MemTracker can provide memory consumption for us to find out which module consume more memory, but it's just a current value, this patch add metrics for some large memory consumers, then we can find out which module consume more memory in timeline, it would be useful to troubleshoot OOM problems and optimize configs.
396 lines
14 KiB
C++
396 lines
14 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "exec/hash_table.hpp"
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "common/compiler_util.h"
|
|
#include "exprs/expr.h"
|
|
#include "exprs/expr_context.h"
|
|
#include "exprs/slot_ref.h"
|
|
#include "runtime/exec_env.h"
|
|
#include "runtime/mem_pool.h"
|
|
#include "runtime/mem_tracker.h"
|
|
#include "runtime/runtime_state.h"
|
|
#include "runtime/string_value.h"
|
|
#include "runtime/test_env.h"
|
|
#include "util/cpu_info.h"
|
|
#include "util/runtime_profile.h"
|
|
#include "util/time.h"
|
|
#include "test_util/test_util.h"
|
|
|
|
namespace doris {
|
|
|
|
class HashTableTest : public testing::Test {
|
|
public:
|
|
HashTableTest() {
|
|
_tracker = MemTracker::CreateTracker(-1, "root");
|
|
_pool_tracker = MemTracker::CreateTracker(-1, "mem-pool", _tracker);
|
|
_mem_pool.reset(new MemPool(_pool_tracker.get()));
|
|
_state = _pool.add(new RuntimeState(TQueryGlobals()));
|
|
_state->init_instance_mem_tracker();
|
|
_state->_exec_env = ExecEnv::GetInstance();
|
|
}
|
|
|
|
protected:
|
|
RuntimeState* _state;
|
|
std::shared_ptr<MemTracker> _tracker;
|
|
std::shared_ptr<MemTracker> _pool_tracker;
|
|
ObjectPool _pool;
|
|
std::shared_ptr<MemPool> _mem_pool;
|
|
std::vector<ExprContext*> _build_expr;
|
|
std::vector<ExprContext*> _probe_expr;
|
|
|
|
virtual void SetUp() {
|
|
RowDescriptor desc;
|
|
Status status;
|
|
TypeDescriptor int_desc(TYPE_INT);
|
|
|
|
auto build_slot_ref = _pool.add(new SlotRef(int_desc, 0));
|
|
_build_expr.push_back(_pool.add(new ExprContext(build_slot_ref)));
|
|
status = Expr::prepare(_build_expr, _state, desc, _tracker);
|
|
EXPECT_TRUE(status.ok());
|
|
|
|
auto probe_slot_ref = _pool.add(new SlotRef(int_desc, 0));
|
|
_probe_expr.push_back(_pool.add(new ExprContext(probe_slot_ref)));
|
|
status = Expr::prepare(_probe_expr, _state, desc, _tracker);
|
|
EXPECT_TRUE(status.ok());
|
|
}
|
|
|
|
void TearDown() {
|
|
Expr::close(_build_expr, _state);
|
|
Expr::close(_probe_expr, _state);
|
|
}
|
|
|
|
TupleRow* create_tuple_row(int32_t val);
|
|
|
|
// Wrapper to call private methods on HashTable
|
|
// TODO: understand google testing, there must be a more natural way to do this
|
|
void resize_table(HashTable* table, int64_t new_size) { table->resize_buckets(new_size); }
|
|
|
|
// Do a full table scan on table. All values should be between [min,max). If
|
|
// all_unique, then each key(int value) should only appear once. Results are
|
|
// stored in results, indexed by the key. Results must have been preallocated to
|
|
// be at least max size.
|
|
void full_scan(HashTable* table, int min, int max, bool all_unique, TupleRow** results,
|
|
TupleRow** expected) {
|
|
HashTable::Iterator iter = table->begin();
|
|
|
|
while (iter != table->end()) {
|
|
TupleRow* row = iter.get_row();
|
|
int32_t val = *reinterpret_cast<int32_t*>(_build_expr[0]->get_value(row));
|
|
EXPECT_GE(val, min);
|
|
EXPECT_LT(val, max);
|
|
|
|
if (all_unique) {
|
|
EXPECT_TRUE(results[val] == NULL);
|
|
}
|
|
|
|
EXPECT_EQ(row->get_tuple(0), expected[val]->get_tuple(0));
|
|
results[val] = row;
|
|
iter.next<false>();
|
|
}
|
|
}
|
|
|
|
// Validate that probe_row evaluates overs probe_exprs is equal to build_row
|
|
// evaluated over build_exprs
|
|
void validate_match(TupleRow* probe_row, TupleRow* build_row) {
|
|
EXPECT_TRUE(probe_row != build_row);
|
|
int32_t build_val = *reinterpret_cast<int32_t*>(_build_expr[0]->get_value(probe_row));
|
|
int32_t probe_val = *reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(build_row));
|
|
EXPECT_EQ(build_val, probe_val);
|
|
}
|
|
|
|
struct ProbeTestData {
|
|
TupleRow* probe_row;
|
|
std::vector<TupleRow*> expected_build_rows;
|
|
};
|
|
|
|
void probe_test(HashTable* table, ProbeTestData* data, int num_data, bool scan) {
|
|
for (int i = 0; i < num_data; ++i) {
|
|
TupleRow* row = data[i].probe_row;
|
|
|
|
HashTable::Iterator iter;
|
|
iter = table->find(row);
|
|
|
|
if (data[i].expected_build_rows.size() == 0) {
|
|
EXPECT_TRUE(iter == table->end());
|
|
} else {
|
|
if (scan) {
|
|
std::map<TupleRow*, bool> matched;
|
|
|
|
while (iter != table->end()) {
|
|
EXPECT_TRUE(matched.find(iter.get_row()) == matched.end());
|
|
matched[iter.get_row()] = true;
|
|
iter.next<true>();
|
|
}
|
|
|
|
EXPECT_EQ(matched.size(), data[i].expected_build_rows.size());
|
|
|
|
for (int j = 0; i < data[j].expected_build_rows.size(); ++j) {
|
|
EXPECT_TRUE(matched[data[i].expected_build_rows[j]]);
|
|
}
|
|
} else {
|
|
EXPECT_EQ(data[i].expected_build_rows.size(), 1);
|
|
EXPECT_EQ(data[i].expected_build_rows[0]->get_tuple(0),
|
|
iter.get_row()->get_tuple(0));
|
|
validate_match(row, iter.get_row());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
TupleRow* HashTableTest::create_tuple_row(int32_t val) {
|
|
uint8_t* tuple_row_mem = _mem_pool->allocate(sizeof(int32_t*));
|
|
uint8_t* tuple_mem = _mem_pool->allocate(sizeof(int32_t));
|
|
*reinterpret_cast<int32_t*>(tuple_mem) = val;
|
|
TupleRow* row = reinterpret_cast<TupleRow*>(tuple_row_mem);
|
|
row->set_tuple(0, reinterpret_cast<Tuple*>(tuple_mem));
|
|
return row;
|
|
}
|
|
|
|
TEST_F(HashTableTest, SetupTest) {
|
|
TupleRow* build_row1 = create_tuple_row(1);
|
|
TupleRow* build_row2 = create_tuple_row(2);
|
|
TupleRow* probe_row3 = create_tuple_row(3);
|
|
TupleRow* probe_row4 = create_tuple_row(4);
|
|
|
|
int32_t* val_row1 = reinterpret_cast<int32_t*>(_build_expr[0]->get_value(build_row1));
|
|
int32_t* val_row2 = reinterpret_cast<int32_t*>(_build_expr[0]->get_value(build_row2));
|
|
int32_t* val_row3 = reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(probe_row3));
|
|
int32_t* val_row4 = reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(probe_row4));
|
|
|
|
EXPECT_EQ(*val_row1, 1);
|
|
EXPECT_EQ(*val_row2, 2);
|
|
EXPECT_EQ(*val_row3, 3);
|
|
EXPECT_EQ(*val_row4, 4);
|
|
}
|
|
|
|
// This tests inserts the build rows [0->5) to hash table. It validates that they
|
|
// are all there using a full table scan. It also validates that find() is correct
|
|
// testing for probe rows that are both there and not.
|
|
// The hash table is rehashed a few times and the scans/finds are tested again.
|
|
TEST_F(HashTableTest, BasicTest) {
|
|
std::shared_ptr<MemTracker> hash_table_tracker =
|
|
MemTracker::CreateTracker(-1, "hash-table-basic-tracker", _tracker);
|
|
|
|
TupleRow* build_rows[5];
|
|
TupleRow* scan_rows[5] = {0};
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
build_rows[i] = create_tuple_row(i);
|
|
}
|
|
|
|
ProbeTestData probe_rows[10];
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
probe_rows[i].probe_row = create_tuple_row(i);
|
|
|
|
if (i < 5) {
|
|
probe_rows[i].expected_build_rows.push_back(build_rows[i]);
|
|
}
|
|
}
|
|
|
|
std::vector<bool> is_null_safe = {false};
|
|
int initial_seed = 1;
|
|
int64_t num_buckets = 4;
|
|
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
|
|
hash_table_tracker, num_buckets);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
hash_table.insert(build_rows[i]);
|
|
}
|
|
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
|
|
// Do a full table scan and validate returned pointers
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
|
|
// Resize and scan again
|
|
resize_table(&hash_table, 64);
|
|
EXPECT_EQ(hash_table.num_buckets(), 64);
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
memset(scan_rows, 0, sizeof(scan_rows));
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
|
|
// Resize to two and cause some collisions
|
|
resize_table(&hash_table, 2);
|
|
EXPECT_EQ(hash_table.num_buckets(), 2);
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
memset(scan_rows, 0, sizeof(scan_rows));
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
|
|
// Resize to one and turn it into a linked list
|
|
resize_table(&hash_table, 1);
|
|
EXPECT_EQ(hash_table.num_buckets(), 1);
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
memset(scan_rows, 0, sizeof(scan_rows));
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
hash_table.close();
|
|
}
|
|
|
|
// This tests makes sure we can scan ranges of buckets
|
|
TEST_F(HashTableTest, ScanTest) {
|
|
std::shared_ptr<MemTracker> hash_table_tracker =
|
|
MemTracker::CreateTracker(-1, "hash-table-scan-tracker", _tracker);
|
|
|
|
std::vector<bool> is_null_safe = {false};
|
|
int initial_seed = 1;
|
|
int64_t num_buckets = 4;
|
|
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
|
|
hash_table_tracker, num_buckets);
|
|
// Add 1 row with val 1, 2 with val 2, etc
|
|
std::vector<TupleRow*> build_rows;
|
|
ProbeTestData probe_rows[15];
|
|
probe_rows[0].probe_row = create_tuple_row(0);
|
|
|
|
for (int val = 1; val <= 10; ++val) {
|
|
probe_rows[val].probe_row = create_tuple_row(val);
|
|
|
|
for (int i = 0; i < val; ++i) {
|
|
TupleRow* row = create_tuple_row(val);
|
|
hash_table.insert(row);
|
|
build_rows.push_back(row);
|
|
probe_rows[val].expected_build_rows.push_back(row);
|
|
}
|
|
}
|
|
|
|
// Add some more probe rows that aren't there
|
|
for (int val = 11; val < 15; ++val) {
|
|
probe_rows[val].probe_row = create_tuple_row(val);
|
|
}
|
|
|
|
// Test that all the builds were found
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
// Resize and try again
|
|
resize_table(&hash_table, 128);
|
|
EXPECT_EQ(hash_table.num_buckets(), 128);
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
resize_table(&hash_table, 16);
|
|
EXPECT_EQ(hash_table.num_buckets(), 16);
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
resize_table(&hash_table, 2);
|
|
EXPECT_EQ(hash_table.num_buckets(), 2);
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
hash_table.close();
|
|
}
|
|
|
|
// This test continues adding to the hash table to trigger the resize code paths
|
|
TEST_F(HashTableTest, GrowTableTest) {
|
|
int build_row_val = 0;
|
|
int num_to_add = LOOP_LESS_OR_MORE(2, 4);
|
|
int expected_size = 0;
|
|
|
|
std::shared_ptr<MemTracker> mem_tracker =
|
|
MemTracker::CreateTracker(1024 * 1024, "hash-table-grow-tracker", _tracker);
|
|
std::vector<bool> is_null_safe = {false};
|
|
int initial_seed = 1;
|
|
int64_t num_buckets = 4;
|
|
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
|
|
mem_tracker, num_buckets);
|
|
EXPECT_FALSE(mem_tracker->limit_exceeded());
|
|
|
|
for (int i = 0; i < LOOP_LESS_OR_MORE(1, 20); ++i) {
|
|
for (int j = 0; j < num_to_add; ++build_row_val, ++j) {
|
|
hash_table.insert(create_tuple_row(build_row_val));
|
|
}
|
|
|
|
expected_size += num_to_add;
|
|
num_to_add *= 2;
|
|
EXPECT_EQ(hash_table.size(), expected_size);
|
|
}
|
|
LOG(INFO) << "consume:" << mem_tracker->consumption() << ",expected_size:" << expected_size;
|
|
|
|
EXPECT_EQ(LOOP_LESS_OR_MORE(0, 1), mem_tracker->limit_exceeded());
|
|
|
|
// Validate that we can find the entries
|
|
for (int i = 0; i < expected_size * 5; i += 100000) {
|
|
TupleRow* probe_row = create_tuple_row(i);
|
|
HashTable::Iterator iter = hash_table.find(probe_row);
|
|
|
|
if (i < expected_size) {
|
|
EXPECT_TRUE(iter != hash_table.end());
|
|
validate_match(probe_row, iter.get_row());
|
|
} else {
|
|
EXPECT_TRUE(iter == hash_table.end());
|
|
}
|
|
}
|
|
hash_table.close();
|
|
}
|
|
|
|
// This test continues adding to the hash table to trigger the resize code paths
|
|
TEST_F(HashTableTest, GrowTableTest2) {
|
|
int build_row_val = 0;
|
|
int num_to_add = 1024;
|
|
int expected_size = 0;
|
|
|
|
std::shared_ptr<MemTracker> mem_tracker =
|
|
MemTracker::CreateTracker(1024 * 1024, "hash-table-grow2-tracker", _tracker);
|
|
std::vector<bool> is_null_safe = {false};
|
|
int initial_seed = 1;
|
|
int64_t num_buckets = 4;
|
|
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
|
|
mem_tracker, num_buckets);
|
|
|
|
LOG(INFO) << time(NULL);
|
|
|
|
// constexpr const int test_size = 5 * 1024 * 1024;
|
|
constexpr const int test_size = 5 * 1024 * 100;
|
|
|
|
for (int i = 0; i < test_size; ++i) {
|
|
hash_table.insert(create_tuple_row(build_row_val++));
|
|
expected_size += num_to_add;
|
|
}
|
|
|
|
LOG(INFO) << time(NULL);
|
|
|
|
// Validate that we can find the entries
|
|
for (int i = 0; i < test_size; ++i) {
|
|
TupleRow* probe_row = create_tuple_row(i++);
|
|
hash_table.find(probe_row);
|
|
}
|
|
|
|
LOG(INFO) << time(NULL);
|
|
hash_table.close();
|
|
}
|
|
|
|
} // namespace doris
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
doris::CpuInfo::init();
|
|
return RUN_ALL_TESTS();
|
|
}
|