Files
doris/be/src/runtime/load_channel_mgr.cpp
sduzh 6fedf5881b [CodeFormat] Clang-format cpp sources (#4965)
Clang-format all c++ source files.
2020-11-28 18:36:49 +08:00

277 lines
10 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "runtime/load_channel_mgr.h"
#include "gutil/strings/substitute.h"
#include "olap/lru_cache.h"
#include "runtime/load_channel.h"
#include "runtime/mem_tracker.h"
#include "service/backend_options.h"
#include "util/doris_metrics.h"
#include "util/stopwatch.hpp"
namespace doris {
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(load_channel_count, MetricUnit::NOUNIT);
// Calculate the total memory limit of all load tasks on this BE
static int64_t calc_process_max_load_memory(int64_t process_mem_limit) {
if (process_mem_limit == -1) {
// no limit
return -1;
}
int32_t max_load_memory_percent = config::load_process_max_memory_limit_percent;
int64_t max_load_memory_bytes = process_mem_limit * max_load_memory_percent / 100;
return std::min<int64_t>(max_load_memory_bytes, config::load_process_max_memory_limit_bytes);
}
// Calculate the memory limit for a single load job.
static int64_t calc_job_max_load_memory(int64_t mem_limit_in_req, int64_t total_mem_limit) {
// default mem limit is used to be compatible with old request.
// new request should be set load_mem_limit.
const int64_t default_load_mem_limit = 2 * 1024 * 1024 * 1024L; // 2GB
int64_t load_mem_limit = default_load_mem_limit;
if (mem_limit_in_req != -1) {
// mem-limit of a certain load should between config::write_buffer_size
// and total-memory-limit
load_mem_limit = std::max<int64_t>(mem_limit_in_req, config::write_buffer_size);
load_mem_limit = std::min<int64_t>(load_mem_limit, total_mem_limit);
}
return load_mem_limit;
}
static int64_t calc_job_timeout_s(int64_t timeout_in_req_s) {
int64_t load_channel_timeout_s = config::streaming_load_rpc_max_alive_time_sec;
if (timeout_in_req_s > 0) {
load_channel_timeout_s = std::max<int64_t>(load_channel_timeout_s, timeout_in_req_s);
}
return load_channel_timeout_s;
}
LoadChannelMgr::LoadChannelMgr() : _stop_background_threads_latch(1) {
REGISTER_HOOK_METRIC(load_channel_count, [this]() {
std::lock_guard<std::mutex> l(_lock);
return _load_channels.size();
});
_last_success_channel = new_lru_cache("LastestSuccessChannelCache", 1024);
}
LoadChannelMgr::~LoadChannelMgr() {
DEREGISTER_HOOK_METRIC(load_channel_count);
_stop_background_threads_latch.count_down();
if (_load_channels_clean_thread) {
_load_channels_clean_thread->join();
}
delete _last_success_channel;
}
Status LoadChannelMgr::init(int64_t process_mem_limit) {
int64_t load_mem_limit = calc_process_max_load_memory(process_mem_limit);
_mem_tracker = MemTracker::CreateTracker(load_mem_limit, "load channel mgr");
RETURN_IF_ERROR(_start_bg_worker());
return Status::OK();
}
Status LoadChannelMgr::open(const PTabletWriterOpenRequest& params) {
UniqueId load_id(params.id());
std::shared_ptr<LoadChannel> channel;
{
std::lock_guard<std::mutex> l(_lock);
auto it = _load_channels.find(load_id);
if (it != _load_channels.end()) {
channel = it->second;
} else {
// create a new load channel
int64_t mem_limit_in_req = params.has_load_mem_limit() ? params.load_mem_limit() : -1;
int64_t job_max_memory =
calc_job_max_load_memory(mem_limit_in_req, _mem_tracker->limit());
int64_t timeout_in_req_s =
params.has_load_channel_timeout_s() ? params.load_channel_timeout_s() : -1;
int64_t job_timeout_s = calc_job_timeout_s(timeout_in_req_s);
channel.reset(new LoadChannel(load_id, job_max_memory, job_timeout_s, _mem_tracker));
_load_channels.insert({load_id, channel});
}
}
RETURN_IF_ERROR(channel->open(params));
return Status::OK();
}
static void dummy_deleter(const CacheKey& key, void* value) {}
Status LoadChannelMgr::add_batch(const PTabletWriterAddBatchRequest& request,
google::protobuf::RepeatedPtrField<PTabletInfo>* tablet_vec,
int64_t* wait_lock_time_ns) {
UniqueId load_id(request.id());
// 1. get load channel
std::shared_ptr<LoadChannel> channel;
{
std::lock_guard<std::mutex> l(_lock);
auto it = _load_channels.find(load_id);
if (it == _load_channels.end()) {
auto handle = _last_success_channel->lookup(load_id.to_string());
// success only when eos be true
if (handle != nullptr) {
_last_success_channel->release(handle);
if (request.has_eos() && request.eos()) {
return Status::OK();
}
}
return Status::InternalError(strings::Substitute(
"fail to add batch in load channel. unknown load_id=$0", load_id.to_string()));
}
channel = it->second;
}
// 2. check if mem consumption exceed limit
_handle_mem_exceed_limit();
// 3. add batch to load channel
// batch may not exist in request(eg: eos request without batch),
// this case will be handled in load channel's add batch method.
RETURN_IF_ERROR(channel->add_batch(request, tablet_vec));
// 4. handle finish
if (channel->is_finished()) {
LOG(INFO) << "removing load channel " << load_id << " because it's finished";
{
std::lock_guard<std::mutex> l(_lock);
_load_channels.erase(load_id);
auto handle =
_last_success_channel->insert(load_id.to_string(), nullptr, 1, dummy_deleter);
_last_success_channel->release(handle);
}
VLOG(1) << "removed load channel " << load_id;
}
return Status::OK();
}
void LoadChannelMgr::_handle_mem_exceed_limit() {
// lock so that only one thread can check mem limit
std::lock_guard<std::mutex> l(_lock);
if (!_mem_tracker->limit_exceeded()) {
return;
}
int64_t max_consume = 0;
std::shared_ptr<LoadChannel> channel;
for (auto& kv : _load_channels) {
if (kv.second->mem_consumption() > max_consume) {
max_consume = kv.second->mem_consumption();
channel = kv.second;
}
}
if (max_consume == 0) {
// should not happen, add log to observe
LOG(WARNING) << "failed to find suitable load channel when total load mem limit exceed";
return;
}
DCHECK(channel.get() != nullptr);
// force reduce mem limit of the selected channel
LOG(INFO) << "reducing memory of " << *channel << " because total load mem consumption "
<< _mem_tracker->consumption() << " has exceeded limit " << _mem_tracker->limit();
channel->handle_mem_exceed_limit(true);
}
Status LoadChannelMgr::cancel(const PTabletWriterCancelRequest& params) {
UniqueId load_id(params.id());
std::shared_ptr<LoadChannel> cancelled_channel;
{
std::lock_guard<std::mutex> l(_lock);
if (_load_channels.find(load_id) != _load_channels.end()) {
cancelled_channel = _load_channels[load_id];
_load_channels.erase(load_id);
}
}
if (cancelled_channel.get() != nullptr) {
cancelled_channel->cancel();
LOG(INFO) << "load channel has been cancelled: " << load_id;
}
return Status::OK();
}
Status LoadChannelMgr::_start_bg_worker() {
RETURN_IF_ERROR(Thread::create(
"LoadChannelMgr", "cancel_timeout_load_channels",
[this]() {
#ifdef GOOGLE_PROFILER
ProfilerRegisterThread();
#endif
#ifndef BE_TEST
uint32_t interval = 60;
#else
uint32_t interval = 1;
#endif
while (!_stop_background_threads_latch.wait_for(MonoDelta::FromSeconds(interval))) {
_start_load_channels_clean();
}
},
&_load_channels_clean_thread));
return Status::OK();
}
Status LoadChannelMgr::_start_load_channels_clean() {
std::vector<std::shared_ptr<LoadChannel>> need_delete_channels;
LOG(INFO) << "cleaning timed out load channels";
time_t now = time(nullptr);
{
std::vector<UniqueId> need_delete_channel_ids;
std::lock_guard<std::mutex> l(_lock);
VLOG(1) << "there are " << _load_channels.size() << " running load channels";
int i = 0;
for (auto& kv : _load_channels) {
VLOG(1) << "load channel[" << i++ << "]: " << *(kv.second);
time_t last_updated_time = kv.second->last_updated_time();
if (difftime(now, last_updated_time) >= kv.second->timeout()) {
need_delete_channel_ids.emplace_back(kv.first);
need_delete_channels.emplace_back(kv.second);
}
}
for (auto& key : need_delete_channel_ids) {
_load_channels.erase(key);
LOG(INFO) << "erase timeout load channel: " << key;
}
}
// we must cancel these load channels before destroying them.
// otherwise some object may be invalid before trying to visit it.
// eg: MemTracker in load channel
for (auto& channel : need_delete_channels) {
channel->cancel();
LOG(INFO) << "load channel has been safely deleted: " << channel->load_id()
<< ", timeout(s): " << channel->timeout();
}
// this log print every 1 min, so that we could observe the mem consumption of load process
// on this Backend
LOG(INFO) << "load mem consumption(bytes). limit: " << _mem_tracker->limit()
<< ", current: " << _mem_tracker->consumption()
<< ", peak: " << _mem_tracker->peak_consumption();
return Status::OK();
}
} // namespace doris