Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
587 lines
19 KiB
C++
587 lines
19 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "runtime/decimalv2_value.h"
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <utility>
|
|
|
|
#include "util/string_parser.hpp"
|
|
|
|
namespace doris {
|
|
|
|
static inline int128_t abs(const int128_t& x) {
|
|
return (x < 0) ? -x : x;
|
|
}
|
|
|
|
// x>=0 && y>=0
|
|
static int do_add(int128_t x, int128_t y, int128_t* result) {
|
|
int error = E_DEC_OK;
|
|
if (DecimalV2Value::MAX_DECIMAL_VALUE - x >= y) {
|
|
*result = x + y;
|
|
} else {
|
|
*result = DecimalV2Value::MAX_DECIMAL_VALUE;
|
|
error = E_DEC_OVERFLOW;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
// x>=0 && y>=0
|
|
static int do_sub(int128_t x, int128_t y, int128_t* result) {
|
|
int error = E_DEC_OK;
|
|
*result = x - y;
|
|
return error;
|
|
}
|
|
|
|
// clear leading zero for __int128
|
|
static int clz128(unsigned __int128 v) {
|
|
if (v == 0) return sizeof(__int128);
|
|
unsigned __int128 shifted = v >> 64;
|
|
if (shifted != 0) {
|
|
return __builtin_clzll(shifted);
|
|
} else {
|
|
return __builtin_clzll(v) + 64;
|
|
}
|
|
}
|
|
|
|
// x>0 && y>0
|
|
static int do_mul(int128_t x, int128_t y, int128_t* result) {
|
|
int error = E_DEC_OK;
|
|
int128_t max128 = ~(static_cast<int128_t>(1ll) << 127);
|
|
|
|
int leading_zero_bits = clz128(x) + clz128(y);
|
|
if (leading_zero_bits < sizeof(int128_t) || max128 / x < y) {
|
|
*result = DecimalV2Value::MAX_DECIMAL_VALUE;
|
|
error = E_DEC_OVERFLOW;
|
|
return error;
|
|
}
|
|
|
|
int128_t product = x * y;
|
|
*result = product / DecimalV2Value::ONE_BILLION;
|
|
|
|
// overflow
|
|
if (*result > DecimalV2Value::MAX_DECIMAL_VALUE) {
|
|
*result = DecimalV2Value::MAX_DECIMAL_VALUE;
|
|
error = E_DEC_OVERFLOW;
|
|
return error;
|
|
}
|
|
|
|
// truncate with round
|
|
int128_t remainder = product % DecimalV2Value::ONE_BILLION;
|
|
if (remainder != 0) {
|
|
error = E_DEC_TRUNCATED;
|
|
if (remainder >= (DecimalV2Value::ONE_BILLION >> 1)) {
|
|
*result += 1;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
// x>0 && y>0
|
|
static int do_div(int128_t x, int128_t y, int128_t* result) {
|
|
int error = E_DEC_OK;
|
|
int128_t dividend = x * DecimalV2Value::ONE_BILLION;
|
|
*result = dividend / y;
|
|
|
|
// overflow
|
|
int128_t remainder = dividend % y;
|
|
if (remainder != 0) {
|
|
error = E_DEC_TRUNCATED;
|
|
if (remainder >= (y >> 1)) {
|
|
*result += 1;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
// x>0 && y>0
|
|
static int do_mod(int128_t x, int128_t y, int128_t* result) {
|
|
int error = E_DEC_OK;
|
|
*result = x % y;
|
|
return error;
|
|
}
|
|
|
|
DecimalV2Value operator+(const DecimalV2Value& v1, const DecimalV2Value& v2) {
|
|
int128_t result;
|
|
int128_t x = v1.value();
|
|
int128_t y = v2.value();
|
|
if (x == 0) {
|
|
result = y;
|
|
} else if (y == 0) {
|
|
result = x;
|
|
} else if (x > 0) {
|
|
if (y > 0) {
|
|
do_add(x, y, &result);
|
|
} else {
|
|
do_sub(x, -y, &result);
|
|
}
|
|
} else { // x < 0
|
|
if (y > 0) {
|
|
do_sub(y, -x, &result);
|
|
} else {
|
|
do_add(-x, -y, &result);
|
|
result = -result;
|
|
}
|
|
}
|
|
|
|
return DecimalV2Value(result);
|
|
}
|
|
|
|
DecimalV2Value operator-(const DecimalV2Value& v1, const DecimalV2Value& v2) {
|
|
int128_t result;
|
|
int128_t x = v1.value();
|
|
int128_t y = v2.value();
|
|
if (x == 0) {
|
|
result = -y;
|
|
} else if (y == 0) {
|
|
result = x;
|
|
} else if (x > 0) {
|
|
if (y > 0) {
|
|
do_sub(x, y, &result);
|
|
} else {
|
|
do_add(x, -y, &result);
|
|
}
|
|
} else { // x < 0
|
|
if (y > 0) {
|
|
do_add(-x, y, &result);
|
|
result = -result;
|
|
} else {
|
|
do_sub(-x, -y, &result);
|
|
result = -result;
|
|
}
|
|
}
|
|
|
|
return DecimalV2Value(result);
|
|
}
|
|
|
|
DecimalV2Value operator*(const DecimalV2Value& v1, const DecimalV2Value& v2) {
|
|
int128_t result;
|
|
int128_t x = v1.value();
|
|
int128_t y = v2.value();
|
|
|
|
if (x == 0 || y == 0) return DecimalV2Value(0);
|
|
|
|
bool is_positive = (x > 0 && y > 0) || (x < 0 && y < 0);
|
|
|
|
do_mul(abs(x), abs(y), &result);
|
|
|
|
if (!is_positive) result = -result;
|
|
|
|
return DecimalV2Value(result);
|
|
}
|
|
|
|
DecimalV2Value operator/(const DecimalV2Value& v1, const DecimalV2Value& v2) {
|
|
int128_t result;
|
|
int128_t x = v1.value();
|
|
int128_t y = v2.value();
|
|
|
|
DCHECK(y != 0);
|
|
if (x == 0 || y == 0) return DecimalV2Value(0);
|
|
bool is_positive = (x > 0 && y > 0) || (x < 0 && y < 0);
|
|
do_div(abs(x), abs(y), &result);
|
|
|
|
if (!is_positive) result = -result;
|
|
|
|
return DecimalV2Value(result);
|
|
}
|
|
|
|
DecimalV2Value operator%(const DecimalV2Value& v1, const DecimalV2Value& v2) {
|
|
int128_t result;
|
|
int128_t x = v1.value();
|
|
int128_t y = v2.value();
|
|
|
|
DCHECK(y != 0);
|
|
if (x == 0 || y == 0) return DecimalV2Value(0);
|
|
|
|
do_mod(x, y, &result);
|
|
|
|
return DecimalV2Value(result);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, DecimalV2Value const& decimal_value) {
|
|
return os << decimal_value.to_string();
|
|
}
|
|
|
|
std::istream& operator>>(std::istream& ism, DecimalV2Value& decimal_value) {
|
|
std::string str_buff;
|
|
ism >> str_buff;
|
|
decimal_value.parse_from_str(str_buff.c_str(), str_buff.size());
|
|
return ism;
|
|
}
|
|
|
|
DecimalV2Value operator-(const DecimalV2Value& v) {
|
|
return DecimalV2Value(-v.value());
|
|
}
|
|
|
|
DecimalV2Value& DecimalV2Value::operator+=(const DecimalV2Value& other) {
|
|
*this = *this + other;
|
|
return *this;
|
|
}
|
|
|
|
// Solve a one-dimensional quadratic equation: ax2 + bx + c =0
|
|
// Reference: https://gist.github.com/miloyip/1fcc1859c94d33a01957cf41a7c25fdf
|
|
// Reference: https://www.zhihu.com/question/51381686
|
|
static std::pair<double, double> quadratic_equation_naive(__uint128_t a, __uint128_t b,
|
|
__uint128_t c) {
|
|
__uint128_t dis = b * b - 4 * a * c;
|
|
// assert(dis >= 0);
|
|
// not handling complex root
|
|
double sqrtdis = std::sqrt(static_cast<double>(dis));
|
|
double a_r = static_cast<double>(a);
|
|
double b_r = static_cast<double>(b);
|
|
double x1 = (-b_r - sqrtdis) / (a_r + a_r);
|
|
double x2 = (-b_r + sqrtdis) / (a_r + a_r);
|
|
return std::make_pair(x1, x2);
|
|
}
|
|
|
|
static inline double sgn(double x) {
|
|
if (x > 0)
|
|
return 1;
|
|
else if (x < 0)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// In the above quadratic_equation_naive solution process, we found that -b + sqrtdis will
|
|
// get the correct answer, and -b-sqrtdis will get the wrong answer. For two close floating-point
|
|
// decimals a, b, a-b will cause larger errors than a + b, which is called catastrophic cancellation.
|
|
// Both -b and sqrtdis are positive numbers. We can first find the roots brought by -b + sqrtdis,
|
|
// and then use the product of the two roots of the quadratic equation in one unknown to find another root
|
|
static std::pair<double, double> quadratic_equation_better(int128_t a, int128_t b, int128_t c) {
|
|
if (b == 0) return quadratic_equation_naive(a, b, c);
|
|
int128_t dis = b * b - 4 * a * c;
|
|
// assert(dis >= 0);
|
|
// not handling complex root
|
|
if (dis < 0) return std::make_pair(0, 0);
|
|
|
|
// There may be a loss of precision, but here is used to find the mantissa of the square root.
|
|
// The current SCALE=9, which is less than the 15 significant digits of the double type,
|
|
// so theoretically the loss of precision will not be reflected in the result.
|
|
double sqrtdis = std::sqrt(static_cast<double>(dis));
|
|
double a_r = static_cast<double>(a);
|
|
double b_r = static_cast<double>(b);
|
|
double c_r = static_cast<double>(c);
|
|
// Here b comes from an unsigned integer, and sgn(b) is always 1,
|
|
// which is only used to preserve the complete algorithm
|
|
double x1 = (-b_r - sgn(b_r) * sqrtdis) / (a_r + a_r);
|
|
double x2 = c_r / (a_r * x1);
|
|
return std::make_pair(x1, x2);
|
|
}
|
|
|
|
// Large integer square roots, returns the integer part.
|
|
// The time complexity is lower than the traditional dichotomy
|
|
// and Newton iteration method, and the number of iterations is fixed.
|
|
// in real-time systems, functions that execute an unpredictable number of iterations
|
|
// will make the total time per task unpredictable, and introduce jitter
|
|
// Reference: https://www.embedded.com/integer-square-roots/
|
|
// Reference: https://link.zhihu.com/?target=https%3A//gist.github.com/miloyip/69663b78b26afa0dcc260382a6034b1a
|
|
// Reference: https://www.zhihu.com/question/35122102
|
|
static std::pair<__uint128_t, __uint128_t> sqrt_integer(__uint128_t n) {
|
|
__uint128_t remainder = 0, root = 0;
|
|
for (size_t i = 0; i < 64; i++) {
|
|
root <<= 1;
|
|
++root;
|
|
remainder <<= 2;
|
|
remainder |= n >> 126;
|
|
n <<= 2; // Extract 2 MSB from n
|
|
if (root <= remainder) {
|
|
remainder -= root;
|
|
++root;
|
|
} else {
|
|
--root;
|
|
}
|
|
}
|
|
return std::make_pair(root >>= 1, remainder);
|
|
}
|
|
|
|
// According to the integer part and the remainder of the square root,
|
|
// Use one-dimensional quadratic equation to solve the fractional part of the square root
|
|
static double sqrt_fractional(int128_t sqrt_int, int128_t remainder) {
|
|
std::pair<double, double> p = quadratic_equation_better(1, 2 * sqrt_int, -remainder);
|
|
if ((0 < p.first) && (p.first < 1)) return p.first;
|
|
if ((0 < p.second) && (p.second < 1)) return p.second;
|
|
return 0;
|
|
}
|
|
|
|
const int128_t DecimalV2Value::SQRT_MOLECULAR_MAGNIFICATION = get_scale_base(PRECISION / 2);
|
|
const int128_t DecimalV2Value::SQRT_DENOMINATOR =
|
|
std::sqrt(ONE_BILLION) * get_scale_base(PRECISION / 2 - SCALE);
|
|
|
|
DecimalV2Value DecimalV2Value::sqrt(const DecimalV2Value& v) {
|
|
int128_t x = v.value();
|
|
std::pair<__uint128_t, __uint128_t> sqrt_integer_ret;
|
|
bool is_negative = (x < 0);
|
|
if (x == 0) {
|
|
return DecimalV2Value(0);
|
|
}
|
|
sqrt_integer_ret = sqrt_integer(abs(x));
|
|
int128_t integer_root = static_cast<int128_t>(sqrt_integer_ret.first);
|
|
int128_t integer_remainder = static_cast<int128_t>(sqrt_integer_ret.second);
|
|
double fractional = sqrt_fractional(integer_root, integer_remainder);
|
|
|
|
// Multiplying by SQRT_MOLECULAR_MAGNIFICATION here will not overflow,
|
|
// because integer_root can be up to 64 bits.
|
|
int128_t molecular_integer = integer_root * SQRT_MOLECULAR_MAGNIFICATION;
|
|
int128_t molecular_fractional =
|
|
static_cast<int128_t>(fractional * SQRT_MOLECULAR_MAGNIFICATION);
|
|
int128_t ret = (molecular_integer + molecular_fractional) / SQRT_DENOMINATOR;
|
|
if (is_negative) ret = -ret;
|
|
return DecimalV2Value(ret);
|
|
}
|
|
|
|
int DecimalV2Value::parse_from_str(const char* decimal_str, int32_t length) {
|
|
int32_t error = E_DEC_OK;
|
|
StringParser::ParseResult result = StringParser::PARSE_SUCCESS;
|
|
|
|
_value = StringParser::string_to_decimal<__int128>(decimal_str, length, PRECISION, SCALE,
|
|
&result);
|
|
if (result != StringParser::PARSE_SUCCESS) {
|
|
error = E_DEC_BAD_NUM;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
std::string DecimalV2Value::to_string(int scale) const {
|
|
int64_t int_val = int_value();
|
|
int32_t frac_val = abs(frac_value());
|
|
if (scale < 0 || scale > SCALE) {
|
|
if (frac_val == 0) {
|
|
scale = 0;
|
|
} else {
|
|
scale = SCALE;
|
|
while (frac_val != 0 && frac_val % 10 == 0) {
|
|
frac_val = frac_val / 10;
|
|
scale--;
|
|
}
|
|
}
|
|
} else {
|
|
// roundup to FIX 17191
|
|
if (scale < SCALE) {
|
|
int32_t frac_val_tmp = frac_val / SCALE_TRIM_ARRAY[scale];
|
|
if (frac_val / SCALE_TRIM_ARRAY[scale + 1] % 10 >= 5) {
|
|
frac_val_tmp++;
|
|
if (frac_val_tmp >= SCALE_TRIM_ARRAY[9 - scale]) {
|
|
frac_val_tmp = 0;
|
|
_value >= 0 ? int_val++ : int_val--;
|
|
}
|
|
}
|
|
frac_val = frac_val_tmp;
|
|
}
|
|
}
|
|
auto f_int = fmt::format_int(int_val);
|
|
if (scale == 0) {
|
|
return f_int.str();
|
|
}
|
|
std::string str;
|
|
if (_value < 0 && int_val == 0 && frac_val != 0) {
|
|
str.reserve(f_int.size() + scale + 2);
|
|
str.push_back('-');
|
|
} else {
|
|
str.reserve(f_int.size() + scale + 1);
|
|
}
|
|
str.append(f_int.data(), f_int.size());
|
|
str.push_back('.');
|
|
if (frac_val == 0) {
|
|
str.append(scale, '0');
|
|
} else {
|
|
auto f_frac = fmt::format_int(frac_val);
|
|
if (f_frac.size() < scale) {
|
|
str.append(scale - f_frac.size(), '0');
|
|
}
|
|
str.append(f_frac.data(), f_frac.size());
|
|
}
|
|
return str;
|
|
}
|
|
|
|
int32_t DecimalV2Value::to_buffer(char* buffer, int scale) const {
|
|
int64_t int_val = int_value();
|
|
int32_t frac_val = abs(frac_value());
|
|
if (scale < 0 || scale > SCALE) {
|
|
if (frac_val == 0) {
|
|
scale = 0;
|
|
} else {
|
|
scale = SCALE;
|
|
while (frac_val != 0 && frac_val % 10 == 0) {
|
|
frac_val = frac_val / 10;
|
|
scale--;
|
|
}
|
|
}
|
|
} else {
|
|
// roundup to FIX 17191
|
|
if (scale < SCALE) {
|
|
int32_t frac_val_tmp = frac_val / SCALE_TRIM_ARRAY[scale];
|
|
if (frac_val / SCALE_TRIM_ARRAY[scale + 1] % 10 >= 5) {
|
|
frac_val_tmp++;
|
|
if (frac_val_tmp >= SCALE_TRIM_ARRAY[9 - scale]) {
|
|
frac_val_tmp = 0;
|
|
_value >= 0 ? int_val++ : int_val--;
|
|
}
|
|
}
|
|
frac_val = frac_val_tmp;
|
|
}
|
|
}
|
|
int extra_sign_size = 0;
|
|
if (_value < 0 && int_val == 0 && frac_val != 0) {
|
|
*buffer++ = '-';
|
|
extra_sign_size = 1;
|
|
}
|
|
auto f_int = fmt::format_int(int_val);
|
|
memcpy(buffer, f_int.data(), f_int.size());
|
|
if (scale == 0) {
|
|
return f_int.size();
|
|
}
|
|
*(buffer + f_int.size()) = '.';
|
|
buffer = buffer + f_int.size() + 1;
|
|
if (frac_val == 0) {
|
|
memset(buffer, '0', scale);
|
|
} else {
|
|
auto f_frac = fmt::format_int(frac_val);
|
|
if (f_frac.size() < scale) {
|
|
memset(buffer, '0', scale - f_frac.size());
|
|
buffer = buffer + scale - f_frac.size();
|
|
}
|
|
memcpy(buffer, f_frac.data(), f_frac.size());
|
|
}
|
|
return f_int.size() + scale + 1 + extra_sign_size;
|
|
}
|
|
|
|
std::string DecimalV2Value::to_string() const {
|
|
return to_string(-1);
|
|
}
|
|
|
|
// NOTE: only change abstract value, do not change sign
|
|
void DecimalV2Value::to_max_decimal(int32_t precision, int32_t scale) {
|
|
static const int64_t INT_MAX_VALUE[PRECISION] = {9ll,
|
|
99ll,
|
|
999ll,
|
|
9999ll,
|
|
99999ll,
|
|
999999ll,
|
|
9999999ll,
|
|
99999999ll,
|
|
999999999ll,
|
|
9999999999ll,
|
|
99999999999ll,
|
|
999999999999ll,
|
|
9999999999999ll,
|
|
99999999999999ll,
|
|
999999999999999ll,
|
|
9999999999999999ll,
|
|
99999999999999999ll,
|
|
999999999999999999ll};
|
|
static const int32_t FRAC_MAX_VALUE[SCALE] = {900000000, 990000000, 999000000,
|
|
999900000, 999990000, 999999000,
|
|
999999900, 999999990, 999999999};
|
|
|
|
// precision > 0 && scale >= 0 && scale <= SCALE
|
|
if (precision <= 0 || scale < 0) return;
|
|
if (scale > SCALE) scale = SCALE;
|
|
|
|
// precision: (scale, PRECISION]
|
|
if (precision > PRECISION) precision = PRECISION;
|
|
if (precision - scale > PRECISION - SCALE) {
|
|
precision = PRECISION - SCALE + scale;
|
|
} else if (precision <= scale) {
|
|
LOG(WARNING) << "Warning: error precision: " << precision << " or scale: " << scale;
|
|
precision = scale + 1; // correct error precision
|
|
}
|
|
|
|
int64_t int_value = INT_MAX_VALUE[precision - scale - 1];
|
|
int64_t frac_value = scale == 0 ? 0 : FRAC_MAX_VALUE[scale - 1];
|
|
_value = static_cast<int128_t>(int_value) * DecimalV2Value::ONE_BILLION + frac_value;
|
|
}
|
|
|
|
std::size_t hash_value(DecimalV2Value const& value) {
|
|
return value.hash(0);
|
|
}
|
|
|
|
int DecimalV2Value::round(DecimalV2Value* to, int rounding_scale, DecimalRoundMode op) {
|
|
int32_t error = E_DEC_OK;
|
|
int128_t result;
|
|
|
|
if (rounding_scale >= SCALE) return error;
|
|
if (rounding_scale < -(PRECISION - SCALE)) return 0;
|
|
|
|
int128_t base = get_scale_base(SCALE - rounding_scale);
|
|
result = _value / base;
|
|
|
|
int one = _value > 0 ? 1 : -1;
|
|
int128_t remainder = _value % base;
|
|
switch (op) {
|
|
case HALF_UP:
|
|
case HALF_EVEN:
|
|
if (abs(remainder) >= (base >> 1)) {
|
|
result = (result + one) * base;
|
|
} else {
|
|
result = result * base;
|
|
}
|
|
break;
|
|
case CEILING:
|
|
if (remainder > 0 && _value > 0) {
|
|
result = (result + one) * base;
|
|
} else {
|
|
result = result * base;
|
|
}
|
|
break;
|
|
case FLOOR:
|
|
if (remainder < 0 && _value < 0) {
|
|
result = (result + one) * base;
|
|
} else {
|
|
result = result * base;
|
|
}
|
|
break;
|
|
case TRUNCATE:
|
|
result = result * base;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
to->set_value(result);
|
|
return error;
|
|
}
|
|
|
|
bool DecimalV2Value::greater_than_scale(int scale) {
|
|
if (scale >= SCALE || scale < 0) {
|
|
return false;
|
|
} else if (scale == SCALE) {
|
|
return true;
|
|
}
|
|
|
|
int frac_val = frac_value();
|
|
if (scale == 0) {
|
|
bool ret = frac_val == 0 ? false : true;
|
|
return ret;
|
|
}
|
|
|
|
static const int values[SCALE] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
|
|
int base = values[SCALE - scale];
|
|
if (frac_val % base != 0) return true;
|
|
return false;
|
|
}
|
|
|
|
} // end namespace doris
|