/data_type_hll.h"
|
|
#include "vec/data_types/data_type_number.h"
|
|
#include "vec/data_types/data_type_string.h"
|
|
#include "vec/functions/function.h"
|
|
#include "vec/functions/function_always_not_nullable.h"
|
|
#include "vec/functions/function_const.h"
|
|
#include "vec/functions/function_totype.h"
|
|
#include "vec/functions/simple_function_factory.h"
|
|
|
|
namespace doris::vectorized {
|
|
|
|
struct HLLCardinality {
|
|
static constexpr auto name = "hll_cardinality";
|
|
|
|
using ReturnType = DataTypeNumber<Int64>;
|
|
|
|
static void vector(const std::vector<HyperLogLog>& data, MutableColumnPtr& col_res) {
|
|
typename ColumnVector<Int64>::Container& res =
|
|
reinterpret_cast<ColumnVector<Int64>*>(col_res.get())->get_data();
|
|
|
|
auto size = res.size();
|
|
for (int i = 0; i < size; ++i) {
|
|
res[i] = data[i].estimate_cardinality();
|
|
}
|
|
}
|
|
|
|
static void vector_nullable(const std::vector<HyperLogLog>& data, const NullMap& nullmap,
|
|
MutableColumnPtr& col_res) {
|
|
typename ColumnVector<Int64>::Container& res =
|
|
reinterpret_cast<ColumnVector<Int64>*>(col_res.get())->get_data();
|
|
|
|
auto size = res.size();
|
|
for (int i = 0; i < size; ++i) {
|
|
if (nullmap[i]) {
|
|
res[i] = 0;
|
|
} else {
|
|
res[i] = data[i].estimate_cardinality();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Function>
|
|
class FunctionHLL : public IFunction {
|
|
public:
|
|
static constexpr auto name = Function::name;
|
|
|
|
static FunctionPtr create() { return std::make_shared<FunctionHLL>(); }
|
|
|
|
String get_name() const override { return Function::name; }
|
|
|
|
size_t get_number_of_arguments() const override { return 1; }
|
|
|
|
DataTypePtr get_return_type_impl(const DataTypes& arguments) const override {
|
|
return std::make_shared<typename Function::ReturnType>();
|
|
}
|
|
|
|
bool use_default_implementation_for_nulls() const override { return false; }
|
|
|
|
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
size_t result, size_t input_rows_count) const override {
|
|
auto column = block.get_by_position(arguments[0]).column;
|
|
|
|
MutableColumnPtr column_result = get_return_type_impl({})->create_column();
|
|
column_result->resize(input_rows_count);
|
|
if (const ColumnNullable* col_nullable =
|
|
check_and_get_column<ColumnNullable>(column.get())) {
|
|
const ColumnHLL* col =
|
|
check_and_get_column<ColumnHLL>(col_nullable->get_nested_column_ptr().get());
|
|
const ColumnUInt8* col_nullmap = check_and_get_column<ColumnUInt8>(
|
|
col_nullable->get_null_map_column_ptr().get());
|
|
|
|
if (col != nullptr && col_nullmap != nullptr) {
|
|
Function::vector_nullable(col->get_data(), col_nullmap->get_data(), column_result);
|
|
block.replace_by_position(result, std::move(column_result));
|
|
return Status::OK();
|
|
}
|
|
} else if (const ColumnHLL* col = check_and_get_column<ColumnHLL>(column.get())) {
|
|
Function::vector(col->get_data(), column_result);
|
|
block.replace_by_position(result, std::move(column_result));
|
|
return Status::OK();
|
|
} else {
|
|
return Status::RuntimeError("Illegal column {} of argument of function {}",
|
|
block.get_by_position(arguments[0]).column->get_name(),
|
|
get_name());
|
|
}
|
|
|
|
block.replace_by_position(result, std::move(column_result));
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
struct HLLEmptyImpl {
|
|
static constexpr auto name = "hll_empty";
|
|
using ReturnColVec = ColumnHLL;
|
|
static auto get_return_type() { return std::make_shared<DataTypeHLL>(); }
|
|
static HyperLogLog init_value() { return HyperLogLog {}; }
|
|
};
|
|
|
|
class FunctionHllFromBase64 : public IFunction {
|
|
public:
|
|
static constexpr auto name = "hll_from_base64";
|
|
|
|
String get_name() const override { return name; }
|
|
|
|
static FunctionPtr create() { return std::make_shared<FunctionHllFromBase64>(); }
|
|
|
|
DataTypePtr get_return_type_impl(const DataTypes& arguments) const override {
|
|
return make_nullable(std::make_shared<DataTypeHLL>());
|
|
}
|
|
|
|
size_t get_number_of_arguments() const override { return 1; }
|
|
|
|
bool use_default_implementation_for_nulls() const override { return true; }
|
|
|
|
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
|
|
size_t result, size_t input_rows_count) const override {
|
|
auto res_null_map = ColumnUInt8::create(input_rows_count, 0);
|
|
auto res_data_column = ColumnHLL::create();
|
|
auto& null_map = res_null_map->get_data();
|
|
auto& res = res_data_column->get_data();
|
|
|
|
auto& argument_column = block.get_by_position(arguments[0]).column;
|
|
const auto& str_column = static_cast<const ColumnString&>(*argument_column);
|
|
const ColumnString::Chars& data = str_column.get_chars();
|
|
const ColumnString::Offsets& offsets = str_column.get_offsets();
|
|
|
|
res.reserve(input_rows_count);
|
|
|
|
std::string decode_buff;
|
|
int last_decode_buff_len = 0;
|
|
int curr_decode_buff_len = 0;
|
|
for (size_t i = 0; i < input_rows_count; ++i) {
|
|
const char* src_str = reinterpret_cast<const char*>(&data[offsets[i - 1]]);
|
|
int64_t src_size = offsets[i] - offsets[i - 1];
|
|
|
|
// Base64 encoding has a characteristic where every 4 characters represent 3 bytes of data.
|
|
// Here, we check if the length of the input string is a multiple of 4 to ensure it's a valid base64 encoded string.
|
|
if (0 != src_size % 4) {
|
|
res.emplace_back();
|
|
null_map[i] = 1;
|
|
continue;
|
|
}
|
|
|
|
// Allocate sufficient space for the decoded data.
|
|
// The number 3 here represents the number of bytes in the decoded data for each group of 4 base64 characters.
|
|
// We set the size of the decoding buffer to be 'src_size + 3' to ensure there is enough space to store the decoded data.
|
|
curr_decode_buff_len = src_size + 3;
|
|
if (curr_decode_buff_len > last_decode_buff_len) {
|
|
decode_buff.resize(curr_decode_buff_len);
|
|
last_decode_buff_len = curr_decode_buff_len;
|
|
}
|
|
auto outlen = base64_decode(src_str, src_size, decode_buff.data());
|
|
if (outlen < 0) {
|
|
res.emplace_back();
|
|
null_map[i] = 1;
|
|
} else {
|
|
doris::Slice decoded_slice(decode_buff.data(), outlen);
|
|
doris::HyperLogLog hll;
|
|
if (!hll.deserialize(decoded_slice)) {
|
|
return Status::RuntimeError(
|
|
fmt::format("hll_from_base64 decode failed: base64: {}", src_str));
|
|
} else {
|
|
res.emplace_back(std::move(hll));
|
|
}
|
|
}
|
|
}
|
|
|
|
block.get_by_position(result).column =
|
|
ColumnNullable::create(std::move(res_data_column), std::move(res_null_map));
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
struct HLLHash {
|
|
static constexpr auto name = "hll_hash";
|
|
|
|
using ReturnType = DataTypeHLL;
|
|
template <typename ColumnType>
|
|
static void vector(const ColumnType* col, MutableColumnPtr& col_res) {
|
|
if constexpr (std::is_same_v<ColumnType, ColumnString>) {
|
|
const ColumnString::Chars& data = col->get_chars();
|
|
const ColumnString::Offsets& offsets = col->get_offsets();
|
|
auto* res_column = reinterpret_cast<ColumnHLL*>(col_res.get());
|
|
auto& res_data = res_column->get_data();
|
|
size_t size = offsets.size();
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
const char* raw_str = reinterpret_cast<const char*>(&data[offsets[i - 1]]);
|
|
size_t str_size = offsets[i] - offsets[i - 1];
|
|
uint64_t hash_value =
|
|
HashUtil::murmur_hash64A(raw_str, str_size, HashUtil::MURMUR_SEED);
|
|
res_data[i].update(hash_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename ColumnType>
|
|
static void vector_nullable(const ColumnType* col, const NullMap& nullmap,
|
|
MutableColumnPtr& col_res) {
|
|
if constexpr (std::is_same_v<ColumnType, ColumnString>) {
|
|
const ColumnString::Chars& data = col->get_chars();
|
|
const ColumnString::Offsets& offsets = col->get_offsets();
|
|
auto* res_column = reinterpret_cast<ColumnHLL*>(col_res.get());
|
|
auto& res_data = res_column->get_data();
|
|
size_t size = offsets.size();
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
if (nullmap[i]) {
|
|
continue;
|
|
} else {
|
|
const char* raw_str = reinterpret_cast<const char*>(&data[offsets[i - 1]]);
|
|
size_t str_size = offsets[i] - offsets[i - 1];
|
|
uint64_t hash_value =
|
|
HashUtil::murmur_hash64A(raw_str, str_size, HashUtil::MURMUR_SEED);
|
|
res_data[i].update(hash_value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct NameHllToBase64 {
|
|
static constexpr auto name = "hll_to_base64";
|
|
};
|
|
|
|
struct HllToBase64 {
|
|
using ReturnType = DataTypeString;
|
|
static constexpr auto TYPE_INDEX = TypeIndex::HLL;
|
|
using Type = DataTypeHLL::FieldType;
|
|
using ReturnColumnType = ColumnString;
|
|
using Chars = ColumnString::Chars;
|
|
using Offsets = ColumnString::Offsets;
|
|
|
|
static Status vector(const std::vector<HyperLogLog>& data, Chars& chars, Offsets& offsets) {
|
|
size_t size = data.size();
|
|
offsets.resize(size);
|
|
size_t output_char_size = 0;
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto& hll_val = const_cast<HyperLogLog&>(data[i]);
|
|
auto ser_size = hll_val.max_serialized_size();
|
|
output_char_size += (int)(4.0 * ceil((double)ser_size / 3.0));
|
|
}
|
|
ColumnString::check_chars_length(output_char_size, size);
|
|
chars.resize(output_char_size);
|
|
auto* chars_data = chars.data();
|
|
|
|
size_t cur_ser_size = 0;
|
|
size_t last_ser_size = 0;
|
|
std::string ser_buff;
|
|
size_t encoded_offset = 0;
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto& hll_val = const_cast<HyperLogLog&>(data[i]);
|
|
|
|
cur_ser_size = hll_val.max_serialized_size();
|
|
if (cur_ser_size > last_ser_size) {
|
|
last_ser_size = cur_ser_size;
|
|
ser_buff.resize(cur_ser_size);
|
|
}
|
|
hll_val.serialize(reinterpret_cast<uint8_t*>(ser_buff.data()));
|
|
auto outlen = base64_encode((const unsigned char*)ser_buff.data(), cur_ser_size,
|
|
chars_data + encoded_offset);
|
|
DCHECK(outlen > 0);
|
|
|
|
encoded_offset += outlen;
|
|
offsets[i] = encoded_offset;
|
|
}
|
|
return Status::OK();
|
|
}
|
|
};
|
|
|
|
using FunctionHLLCardinality = FunctionHLL<HLLCardinality>;
|
|
using FunctionHLLEmpty = FunctionConst<HLLEmptyImpl, false>;
|
|
using FunctionHLLHash = FunctionAlwaysNotNullable<HLLHash>;
|
|
using FunctionHllToBase64 = FunctionUnaryToType<HllToBase64, NameHllToBase64>;
|
|
|
|
void register_function_hll(SimpleFunctionFactory& factory) {
|
|
factory.register_function<FunctionHLLCardinality>();
|
|
factory.register_function<FunctionHLLEmpty>();
|
|
factory.register_function<FunctionHllFromBase64>();
|
|
factory.register_function<FunctionHLLHash>();
|
|
factory.register_function<FunctionHllToBase64>();
|
|
}
|
|
|
|
} // namespace doris::vectorized
|