Files
doris/be/src/vec/aggregate_functions/aggregate_function_collect.h
奕冷 c0360f80bb [enhancement](aggregate-function) enhance aggregate funtion collect and add group_array aliases (#15339)
Enhance aggregate function `collect_set` and `collect_list` to support optional `max_size` param,
which enables to limit the number of elements in result array.
2023-02-27 14:22:30 +08:00

330 lines
11 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <algorithm>
#include "common/status.h"
#include "vec/aggregate_functions/aggregate_function.h"
#include "vec/aggregate_functions/key_holder_helpers.h"
#include "vec/columns/column_array.h"
#include "vec/common/aggregation_common.h"
#include "vec/common/hash_table/hash_set.h"
#include "vec/common/pod_array_fwd.h"
#include "vec/common/string_ref.h"
#include "vec/data_types/data_type_array.h"
#include "vec/data_types/data_type_string.h"
#include "vec/io/io_helper.h"
namespace doris::vectorized {
template <typename T, typename HasLimit>
struct AggregateFunctionCollectSetData {
using ElementType = T;
using ColVecType = ColumnVectorOrDecimal<ElementType>;
using ElementNativeType = typename NativeType<T>::Type;
using SelfType = AggregateFunctionCollectSetData;
using Set = HashSetWithStackMemory<ElementNativeType, DefaultHash<ElementNativeType>, 4>;
Set data_set;
Int64 max_size = -1;
size_t size() const { return data_set.size(); }
void add(const IColumn& column, size_t row_num) {
data_set.insert(assert_cast<const ColVecType&>(column).get_data()[row_num]);
}
void merge(const SelfType& rhs) {
if constexpr (HasLimit::value) {
for (auto& rhs_elem : rhs.data_set) {
if (size() >= max_size) {
return;
}
data_set.insert(rhs_elem.get_value());
}
} else {
data_set.merge(rhs.data_set);
}
}
void write(BufferWritable& buf) const { data_set.write(buf); }
void read(BufferReadable& buf) { data_set.read(buf); }
void insert_result_into(IColumn& to) const {
auto& vec = assert_cast<ColVecType&>(to).get_data();
vec.reserve(size());
for (const auto& item : data_set) {
vec.push_back(item.key);
}
}
void reset() { data_set.clear(); }
};
template <typename HasLimit>
struct AggregateFunctionCollectSetData<StringRef, HasLimit> {
using ElementType = StringRef;
using ColVecType = ColumnString;
using SelfType = AggregateFunctionCollectSetData<ElementType, HasLimit>;
using Set = HashSetWithSavedHashWithStackMemory<ElementType, DefaultHash<ElementType>, 4>;
Set data_set;
Int64 max_size = -1;
size_t size() const { return data_set.size(); }
void add(const IColumn& column, size_t row_num, Arena* arena) {
Set::LookupResult it;
bool inserted;
auto key_holder = get_key_holder<true>(column, row_num, *arena);
data_set.emplace(key_holder, it, inserted);
}
void merge(const SelfType& rhs, Arena* arena) {
bool inserted;
Set::LookupResult it;
for (auto& rhs_elem : rhs.data_set) {
if constexpr (HasLimit::value) {
if (size() >= max_size) {
return;
}
}
assert(arena != nullptr);
data_set.emplace(ArenaKeyHolder {rhs_elem.get_value(), *arena}, it, inserted);
}
}
void write(BufferWritable& buf) const {
write_var_uint(size(), buf);
for (const auto& elem : data_set) {
write_string_binary(elem.get_value(), buf);
}
}
void read(BufferReadable& buf) {
UInt64 size;
read_var_uint(size, buf);
StringRef ref;
for (size_t i = 0; i < size; ++i) {
read_string_binary(ref, buf);
data_set.insert(ref);
}
}
void insert_result_into(IColumn& to) const {
auto& vec = assert_cast<ColVecType&>(to);
vec.reserve(size());
for (const auto& item : data_set) {
vec.insert_data(item.key.data, item.key.size);
}
}
void reset() { data_set.clear(); }
};
template <typename T, typename HasLimit>
struct AggregateFunctionCollectListData {
using ElementType = T;
using ColVecType = ColumnVectorOrDecimal<ElementType>;
using SelfType = AggregateFunctionCollectListData<ElementType, HasLimit>;
PaddedPODArray<ElementType> data;
Int64 max_size = -1;
size_t size() const { return data.size(); }
void add(const IColumn& column, size_t row_num) {
const auto& vec = assert_cast<const ColVecType&>(column).get_data();
data.push_back(vec[row_num]);
}
void merge(const SelfType& rhs) {
if constexpr (HasLimit::value) {
for (auto& rhs_elem : rhs.data) {
if (size() >= max_size) {
return;
}
data.push_back(rhs_elem);
}
} else {
data.insert(rhs.data.begin(), rhs.data.end());
}
}
void write(BufferWritable& buf) const {
write_var_uint(size(), buf);
buf.write(data.raw_data(), size() * sizeof(ElementType));
}
void read(BufferReadable& buf) {
UInt64 rows = 0;
read_var_uint(rows, buf);
data.resize(rows);
buf.read(reinterpret_cast<char*>(data.data()), rows * sizeof(ElementType));
}
void reset() { data.clear(); }
void insert_result_into(IColumn& to) const {
auto& vec = assert_cast<ColVecType&>(to).get_data();
size_t old_size = vec.size();
vec.resize(old_size + size());
memcpy(vec.data() + old_size, data.data(), size() * sizeof(ElementType));
}
};
template <typename HasLimit>
struct AggregateFunctionCollectListData<StringRef, HasLimit> {
using ElementType = StringRef;
using ColVecType = ColumnString;
MutableColumnPtr data;
Int64 max_size = -1;
AggregateFunctionCollectListData() { data = ColVecType::create(); }
size_t size() const { return data->size(); }
void add(const IColumn& column, size_t row_num) { data->insert_from(column, row_num); }
void merge(const AggregateFunctionCollectListData& rhs) {
if constexpr (HasLimit::value) {
data->insert_range_from(*rhs.data, 0,
std::min(static_cast<size_t>(max_size - size()), rhs.size()));
} else {
data->insert_range_from(*rhs.data, 0, rhs.size());
}
}
void write(BufferWritable& buf) const {
auto& col = assert_cast<ColVecType&>(*data);
write_var_uint(col.size(), buf);
buf.write(col.get_offsets().raw_data(), col.size() * sizeof(IColumn::Offset));
write_var_uint(col.get_chars().size(), buf);
buf.write(col.get_chars().raw_data(), col.get_chars().size());
}
void read(BufferReadable& buf) {
auto& col = assert_cast<ColVecType&>(*data);
UInt64 offs_size = 0;
read_var_uint(offs_size, buf);
col.get_offsets().resize(offs_size);
buf.read(reinterpret_cast<char*>(col.get_offsets().data()),
offs_size * sizeof(IColumn::Offset));
UInt64 chars_size = 0;
read_var_uint(chars_size, buf);
col.get_chars().resize(chars_size);
buf.read(reinterpret_cast<char*>(col.get_chars().data()), chars_size);
}
void reset() { data->clear(); }
void insert_result_into(IColumn& to) const {
auto& to_str = assert_cast<ColVecType&>(to);
to_str.insert_range_from(*data, 0, size());
}
};
template <typename Data, typename HasLimit>
class AggregateFunctionCollect
: public IAggregateFunctionDataHelper<Data, AggregateFunctionCollect<Data, HasLimit>> {
using GenericType = AggregateFunctionCollectSetData<StringRef, HasLimit>;
static constexpr bool ENABLE_ARENA = std::is_same_v<Data, GenericType>;
public:
AggregateFunctionCollect(const DataTypePtr& argument_type,
UInt64 max_size_ = std::numeric_limits<UInt64>::max())
: IAggregateFunctionDataHelper<Data, AggregateFunctionCollect<Data, HasLimit>>(
{argument_type}),
return_type(argument_type) {}
std::string get_name() const override {
if constexpr (std::is_same_v<AggregateFunctionCollectListData<typename Data::ElementType,
HasLimit>,
Data>) {
return "collect_list";
} else {
return "collect_set";
}
}
DataTypePtr get_return_type() const override {
return std::make_shared<DataTypeArray>(make_nullable(return_type));
}
bool allocates_memory_in_arena() const override { return ENABLE_ARENA; }
void add(AggregateDataPtr __restrict place, const IColumn** columns, size_t row_num,
Arena* arena) const override {
auto& data = this->data(place);
if constexpr (HasLimit::value) {
if (data.max_size == -1) {
data.max_size =
(UInt64) static_cast<const ColumnInt32*>(columns[1])->get_element(row_num);
}
if (data.size() >= data.max_size) {
return;
}
}
if constexpr (ENABLE_ARENA) {
data.add(*columns[0], row_num, arena);
} else {
data.add(*columns[0], row_num);
}
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs,
Arena* arena) const override {
auto& data = this->data(place);
auto& rhs_data = this->data(rhs);
if constexpr (ENABLE_ARENA) {
data.merge(rhs_data, arena);
} else {
data.merge(rhs_data);
}
}
void serialize(ConstAggregateDataPtr __restrict place, BufferWritable& buf) const override {
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr __restrict place, BufferReadable& buf,
Arena*) const override {
this->data(place).read(buf);
}
void insert_result_into(ConstAggregateDataPtr __restrict place, IColumn& to) const override {
auto& to_arr = assert_cast<ColumnArray&>(to);
auto& to_nested_col = to_arr.get_data();
if (to_nested_col.is_nullable()) {
auto col_null = reinterpret_cast<ColumnNullable*>(&to_nested_col);
this->data(place).insert_result_into(col_null->get_nested_column());
col_null->get_null_map_data().resize_fill(col_null->get_nested_column().size(), 0);
} else {
this->data(place).insert_result_into(to_nested_col);
}
to_arr.get_offsets().push_back(to_nested_col.size());
}
private:
DataTypePtr return_type;
};
} // namespace doris::vectorized