Files
doris/be/src/runtime/plan_fragment_executor.cpp
2022-07-09 15:50:40 +08:00

692 lines
25 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/cloudera/Impala/blob/v0.7refresh/be/src/runtime/plan-fragment-executor.cc
// and modified by Doris
#include "runtime/plan_fragment_executor.h"
#include <thrift/protocol/TDebugProtocol.h>
#include <unordered_map>
#include "exec/data_sink.h"
#include "exec/exchange_node.h"
#include "exec/exec_node.h"
#include "exec/scan_node.h"
#include "exprs/expr.h"
#include "runtime/data_stream_mgr.h"
#include "runtime/descriptors.h"
#include "runtime/exec_env.h"
#include "runtime/mem_tracker.h"
#include "runtime/result_buffer_mgr.h"
#include "runtime/result_queue_mgr.h"
#include "runtime/row_batch.h"
#include "runtime/thread_context.h"
#include "util/container_util.hpp"
#include "util/defer_op.h"
#include "util/logging.h"
#include "util/mem_info.h"
#include "util/parse_util.h"
#include "util/pretty_printer.h"
#include "util/telemetry/telemetry.h"
#include "util/uid_util.h"
#include "vec/core/block.h"
#include "vec/exec/vexchange_node.h"
#include "vec/runtime/vdata_stream_mgr.h"
namespace doris {
PlanFragmentExecutor::PlanFragmentExecutor(ExecEnv* exec_env,
const report_status_callback& report_status_cb)
: _exec_env(exec_env),
_plan(nullptr),
_report_status_cb(report_status_cb),
_report_thread_active(false),
_done(false),
_prepared(false),
_closed(false),
_is_report_success(true),
_is_report_on_cancel(true),
_collect_query_statistics_with_every_batch(false),
_cancel_reason(PPlanFragmentCancelReason::INTERNAL_ERROR),
_cancel_msg("") {}
PlanFragmentExecutor::~PlanFragmentExecutor() {
close();
// at this point, the report thread should have been stopped
DCHECK(!_report_thread_active);
}
Status PlanFragmentExecutor::prepare(const TExecPlanFragmentParams& request,
QueryFragmentsCtx* fragments_ctx) {
OpentelemetryTracer tracer = telemetry::get_noop_tracer();
if (opentelemetry::trace::Tracer::GetCurrentSpan()->GetContext().IsValid()) {
tracer = telemetry::get_tracer(print_id(_query_id));
}
START_AND_SCOPE_SPAN(tracer, span, "PlanFragmentExecutor::prepare");
const TPlanFragmentExecParams& params = request.params;
_query_id = params.query_id;
TAG(LOG(INFO))
.log("PlanFragmentExecutor::prepare")
.query_id(_query_id)
.instance_id(params.fragment_instance_id)
.tag("backend_num", std::to_string(request.backend_num))
.tag("pthread_id", std::to_string((uintptr_t)pthread_self()));
// VLOG_CRITICAL << "request:\n" << apache::thrift::ThriftDebugString(request);
const TQueryGlobals& query_globals =
fragments_ctx == nullptr ? request.query_globals : fragments_ctx->query_globals;
_runtime_state.reset(new RuntimeState(params, request.query_options, query_globals, _exec_env));
_runtime_state->set_query_fragments_ctx(fragments_ctx);
_runtime_state->set_tracer(std::move(tracer));
RETURN_IF_ERROR(_runtime_state->init_mem_trackers(_query_id));
SCOPED_ATTACH_TASK_THREAD(_runtime_state.get(), _runtime_state->instance_mem_tracker());
_runtime_state->set_be_number(request.backend_num);
if (request.__isset.backend_id) {
_runtime_state->set_backend_id(request.backend_id);
}
if (request.__isset.import_label) {
_runtime_state->set_import_label(request.import_label);
}
if (request.__isset.db_name) {
_runtime_state->set_db_name(request.db_name);
}
if (request.__isset.load_job_id) {
_runtime_state->set_load_job_id(request.load_job_id);
}
if (request.__isset.load_error_hub_info) {
_runtime_state->set_load_error_hub_info(request.load_error_hub_info);
}
if (request.query_options.__isset.is_report_success) {
_is_report_success = request.query_options.is_report_success;
}
RETURN_IF_ERROR(_runtime_state->create_block_mgr());
// set up desc tbl
DescriptorTbl* desc_tbl = nullptr;
if (fragments_ctx != nullptr) {
desc_tbl = fragments_ctx->desc_tbl;
} else {
DCHECK(request.__isset.desc_tbl);
RETURN_IF_ERROR(DescriptorTbl::create(obj_pool(), request.desc_tbl, &desc_tbl));
}
_runtime_state->set_desc_tbl(desc_tbl);
// set up plan
DCHECK(request.__isset.fragment);
RETURN_IF_ERROR(ExecNode::create_tree(_runtime_state.get(), obj_pool(), request.fragment.plan,
*desc_tbl, &_plan));
_runtime_state->set_fragment_root_id(_plan->id());
// set #senders of exchange nodes before calling Prepare()
std::vector<ExecNode*> exch_nodes;
_plan->collect_nodes(TPlanNodeType::EXCHANGE_NODE, &exch_nodes);
for (ExecNode* exch_node : exch_nodes) {
DCHECK_EQ(exch_node->type(), TPlanNodeType::EXCHANGE_NODE);
int num_senders = find_with_default(params.per_exch_num_senders, exch_node->id(), 0);
DCHECK_GT(num_senders, 0);
if (_runtime_state->enable_vectorized_exec()) {
static_cast<doris::vectorized::VExchangeNode*>(exch_node)->set_num_senders(num_senders);
} else {
static_cast<ExchangeNode*>(exch_node)->set_num_senders(num_senders);
}
}
RETURN_IF_ERROR(_plan->prepare(_runtime_state.get()));
// set scan ranges
std::vector<ExecNode*> scan_nodes;
std::vector<TScanRangeParams> no_scan_ranges;
_plan->collect_scan_nodes(&scan_nodes);
VLOG_CRITICAL << "scan_nodes.size()=" << scan_nodes.size();
VLOG_CRITICAL << "params.per_node_scan_ranges.size()=" << params.per_node_scan_ranges.size();
_plan->try_do_aggregate_serde_improve();
for (int i = 0; i < scan_nodes.size(); ++i) {
ScanNode* scan_node = static_cast<ScanNode*>(scan_nodes[i]);
const std::vector<TScanRangeParams>& scan_ranges =
find_with_default(params.per_node_scan_ranges, scan_node->id(), no_scan_ranges);
scan_node->set_scan_ranges(scan_ranges);
VLOG_CRITICAL << "scan_node_Id=" << scan_node->id() << " size=" << scan_ranges.size();
}
_runtime_state->set_per_fragment_instance_idx(params.sender_id);
_runtime_state->set_num_per_fragment_instances(params.num_senders);
// set up sink, if required
if (request.fragment.__isset.output_sink) {
RETURN_IF_ERROR(DataSink::create_data_sink(
obj_pool(), request.fragment.output_sink, request.fragment.output_exprs, params,
row_desc(), runtime_state()->enable_vectorized_exec(), &_sink, *desc_tbl));
RETURN_IF_ERROR(_sink->prepare(runtime_state()));
RuntimeProfile* sink_profile = _sink->profile();
if (sink_profile != nullptr) {
profile()->add_child(sink_profile, true, nullptr);
}
_collect_query_statistics_with_every_batch =
params.__isset.send_query_statistics_with_every_batch
? params.send_query_statistics_with_every_batch
: false;
} else {
// _sink is set to nullptr
_sink.reset(nullptr);
}
// set up profile counters
profile()->add_child(_plan->runtime_profile(), true, nullptr);
_rows_produced_counter = ADD_COUNTER(profile(), "RowsProduced", TUnit::UNIT);
_fragment_cpu_timer = ADD_TIMER(profile(), "FragmentCpuTime");
_row_batch.reset(new RowBatch(_plan->row_desc(), _runtime_state->batch_size()));
_block.reset(new doris::vectorized::Block());
// _row_batch->tuple_data_pool()->set_limits(*_runtime_state->mem_trackers());
VLOG_NOTICE << "plan_root=\n" << _plan->debug_string();
_prepared = true;
_query_statistics.reset(new QueryStatistics());
if (_sink.get() != nullptr) {
_sink->set_query_statistics(_query_statistics);
}
return Status::OK();
}
Status PlanFragmentExecutor::open() {
int64_t mem_limit = _runtime_state->instance_mem_tracker()->limit();
TAG(LOG(INFO))
.log("PlanFragmentExecutor::open, using query memory limit: " +
PrettyPrinter::print(mem_limit, TUnit::BYTES))
.query_id(_query_id)
.instance_id(_runtime_state->fragment_instance_id())
.tag("mem_limit", std::to_string(mem_limit));
// we need to start the profile-reporting thread before calling Open(), since it
// may block
// TODO: if no report thread is started, make sure to send a final profile
// at end, otherwise the coordinator hangs in case we finish w/ an error
if (_is_report_success && _report_status_cb && config::status_report_interval > 0) {
std::unique_lock<std::mutex> l(_report_thread_lock);
_report_thread = std::thread(&PlanFragmentExecutor::report_profile, this);
// make sure the thread started up, otherwise report_profile() might get into a race
// with stop_report_thread()
_report_thread_started_cv.wait(l);
}
Status status = Status::OK();
if (_runtime_state->enable_vectorized_exec()) {
status = open_vectorized_internal();
} else {
status = open_internal();
}
if (!status.ok() && !status.is_cancelled() && _runtime_state->log_has_space()) {
// Log error message in addition to returning in Status. Queries that do not
// fetch results (e.g. insert) may not receive the message directly and can
// only retrieve the log.
_runtime_state->log_error(status.get_error_msg());
}
if (status.is_cancelled()) {
if (_cancel_reason == PPlanFragmentCancelReason::CALL_RPC_ERROR) {
status = Status::RuntimeError(_cancel_msg);
} else if (_cancel_reason == PPlanFragmentCancelReason::MEMORY_LIMIT_EXCEED) {
status = Status::MemoryLimitExceeded(_cancel_msg);
}
}
update_status(status);
return status;
}
Status PlanFragmentExecutor::open_vectorized_internal() {
{
SCOPED_CPU_TIMER(_fragment_cpu_timer);
SCOPED_TIMER(profile()->total_time_counter());
RETURN_IF_ERROR(_plan->open(_runtime_state.get()));
}
if (_sink == nullptr) {
return Status::OK();
}
{
SCOPED_CPU_TIMER(_fragment_cpu_timer);
RETURN_IF_ERROR(_sink->open(runtime_state()));
}
{
auto sink_send_span_guard = Defer {[this]() { this->_sink->end_send_span(); }};
while (true) {
doris::vectorized::Block* block;
{
SCOPED_CPU_TIMER(_fragment_cpu_timer);
RETURN_IF_ERROR(get_vectorized_internal(&block));
}
if (block == NULL) {
break;
}
SCOPED_TIMER(profile()->total_time_counter());
SCOPED_CPU_TIMER(_fragment_cpu_timer);
// Collect this plan and sub plan statistics, and send to parent plan.
if (_collect_query_statistics_with_every_batch) {
_collect_query_statistics();
}
auto st = _sink->send(runtime_state(), block);
if (st.is_end_of_file()) {
break;
}
RETURN_IF_ERROR(st);
}
}
{
SCOPED_TIMER(profile()->total_time_counter());
_collect_query_statistics();
Status status;
{
std::lock_guard<std::mutex> l(_status_lock);
status = _status;
}
status = _sink->close(runtime_state(), status);
RETURN_IF_ERROR(status);
}
// Setting to NULL ensures that the d'tor won't double-close the sink.
_sink.reset(nullptr);
_done = true;
stop_report_thread();
send_report(true);
return Status::OK();
}
Status PlanFragmentExecutor::get_vectorized_internal(::doris::vectorized::Block** block) {
if (_done) {
*block = nullptr;
return Status::OK();
}
while (!_done) {
_block->clear_column_data(_plan->row_desc().num_materialized_slots());
SCOPED_TIMER(profile()->total_time_counter());
RETURN_IF_ERROR_AND_CHECK_SPAN(_plan->get_next(_runtime_state.get(), _block.get(), &_done),
_plan->get_next_span(), _done);
if (_block->rows() > 0) {
COUNTER_UPDATE(_rows_produced_counter, _block->rows());
*block = _block.get();
break;
}
*block = nullptr;
}
return Status::OK();
}
Status PlanFragmentExecutor::open_internal() {
{
SCOPED_CPU_TIMER(_fragment_cpu_timer);
SCOPED_TIMER(profile()->total_time_counter());
RETURN_IF_ERROR(_plan->open(_runtime_state.get()));
}
if (_sink.get() == nullptr) {
return Status::OK();
}
{
SCOPED_CPU_TIMER(_fragment_cpu_timer);
RETURN_IF_ERROR(_sink->open(runtime_state()));
}
// If there is a sink, do all the work of driving it here, so that
// when this returns the query has actually finished
RowBatch* batch = nullptr;
while (true) {
{
SCOPED_CPU_TIMER(_fragment_cpu_timer);
RETURN_IF_ERROR(get_next_internal(&batch));
}
if (batch == nullptr) {
break;
}
if (VLOG_ROW_IS_ON) {
VLOG_ROW << "open_internal: #rows=" << batch->num_rows()
<< " desc=" << row_desc().debug_string();
for (int i = 0; i < batch->num_rows(); ++i) {
TupleRow* row = batch->get_row(i);
VLOG_ROW << row->to_string(row_desc());
}
}
SCOPED_TIMER(profile()->total_time_counter());
SCOPED_CPU_TIMER(_fragment_cpu_timer);
// Collect this plan and sub plan statistics, and send to parent plan.
if (_collect_query_statistics_with_every_batch) {
_collect_query_statistics();
}
const Status& st = _sink->send(runtime_state(), batch);
if (st.is_end_of_file()) {
break;
}
RETURN_IF_ERROR(st);
}
// Close the sink *before* stopping the report thread. Close may
// need to add some important information to the last report that
// gets sent. (e.g. table sinks record the files they have written
// to in this method)
// The coordinator report channel waits until all backends are
// either in error or have returned a status report with done =
// true, so tearing down any data stream state (a separate
// channel) in Close is safe.
// TODO: If this returns an error, the d'tor will call Close again. We should
// audit the sinks to check that this is ok, or change that behaviour.
{
SCOPED_TIMER(profile()->total_time_counter());
_collect_query_statistics();
Status status;
{
std::lock_guard<std::mutex> l(_status_lock);
status = _status;
}
status = _sink->close(runtime_state(), status);
RETURN_IF_ERROR(status);
}
// Setting to nullptr ensures that the d'tor won't double-close the sink.
_sink.reset(nullptr);
_done = true;
stop_report_thread();
send_report(true);
return Status::OK();
}
void PlanFragmentExecutor::_collect_query_statistics() {
_query_statistics->clear();
_plan->collect_query_statistics(_query_statistics.get());
_query_statistics->add_cpu_ms(_fragment_cpu_timer->value() / NANOS_PER_MILLIS);
if (_runtime_state->backend_id() != -1) {
_collect_node_statistics();
}
}
void PlanFragmentExecutor::_collect_node_statistics() {
DCHECK(_runtime_state->backend_id() != -1);
NodeStatistics* node_statistics =
_query_statistics->add_nodes_statistics(_runtime_state->backend_id());
node_statistics->add_peak_memory(_runtime_state->instance_mem_tracker()->peak_consumption());
}
void PlanFragmentExecutor::report_profile() {
SCOPED_ATTACH_TASK_THREAD(_runtime_state.get(), _runtime_state->instance_mem_tracker());
VLOG_FILE << "report_profile(): instance_id=" << _runtime_state->fragment_instance_id();
DCHECK(_report_status_cb);
_report_thread_active = true;
std::unique_lock<std::mutex> l(_report_thread_lock);
// tell Open() that we started
_report_thread_started_cv.notify_one();
// Jitter the reporting time of remote fragments by a random amount between
// 0 and the report_interval. This way, the coordinator doesn't get all the
// updates at once so its better for contention as well as smoother progress
// reporting.
int report_fragment_offset = rand() % config::status_report_interval;
// We don't want to wait longer than it takes to run the entire fragment.
_stop_report_thread_cv.wait_for(l, std::chrono::seconds(report_fragment_offset));
while (_report_thread_active) {
if (config::status_report_interval > 0) {
// wait_for can return because the timeout occurred or the condition variable
// was signaled. We can't rely on its return value to distinguish between the
// two cases (e.g. there is a race here where the wait timed out but before grabbing
// the lock, the condition variable was signaled). Instead, we will use an external
// flag, _report_thread_active, to coordinate this.
_stop_report_thread_cv.wait_for(l,
std::chrono::seconds(config::status_report_interval));
} else {
LOG(WARNING) << "config::status_report_interval is equal to or less than zero, exiting "
"reporting thread.";
break;
}
if (VLOG_FILE_IS_ON) {
VLOG_FILE << "Reporting " << (!_report_thread_active ? "final " : " ")
<< "profile for instance " << _runtime_state->fragment_instance_id();
std::stringstream ss;
profile()->compute_time_in_profile();
profile()->pretty_print(&ss);
VLOG_FILE << ss.str();
}
if (!_report_thread_active) {
break;
}
send_report(false);
}
VLOG_FILE << "exiting reporting thread: instance_id=" << _runtime_state->fragment_instance_id();
}
void PlanFragmentExecutor::send_report(bool done) {
if (!_report_status_cb) {
return;
}
Status status;
{
std::lock_guard<std::mutex> l(_status_lock);
status = _status;
}
// If plan is done successfully, but _is_report_success is false,
// no need to send report.
if (!_is_report_success && done && status.ok()) {
return;
}
// If both _is_report_success and _is_report_on_cancel are false,
// which means no matter query is success or failed, no report is needed.
// This may happen when the query limit reached and
// a internal cancellation being processed
if (!_is_report_success && !_is_report_on_cancel) {
return;
}
// This will send a report even if we are cancelled. If the query completed correctly
// but fragments still need to be cancelled (e.g. limit reached), the coordinator will
// be waiting for a final report and profile.
if (_is_report_success) {
_report_status_cb(status, profile(), done || !status.ok());
} else {
_report_status_cb(status, nullptr, done || !status.ok());
}
}
void PlanFragmentExecutor::stop_report_thread() {
if (!_report_thread_active) {
return;
}
_report_thread_active = false;
_stop_report_thread_cv.notify_one();
_report_thread.join();
}
Status PlanFragmentExecutor::get_next(RowBatch** batch) {
VLOG_FILE << "GetNext(): instance_id=" << _runtime_state->fragment_instance_id();
Status status = get_next_internal(batch);
update_status(status);
if (_done) {
TAG(LOG(INFO))
.log("PlanFragmentExecutor::get_next finished")
.query_id(_query_id)
.instance_id(_runtime_state->fragment_instance_id());
// Query is done, return the thread token
stop_report_thread();
send_report(true);
}
return status;
}
Status PlanFragmentExecutor::get_next_internal(RowBatch** batch) {
if (_done) {
*batch = nullptr;
return Status::OK();
}
while (!_done) {
_row_batch->reset();
SCOPED_TIMER(profile()->total_time_counter());
RETURN_IF_ERROR(_plan->get_next(_runtime_state.get(), _row_batch.get(), &_done));
if (_row_batch->num_rows() > 0) {
COUNTER_UPDATE(_rows_produced_counter, _row_batch->num_rows());
*batch = _row_batch.get();
break;
}
*batch = nullptr;
}
return Status::OK();
}
void PlanFragmentExecutor::update_status(const Status& new_status) {
if (new_status.ok()) {
return;
}
{
std::lock_guard<std::mutex> l(_status_lock);
// if current `_status` is ok, set it to `new_status` to record the error.
if (_status.ok()) {
if (new_status.is_mem_limit_exceeded()) {
_runtime_state->set_mem_limit_exceeded(new_status.get_error_msg());
}
_status = new_status;
if (_runtime_state->query_type() == TQueryType::EXTERNAL) {
TUniqueId fragment_instance_id = _runtime_state->fragment_instance_id();
_exec_env->result_queue_mgr()->update_queue_status(fragment_instance_id,
new_status);
}
}
}
stop_report_thread();
send_report(true);
}
void PlanFragmentExecutor::cancel(const PPlanFragmentCancelReason& reason, const std::string& msg) {
TAG(LOG(INFO))
.log("PlanFragmentExecutor::cancel")
.query_id(_query_id)
.instance_id(_runtime_state->fragment_instance_id());
DCHECK(_prepared);
_cancel_reason = reason;
_cancel_msg = msg;
_runtime_state->set_is_cancelled(true);
// must close stream_mgr to avoid dead lock in Exchange Node
auto env = _runtime_state->exec_env();
auto id = _runtime_state->fragment_instance_id();
if (_runtime_state->enable_vectorized_exec()) {
env->vstream_mgr()->cancel(id);
} else {
env->stream_mgr()->cancel(id);
env->result_mgr()->cancel(id);
}
}
void PlanFragmentExecutor::set_abort() {
update_status(Status::Aborted("Execution aborted before start"));
}
const RowDescriptor& PlanFragmentExecutor::row_desc() {
return _plan->row_desc();
}
RuntimeProfile* PlanFragmentExecutor::profile() {
return _runtime_state->runtime_profile();
}
void PlanFragmentExecutor::close() {
if (_closed) {
return;
}
_row_batch.reset(nullptr);
// Prepare may not have been called, which sets _runtime_state
if (_runtime_state.get() != nullptr) {
// _runtime_state init failed
if (_plan != nullptr) {
_plan->close(_runtime_state.get());
}
if (_sink.get() != nullptr) {
if (_prepared) {
Status status;
{
std::lock_guard<std::mutex> l(_status_lock);
status = _status;
}
_sink->close(runtime_state(), status);
} else {
_sink->close(runtime_state(), Status::InternalError("prepare failed"));
}
}
if (_is_report_success) {
std::stringstream ss;
// Compute the _local_time_percent before pretty_print the runtime_profile
// Before add this operation, the print out like that:
// UNION_NODE (id=0):(Active: 56.720us, non-child: 00.00%)
// After add the operation, the print out like that:
// UNION_NODE (id=0):(Active: 56.720us, non-child: 82.53%)
// We can easily know the exec node execute time without child time consumed.
_runtime_state->runtime_profile()->compute_time_in_profile();
_runtime_state->runtime_profile()->pretty_print(&ss);
LOG(INFO) << ss.str();
}
LOG(INFO) << "Close() fragment_instance_id="
<< print_id(_runtime_state->fragment_instance_id());
}
_closed = true;
}
} // namespace doris