Files
doris/be/test/olap/segcompaction_test.cpp
plat1ko 25b6e4deb2 [fix](daemon) Fix incorrect initialization order of daemon services (#23578)
Current initialization dependency:

      Daemon ───┬──► StorageEngine ──► ExecEnv ──► Disk/Mem/CpuInfo
                │
                │
BackendService ─┘
However, original code incorrectly initialize Daemon before StorageEngine.
This PR also stop and join threads of daemon services in their dtor, to ensure Daemon services release resources in reverse order of initialization via RAII.
2023-08-31 19:46:38 +08:00

1071 lines
43 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "common/config.h"
#include "env/env_posix.h"
#include "gen_cpp/AgentService_types.h"
#include "gen_cpp/olap_file.pb.h"
#include "io/fs/local_file_system.h"
#include "olap/data_dir.h"
#include "olap/row_cursor.h"
#include "olap/rowset/beta_rowset_reader.h"
#include "olap/rowset/beta_rowset_writer.h"
#include "olap/rowset/rowset_factory.h"
#include "olap/rowset/rowset_reader_context.h"
#include "olap/rowset/rowset_writer.h"
#include "olap/rowset/rowset_writer_context.h"
#include "olap/storage_engine.h"
#include "olap/tablet_meta.h"
#include "olap/tablet_schema.h"
#include "olap/utils.h"
#include "runtime/exec_env.h"
#include "runtime/memory/mem_tracker.h"
#include "util/slice.h"
namespace doris {
using namespace ErrorCode;
static const uint32_t MAX_PATH_LEN = 1024;
static std::unique_ptr<StorageEngine> l_engine;
static const std::string lTestDir = "./data_test/data/segcompaction_test";
class SegCompactionTest : public testing::Test {
public:
SegCompactionTest() : _data_dir(std::make_unique<DataDir>(lTestDir)) {
_data_dir->update_capacity();
}
void SetUp() {
config::enable_segcompaction = true;
config::tablet_map_shard_size = 1;
config::txn_map_shard_size = 1;
config::txn_shard_size = 1;
char buffer[MAX_PATH_LEN];
EXPECT_NE(getcwd(buffer, MAX_PATH_LEN), nullptr);
config::storage_root_path = std::string(buffer) + "/data_test";
EXPECT_TRUE(io::global_local_filesystem()
->delete_and_create_directory(config::storage_root_path)
.ok());
std::vector<StorePath> paths;
paths.emplace_back(config::storage_root_path, -1);
doris::EngineOptions options;
options.store_paths = paths;
Status s = doris::StorageEngine::open(options, &l_engine);
EXPECT_TRUE(s.ok()) << s.to_string();
ExecEnv* exec_env = doris::ExecEnv::GetInstance();
EXPECT_TRUE(io::global_local_filesystem()->create_directory(lTestDir).ok());
l_engine->start_bg_threads();
}
void TearDown() {
l_engine.reset();
config::enable_segcompaction = false;
}
protected:
OlapReaderStatistics _stats;
bool check_dir(std::vector<std::string>& vec) {
std::vector<std::string> result;
for (const auto& entry : std::filesystem::directory_iterator(lTestDir)) {
result.push_back(std::filesystem::path(entry.path()).filename());
}
LOG(INFO) << "expected ls:" << std::endl;
for (auto& i : vec) {
LOG(INFO) << i;
}
LOG(INFO) << "acutal ls:" << std::endl;
for (auto& i : result) {
LOG(INFO) << i;
}
if (result.size() != vec.size()) {
return false;
} else {
for (auto& i : vec) {
if (std::find(result.begin(), result.end(), i) == result.end()) {
return false;
}
}
}
return true;
}
// (k1 int, k2 varchar(20), k3 int) keys (k1, k2)
void create_tablet_schema(TabletSchemaSPtr tablet_schema, KeysType keystype) {
TabletSchemaPB tablet_schema_pb;
tablet_schema_pb.set_keys_type(keystype);
tablet_schema_pb.set_num_short_key_columns(2);
tablet_schema_pb.set_num_rows_per_row_block(1024);
tablet_schema_pb.set_compress_kind(COMPRESS_NONE);
tablet_schema_pb.set_next_column_unique_id(4);
ColumnPB* column_1 = tablet_schema_pb.add_column();
column_1->set_unique_id(1);
column_1->set_name("k1");
column_1->set_type("INT");
column_1->set_is_key(true);
column_1->set_length(4);
column_1->set_index_length(4);
column_1->set_is_nullable(true);
column_1->set_is_bf_column(false);
ColumnPB* column_2 = tablet_schema_pb.add_column();
column_2->set_unique_id(2);
column_2->set_name("k2");
column_2->set_type(
"INT"); // TODO change to varchar(20) when dict encoding for string is supported
column_2->set_length(4);
column_2->set_index_length(4);
column_2->set_is_nullable(true);
column_2->set_is_key(true);
column_2->set_is_nullable(true);
column_2->set_is_bf_column(false);
ColumnPB* column_3 = tablet_schema_pb.add_column();
column_3->set_unique_id(3);
column_3->set_name("v1");
column_3->set_type("INT");
column_3->set_length(4);
column_3->set_is_key(false);
column_3->set_is_nullable(false);
column_3->set_is_bf_column(false);
column_3->set_aggregation("SUM");
tablet_schema->init_from_pb(tablet_schema_pb);
}
// use different id to avoid conflict
void create_rowset_writer_context(int64_t id, TabletSchemaSPtr tablet_schema,
RowsetWriterContext* rowset_writer_context) {
RowsetId rowset_id;
rowset_id.init(id);
// rowset_writer_context->data_dir = _data_dir.get();
rowset_writer_context->rowset_id = rowset_id;
rowset_writer_context->tablet_id = 12345;
rowset_writer_context->tablet_schema_hash = 1111;
rowset_writer_context->partition_id = 10;
rowset_writer_context->rowset_type = BETA_ROWSET;
rowset_writer_context->rowset_dir = lTestDir;
rowset_writer_context->rowset_state = VISIBLE;
rowset_writer_context->tablet_schema = tablet_schema;
rowset_writer_context->version.first = 10;
rowset_writer_context->version.second = 10;
#if 0
RuntimeProfile profile("CreateTablet");
TCreateTabletReq req;
req.table_id =
req.tablet_id =
req.tablet_scheme =
req.partition_id =
l_engine->create_tablet(req, &profile);
rowset_writer_context->tablet = l_engine->tablet_manager()->get_tablet(TTabletId tablet_id);
#endif
std::shared_ptr<DataDir> data_dir = std::make_shared<DataDir>(lTestDir);
TabletMetaSharedPtr tablet_meta = std::make_shared<TabletMeta>();
tablet_meta->_tablet_id = 1;
tablet_meta->_schema = tablet_schema;
auto tablet = std::make_shared<Tablet>(tablet_meta, data_dir.get(), "test_str");
char* tmp_str = (char*)malloc(20);
strncpy(tmp_str, "test_tablet_name", 20);
tablet->_full_name = tmp_str;
// tablet->key
rowset_writer_context->tablet = tablet;
}
void create_and_init_rowset_reader(Rowset* rowset, RowsetReaderContext& context,
RowsetReaderSharedPtr* result) {
auto s = rowset->create_reader(result);
EXPECT_EQ(Status::OK(), s);
EXPECT_TRUE(*result != nullptr);
s = (*result)->init(&context);
EXPECT_EQ(Status::OK(), s);
}
private:
std::unique_ptr<DataDir> _data_dir;
};
TEST_F(SegCompactionTest, SegCompactionThenRead) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
const int num_segments = 15;
const uint32_t rows_per_segment = 4096;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 10;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10047, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := rid
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10047_0.dat");
ls.push_back("10047_1.dat");
ls.push_back("10047_2.dat");
ls.push_back("10047_3.dat");
ls.push_back("10047_4.dat");
ls.push_back("10047_5.dat");
ls.push_back("10047_6.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
EXPECT_EQ(100 * v3 + k2, k1);
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(""), s);
EXPECT_EQ(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_EQ(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_ooooOOoOooooooooO) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10048, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 4;
uint32_t rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 2;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 8;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
// ooooOOoOooooooooO
ls.push_back("10048_0.dat"); // oooo
ls.push_back("10048_1.dat"); // O
ls.push_back("10048_2.dat"); // O
ls.push_back("10048_3.dat"); // o
ls.push_back("10048_4.dat"); // O
ls.push_back("10048_5.dat"); // oooooooo
ls.push_back("10048_6.dat"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_OoOoO) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
config::segcompaction_batch_size = 5;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10049, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 1;
uint32_t rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10049_0.dat"); // O
ls.push_back("10049_1.dat"); // o
ls.push_back("10049_2.dat"); // O
ls.push_back("10049_3.dat"); // o
ls.push_back("10049_4.dat"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionThenReadUniqueTableSmall) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, UNIQUE_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 3;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10051, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
vectorized::Arena arena;
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
// segment#0
k1 = k2 = 1;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#1
k1 = k2 = 2;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#2
k1 = k2 = 3;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#3
k1 = k2 = 4;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 12;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#4
k1 = k2 = 25;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#5
k1 = k2 = 26;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10051_0.dat");
ls.push_back("10051_1.dat");
ls.push_back("10051_2.dat");
ls.push_back("10051_3.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
reader_context.is_unique = true;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
std::cout << "k1 k2 k3: " << k1 << " " << k2 << " " << v3 << std::endl;
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(""), s);
// duplicated keys between segments are counted duplicately
// so actual read by rowset reader is less or equal to it
EXPECT_GE(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_GE(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, SegCompactionThenReadAggTableSmall) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, AGG_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 3;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10052, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
vectorized::Arena arena;
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
// segment#0
k1 = k2 = 1;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#1
k1 = k2 = 2;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#2
k1 = k2 = 3;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#3
k1 = k2 = 4;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 12;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#4
k1 = k2 = 25;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#5
k1 = k2 = 26;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10052_0.dat");
ls.push_back("10052_1.dat");
ls.push_back("10052_2.dat");
ls.push_back("10052_3.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// reader_context.is_unique = true;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
// dup keys may exist between segments, but not in single segment
std::cout << "k1 k2 k3: " << k1 << " " << k2 << " " << v3 << std::endl;
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(""), s);
// duplicated keys between segments are counted duplicately
// so actual read by rowset reader is less or equal to it
EXPECT_GE(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_GE(total_num_rows, num_rows_read);
}
}
}
} // namespace doris
// @brief Test Stub