fix mem_limit default value memory_gc_sleep_time_s to memory_gc_sleep_time_ms LoadChannelMgr::_handle_mem_exceed_limit process_mem_limit to process soft mem limit fix query mem tracker print
462 lines
19 KiB
C++
462 lines
19 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "runtime/load_channel_mgr.h"
|
|
|
|
#include <fmt/format.h>
|
|
#include <gen_cpp/internal_service.pb.h>
|
|
|
|
#include <algorithm>
|
|
// IWYU pragma: no_include <bits/chrono.h>
|
|
#include <chrono> // IWYU pragma: keep
|
|
#include <ctime>
|
|
#include <functional>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <ostream>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include "common/config.h"
|
|
#include "common/logging.h"
|
|
#include "runtime/exec_env.h"
|
|
#include "runtime/load_channel.h"
|
|
#include "runtime/memory/mem_tracker.h"
|
|
#include "util/doris_metrics.h"
|
|
#include "util/mem_info.h"
|
|
#include "util/metrics.h"
|
|
#include "util/perf_counters.h"
|
|
#include "util/pretty_printer.h"
|
|
#include "util/thread.h"
|
|
|
|
namespace doris {
|
|
|
|
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(load_channel_count, MetricUnit::NOUNIT);
|
|
DEFINE_GAUGE_METRIC_PROTOTYPE_5ARG(load_channel_mem_consumption, MetricUnit::BYTES, "",
|
|
mem_consumption, Labels({{"type", "load"}}));
|
|
|
|
// Calculate the total memory limit of all load tasks on this BE
|
|
static int64_t calc_process_max_load_memory(int64_t process_mem_limit) {
|
|
if (process_mem_limit == -1) {
|
|
// no limit
|
|
return -1;
|
|
}
|
|
int32_t max_load_memory_percent = config::load_process_max_memory_limit_percent;
|
|
return process_mem_limit * max_load_memory_percent / 100;
|
|
}
|
|
|
|
static int64_t calc_channel_timeout_s(int64_t timeout_in_req_s) {
|
|
int64_t load_channel_timeout_s = config::streaming_load_rpc_max_alive_time_sec;
|
|
if (timeout_in_req_s > 0) {
|
|
load_channel_timeout_s = std::max<int64_t>(load_channel_timeout_s, timeout_in_req_s);
|
|
}
|
|
return load_channel_timeout_s;
|
|
}
|
|
|
|
LoadChannelMgr::LoadChannelMgr() : _stop_background_threads_latch(1) {
|
|
REGISTER_HOOK_METRIC(load_channel_count, [this]() {
|
|
// std::lock_guard<std::mutex> l(_lock);
|
|
return _load_channels.size();
|
|
});
|
|
}
|
|
|
|
LoadChannelMgr::~LoadChannelMgr() {
|
|
DEREGISTER_HOOK_METRIC(load_channel_count);
|
|
DEREGISTER_HOOK_METRIC(load_channel_mem_consumption);
|
|
_stop_background_threads_latch.count_down();
|
|
if (_load_channels_clean_thread) {
|
|
_load_channels_clean_thread->join();
|
|
}
|
|
delete _last_success_channel;
|
|
}
|
|
|
|
Status LoadChannelMgr::init(int64_t process_mem_limit) {
|
|
_load_hard_mem_limit = calc_process_max_load_memory(process_mem_limit);
|
|
_load_soft_mem_limit = _load_hard_mem_limit * config::load_process_soft_mem_limit_percent / 100;
|
|
_mem_tracker =
|
|
std::make_unique<MemTrackerLimiter>(MemTrackerLimiter::Type::LOAD, "LoadChannelMgr");
|
|
REGISTER_HOOK_METRIC(load_channel_mem_consumption,
|
|
[this]() { return _mem_tracker->consumption(); });
|
|
_last_success_channel = new_lru_cache("LastestSuccessChannelCache", 1024);
|
|
RETURN_IF_ERROR(_start_bg_worker());
|
|
return Status::OK();
|
|
}
|
|
|
|
Status LoadChannelMgr::open(const PTabletWriterOpenRequest& params) {
|
|
UniqueId load_id(params.id());
|
|
std::shared_ptr<LoadChannel> channel;
|
|
{
|
|
std::lock_guard<std::mutex> l(_lock);
|
|
auto it = _load_channels.find(load_id);
|
|
if (it != _load_channels.end()) {
|
|
channel = it->second;
|
|
} else {
|
|
// create a new load channel
|
|
int64_t timeout_in_req_s =
|
|
params.has_load_channel_timeout_s() ? params.load_channel_timeout_s() : -1;
|
|
int64_t channel_timeout_s = calc_channel_timeout_s(timeout_in_req_s);
|
|
bool is_high_priority = (params.has_is_high_priority() && params.is_high_priority());
|
|
|
|
// Use the same mem limit as LoadChannelMgr for a single load channel
|
|
#ifndef BE_TEST
|
|
auto channel_mem_tracker = std::make_unique<MemTracker>(
|
|
fmt::format("LoadChannel#senderIp={}#loadID={}", params.sender_ip(),
|
|
load_id.to_string()),
|
|
ExecEnv::GetInstance()->load_channel_mgr()->mem_tracker());
|
|
#else
|
|
auto channel_mem_tracker = std::make_unique<MemTracker>(fmt::format(
|
|
"LoadChannel#senderIp={}#loadID={}", params.sender_ip(), load_id.to_string()));
|
|
#endif
|
|
channel.reset(new LoadChannel(load_id, std::move(channel_mem_tracker),
|
|
channel_timeout_s, is_high_priority, params.sender_ip(),
|
|
params.backend_id()));
|
|
_load_channels.insert({load_id, channel});
|
|
}
|
|
}
|
|
|
|
RETURN_IF_ERROR(channel->open(params));
|
|
return Status::OK();
|
|
}
|
|
|
|
Status LoadChannelMgr::open_partition(const OpenPartitionRequest& params) {
|
|
UniqueId load_id(params.id());
|
|
std::shared_ptr<LoadChannel> channel;
|
|
auto it = _load_channels.find(load_id);
|
|
if (it != _load_channels.end()) {
|
|
channel = it->second;
|
|
} else {
|
|
return Status::InternalError("unknown load id, load id=" + load_id.to_string());
|
|
}
|
|
RETURN_IF_ERROR(channel->open_partition(params));
|
|
return Status::OK();
|
|
}
|
|
|
|
static void dummy_deleter(const CacheKey& key, void* value) {}
|
|
|
|
Status LoadChannelMgr::_get_load_channel(std::shared_ptr<LoadChannel>& channel, bool& is_eof,
|
|
const UniqueId& load_id,
|
|
const PTabletWriterAddBlockRequest& request) {
|
|
is_eof = false;
|
|
std::lock_guard<std::mutex> l(_lock);
|
|
auto it = _load_channels.find(load_id);
|
|
if (it == _load_channels.end()) {
|
|
auto handle = _last_success_channel->lookup(load_id.to_string());
|
|
// success only when eos be true
|
|
if (handle != nullptr) {
|
|
_last_success_channel->release(handle);
|
|
if (request.has_eos() && request.eos()) {
|
|
is_eof = true;
|
|
return Status::OK();
|
|
}
|
|
}
|
|
return Status::InternalError("fail to add batch in load channel. unknown load_id={}",
|
|
load_id.to_string());
|
|
}
|
|
channel = it->second;
|
|
return Status::OK();
|
|
}
|
|
|
|
Status LoadChannelMgr::add_batch(const PTabletWriterAddBlockRequest& request,
|
|
PTabletWriterAddBlockResult* response) {
|
|
UniqueId load_id(request.id());
|
|
// 1. get load channel
|
|
std::shared_ptr<LoadChannel> channel;
|
|
bool is_eof;
|
|
auto status = _get_load_channel(channel, is_eof, load_id, request);
|
|
if (!status.ok() || is_eof) {
|
|
return status;
|
|
}
|
|
|
|
if (!channel->is_high_priority()) {
|
|
// 2. check if mem consumption exceed limit
|
|
// If this is a high priority load task, do not handle this.
|
|
// because this may block for a while, which may lead to rpc timeout.
|
|
_handle_mem_exceed_limit();
|
|
}
|
|
|
|
// 3. add batch to load channel
|
|
// batch may not exist in request(eg: eos request without batch),
|
|
// this case will be handled in load channel's add batch method.
|
|
Status st = channel->add_batch(request, response);
|
|
if (UNLIKELY(!st.ok())) {
|
|
channel->cancel();
|
|
return st;
|
|
}
|
|
|
|
// 4. handle finish
|
|
if (channel->is_finished()) {
|
|
_finish_load_channel(load_id);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
void LoadChannelMgr::_finish_load_channel(const UniqueId load_id) {
|
|
VLOG_NOTICE << "removing load channel " << load_id << " because it's finished";
|
|
{
|
|
std::lock_guard<std::mutex> l(_lock);
|
|
_load_channels.erase(load_id);
|
|
auto handle = _last_success_channel->insert(load_id.to_string(), nullptr, 1, dummy_deleter);
|
|
_last_success_channel->release(handle);
|
|
}
|
|
VLOG_CRITICAL << "removed load channel " << load_id;
|
|
}
|
|
|
|
Status LoadChannelMgr::cancel(const PTabletWriterCancelRequest& params) {
|
|
UniqueId load_id(params.id());
|
|
std::shared_ptr<LoadChannel> cancelled_channel;
|
|
{
|
|
std::lock_guard<std::mutex> l(_lock);
|
|
if (_load_channels.find(load_id) != _load_channels.end()) {
|
|
cancelled_channel = _load_channels[load_id];
|
|
_load_channels.erase(load_id);
|
|
}
|
|
}
|
|
|
|
if (cancelled_channel != nullptr) {
|
|
cancelled_channel->cancel();
|
|
LOG(INFO) << "load channel has been cancelled: " << load_id;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status LoadChannelMgr::_start_bg_worker() {
|
|
RETURN_IF_ERROR(Thread::create(
|
|
"LoadChannelMgr", "cancel_timeout_load_channels",
|
|
[this]() {
|
|
#ifdef GOOGLE_PROFILER
|
|
ProfilerRegisterThread();
|
|
#endif
|
|
#ifndef BE_TEST
|
|
uint32_t interval = 60;
|
|
#else
|
|
uint32_t interval = 1;
|
|
#endif
|
|
while (!_stop_background_threads_latch.wait_for(std::chrono::seconds(interval))) {
|
|
_start_load_channels_clean();
|
|
}
|
|
},
|
|
&_load_channels_clean_thread));
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status LoadChannelMgr::_start_load_channels_clean() {
|
|
std::vector<std::shared_ptr<LoadChannel>> need_delete_channels;
|
|
LOG(INFO) << "cleaning timed out load channels";
|
|
time_t now = time(nullptr);
|
|
{
|
|
std::vector<UniqueId> need_delete_channel_ids;
|
|
std::lock_guard<std::mutex> l(_lock);
|
|
int i = 0;
|
|
for (auto& kv : _load_channels) {
|
|
VLOG_CRITICAL << "load channel[" << i++ << "]: " << *(kv.second);
|
|
time_t last_updated_time = kv.second->last_updated_time();
|
|
if (difftime(now, last_updated_time) >= kv.second->timeout()) {
|
|
need_delete_channel_ids.emplace_back(kv.first);
|
|
need_delete_channels.emplace_back(kv.second);
|
|
}
|
|
}
|
|
|
|
for (auto& key : need_delete_channel_ids) {
|
|
_load_channels.erase(key);
|
|
LOG(INFO) << "erase timeout load channel: " << key;
|
|
}
|
|
}
|
|
|
|
// we must cancel these load channels before destroying them.
|
|
// otherwise some object may be invalid before trying to visit it.
|
|
// eg: MemTracker in load channel
|
|
for (auto& channel : need_delete_channels) {
|
|
channel->cancel();
|
|
LOG(INFO) << "load channel has been safely deleted: " << channel->load_id()
|
|
<< ", timeout(s): " << channel->timeout();
|
|
}
|
|
|
|
// this log print every 1 min, so that we could observe the mem consumption of load process
|
|
// on this Backend
|
|
LOG(INFO) << "load mem consumption(bytes). limit: " << _load_hard_mem_limit
|
|
<< ", current: " << _mem_tracker->consumption()
|
|
<< ", peak: " << _mem_tracker->peak_consumption()
|
|
<< ", total running load channels: " << _load_channels.size();
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
void LoadChannelMgr::_handle_mem_exceed_limit() {
|
|
// Check the soft limit.
|
|
DCHECK(_load_soft_mem_limit > 0);
|
|
int64_t process_soft_mem_limit = MemInfo::soft_mem_limit();
|
|
int64_t proc_mem_no_allocator_cache = MemInfo::proc_mem_no_allocator_cache();
|
|
// If process memory is almost full but data load don't consume more than 5% (50% * 10%) of
|
|
// total memory, we don't need to reduce memory of load jobs.
|
|
bool reduce_on_process_soft_mem_limit =
|
|
proc_mem_no_allocator_cache >= process_soft_mem_limit &&
|
|
_mem_tracker->consumption() >= _load_hard_mem_limit / 10;
|
|
if (_mem_tracker->consumption() < _load_soft_mem_limit && !reduce_on_process_soft_mem_limit) {
|
|
return;
|
|
}
|
|
// Indicate whether current thread is reducing mem on hard limit.
|
|
bool reducing_mem_on_hard_limit = false;
|
|
// tuple<LoadChannel, index_id, tablet_id, mem_size>
|
|
std::vector<std::tuple<std::shared_ptr<LoadChannel>, int64_t, int64_t, int64_t>>
|
|
writers_to_reduce_mem;
|
|
{
|
|
MonotonicStopWatch timer;
|
|
timer.start();
|
|
std::unique_lock<std::mutex> l(_lock);
|
|
while (_should_wait_flush) {
|
|
_wait_flush_cond.wait(l);
|
|
}
|
|
LOG(INFO) << "Reached the load hard limit " << _load_hard_mem_limit
|
|
<< ", waited for flush, time_ns:" << timer.elapsed_time();
|
|
|
|
bool hard_limit_reached = _mem_tracker->consumption() >= _load_hard_mem_limit ||
|
|
proc_mem_no_allocator_cache >= process_soft_mem_limit;
|
|
// Some other thread is flushing data, and not reached hard limit now,
|
|
// we don't need to handle mem limit in current thread.
|
|
if (_soft_reduce_mem_in_progress && !hard_limit_reached) {
|
|
return;
|
|
}
|
|
|
|
// tuple<LoadChannel, index_id, multimap<mem size, tablet_id>>
|
|
using WritersMem = std::tuple<std::shared_ptr<LoadChannel>, int64_t,
|
|
std::multimap<int64_t, int64_t, std::greater<int64_t>>>;
|
|
std::vector<WritersMem> all_writers_mem;
|
|
|
|
// tuple<current iterator in multimap, end iterator in multimap, pos in all_writers_mem>
|
|
using WriterMemItem =
|
|
std::tuple<std::multimap<int64_t, int64_t, std::greater<int64_t>>::iterator,
|
|
std::multimap<int64_t, int64_t, std::greater<int64_t>>::iterator,
|
|
size_t>;
|
|
auto cmp = [](WriterMemItem& lhs, WriterMemItem& rhs) {
|
|
return std::get<0>(lhs)->first < std::get<0>(rhs)->first;
|
|
};
|
|
std::priority_queue<WriterMemItem, std::vector<WriterMemItem>, decltype(cmp)>
|
|
tablets_mem_heap(cmp);
|
|
|
|
for (auto& kv : _load_channels) {
|
|
if (kv.second->is_high_priority()) {
|
|
// do not select high priority channel to reduce memory
|
|
// to avoid blocking them.
|
|
continue;
|
|
}
|
|
std::vector<std::pair<int64_t, std::multimap<int64_t, int64_t, std::greater<int64_t>>>>
|
|
writers_mem_snap;
|
|
kv.second->get_writers_mem_consumption_snapshot(&writers_mem_snap);
|
|
for (auto item : writers_mem_snap) {
|
|
// multimap is empty
|
|
if (item.second.empty()) {
|
|
continue;
|
|
}
|
|
all_writers_mem.emplace_back(kv.second, item.first, std::move(item.second));
|
|
size_t pos = all_writers_mem.size() - 1;
|
|
tablets_mem_heap.emplace(std::get<2>(all_writers_mem[pos]).begin(),
|
|
std::get<2>(all_writers_mem[pos]).end(), pos);
|
|
}
|
|
}
|
|
|
|
// reduce 1/10 memory every time
|
|
int64_t mem_to_flushed = _mem_tracker->consumption() / 10;
|
|
int64_t mem_consumption_in_picked_writer = 0;
|
|
while (!tablets_mem_heap.empty()) {
|
|
WriterMemItem tablet_mem_item = tablets_mem_heap.top();
|
|
size_t pos = std::get<2>(tablet_mem_item);
|
|
auto load_channel = std::get<0>(all_writers_mem[pos]);
|
|
int64_t index_id = std::get<1>(all_writers_mem[pos]);
|
|
int64_t tablet_id = std::get<0>(tablet_mem_item)->second;
|
|
int64_t mem_size = std::get<0>(tablet_mem_item)->first;
|
|
writers_to_reduce_mem.emplace_back(load_channel, index_id, tablet_id, mem_size);
|
|
load_channel->flush_memtable_async(index_id, tablet_id);
|
|
mem_consumption_in_picked_writer += std::get<0>(tablet_mem_item)->first;
|
|
if (mem_consumption_in_picked_writer > mem_to_flushed) {
|
|
break;
|
|
}
|
|
tablets_mem_heap.pop();
|
|
if (std::get<0>(tablet_mem_item)++ != std::get<1>(tablet_mem_item)) {
|
|
tablets_mem_heap.push(tablet_mem_item);
|
|
}
|
|
}
|
|
|
|
if (writers_to_reduce_mem.empty()) {
|
|
// should not happen, add log to observe
|
|
LOG(WARNING) << "failed to find suitable writers to reduce memory"
|
|
<< " when total load mem limit exceed";
|
|
return;
|
|
}
|
|
|
|
std::ostringstream oss;
|
|
oss << "reducing memory of " << writers_to_reduce_mem.size()
|
|
<< " delta writers (total mem: "
|
|
<< PrettyPrinter::print_bytes(mem_consumption_in_picked_writer) << ", max mem: "
|
|
<< PrettyPrinter::print_bytes(std::get<3>(writers_to_reduce_mem.front()))
|
|
<< ", min mem:" << PrettyPrinter::print_bytes(std::get<3>(writers_to_reduce_mem.back()))
|
|
<< "), ";
|
|
if (proc_mem_no_allocator_cache < process_soft_mem_limit) {
|
|
oss << "because total load mem consumption "
|
|
<< PrettyPrinter::print_bytes(_mem_tracker->consumption()) << " has exceeded";
|
|
if (_mem_tracker->consumption() > _load_hard_mem_limit) {
|
|
_should_wait_flush = true;
|
|
reducing_mem_on_hard_limit = true;
|
|
oss << " hard limit: " << PrettyPrinter::print_bytes(_load_hard_mem_limit);
|
|
} else {
|
|
_soft_reduce_mem_in_progress = true;
|
|
oss << " soft limit: " << PrettyPrinter::print_bytes(_load_soft_mem_limit);
|
|
}
|
|
} else {
|
|
_should_wait_flush = true;
|
|
reducing_mem_on_hard_limit = true;
|
|
oss << "because proc_mem_no_allocator_cache consumption "
|
|
<< PrettyPrinter::print_bytes(proc_mem_no_allocator_cache)
|
|
<< ", has exceeded process soft limit "
|
|
<< PrettyPrinter::print_bytes(process_soft_mem_limit)
|
|
<< ", total load mem consumption: "
|
|
<< PrettyPrinter::print_bytes(_mem_tracker->consumption())
|
|
<< ", vm_rss: " << PerfCounters::get_vm_rss_str()
|
|
<< ", tc/jemalloc allocator cache: " << MemInfo::allocator_cache_mem_str();
|
|
}
|
|
LOG(INFO) << oss.str();
|
|
}
|
|
|
|
// wait all writers flush without lock
|
|
for (auto item : writers_to_reduce_mem) {
|
|
VLOG_NOTICE << "reducing memory, wait flush load_id: " << std::get<0>(item)->load_id()
|
|
<< ", index_id: " << std::get<1>(item) << ", tablet_id: " << std::get<2>(item)
|
|
<< ", mem_size: " << PrettyPrinter::print_bytes(std::get<3>(item));
|
|
std::get<0>(item)->wait_flush(std::get<1>(item), std::get<2>(item));
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> l(_lock);
|
|
// If a thread have finished the memtable flush for soft limit, and now
|
|
// the hard limit is already reached, it should not update these variables.
|
|
if (reducing_mem_on_hard_limit && _should_wait_flush) {
|
|
_should_wait_flush = false;
|
|
_wait_flush_cond.notify_all();
|
|
}
|
|
if (_soft_reduce_mem_in_progress) {
|
|
_soft_reduce_mem_in_progress = false;
|
|
}
|
|
// refresh mem tacker to avoid duplicate reduce
|
|
_refresh_mem_tracker_without_lock();
|
|
}
|
|
}
|
|
|
|
} // namespace doris
|