Files
doris/be/src/vec/exec/vset_operation_node.cpp
HappenLee ca4674ca68 [pipeline](opt) opt the exec performance of pipe exec engine (#15330)
opt the exec performance of pipe exec engine
2022-12-26 09:58:52 +08:00

743 lines
29 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exec/vset_operation_node.h"
#include "util/defer_op.h"
#include "vec/exprs/vexpr.h"
namespace doris {
namespace vectorized {
//build hash table for operation node, intersect/except node
template <class HashTableContext, bool is_intersect>
struct HashTableBuild {
HashTableBuild(int rows, ColumnRawPtrs& build_raw_ptrs,
VSetOperationNode<is_intersect>* operation_node, uint8_t offset)
: _rows(rows),
_offset(offset),
_build_raw_ptrs(build_raw_ptrs),
_operation_node(operation_node) {}
Status operator()(HashTableContext& hash_table_ctx) {
using KeyGetter = typename HashTableContext::State;
using Mapped = typename HashTableContext::Mapped;
int64_t old_bucket_bytes = hash_table_ctx.hash_table.get_buffer_size_in_bytes();
Defer defer {[&]() {
int64_t bucket_bytes = hash_table_ctx.hash_table.get_buffer_size_in_bytes();
_operation_node->_mem_used += bucket_bytes - old_bucket_bytes;
}};
KeyGetter key_getter(_build_raw_ptrs, _operation_node->_build_key_sz, nullptr);
if constexpr (ColumnsHashing::IsPreSerializedKeysHashMethodTraits<KeyGetter>::value) {
hash_table_ctx.serialize_keys(_build_raw_ptrs, _rows);
key_getter.set_serialized_keys(hash_table_ctx.keys.data());
}
for (size_t k = 0; k < _rows; ++k) {
auto emplace_result = key_getter.emplace_key(hash_table_ctx.hash_table, k,
*(_operation_node->_arena));
if (k + 1 < _rows) {
key_getter.prefetch(hash_table_ctx.hash_table, k + 1, *(_operation_node->_arena));
}
if (emplace_result.is_inserted()) { //only inserted once as the same key, others skip
new (&emplace_result.get_mapped()) Mapped({k, _offset});
}
}
return Status::OK();
}
private:
const int _rows;
const uint8_t _offset;
ColumnRawPtrs& _build_raw_ptrs;
VSetOperationNode<is_intersect>* _operation_node;
};
template <class HashTableContext, bool is_intersected>
struct HashTableProbe {
HashTableProbe(VSetOperationNode<is_intersected>* operation_node, int probe_rows)
: _operation_node(operation_node),
_probe_rows(probe_rows),
_probe_raw_ptrs(operation_node->_probe_columns),
_arena(new Arena) {}
Status mark_data_in_hashtable(HashTableContext& hash_table_ctx) {
using KeyGetter = typename HashTableContext::State;
using Mapped = typename HashTableContext::Mapped;
KeyGetter key_getter(_probe_raw_ptrs, _operation_node->_probe_key_sz, nullptr);
if constexpr (ColumnsHashing::IsPreSerializedKeysHashMethodTraits<KeyGetter>::value) {
if (_probe_keys.size() < _probe_rows) {
_probe_keys.resize(_probe_rows);
}
size_t keys_size = _probe_raw_ptrs.size();
for (size_t i = 0; i < _probe_rows; ++i) {
_probe_keys[i] =
serialize_keys_to_pool_contiguous(i, keys_size, _probe_raw_ptrs, *_arena);
}
key_getter.set_serialized_keys(_probe_keys.data());
}
if constexpr (std::is_same_v<typename HashTableContext::Mapped, RowRefListWithFlags>) {
for (int probe_index = 0; probe_index < _probe_rows; probe_index++) {
auto find_result =
key_getter.find_key(hash_table_ctx.hash_table, probe_index, *_arena);
if (find_result.is_found()) { //if found, marked visited
auto it = find_result.get_mapped().begin();
if (!(it->visited)) {
it->visited = true;
if constexpr (is_intersected) { //intersected
_operation_node->_valid_element_in_hash_tbl++;
} else {
_operation_node->_valid_element_in_hash_tbl--; //except
}
}
}
}
} else {
LOG(FATAL) << "Invalid RowRefListType!";
}
return Status::OK();
}
private:
VSetOperationNode<is_intersected>* _operation_node;
const size_t _probe_rows;
ColumnRawPtrs& _probe_raw_ptrs;
std::unique_ptr<Arena> _arena;
std::vector<StringRef> _probe_keys;
};
template <bool is_intersect>
VSetOperationNode<is_intersect>::VSetOperationNode(ObjectPool* pool, const TPlanNode& tnode,
const DescriptorTbl& descs)
: ExecNode(pool, tnode, descs),
_valid_element_in_hash_tbl(0),
_mem_used(0),
_build_block_index(0),
_build_finished(false) {
_hash_table_variants = std::make_unique<HashTableVariants>();
_arena = std::make_unique<Arena>();
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::release_resource(RuntimeState* state) {
for (auto& exprs : _child_expr_lists) {
VExpr::close(exprs, state);
}
release_mem();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::close(RuntimeState* state) {
if (is_closed()) {
return Status::OK();
}
START_AND_SCOPE_SPAN(state->get_tracer(), span, "VSetOperationNode<is_intersect>::close");
return ExecNode::close(state);
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::init(const TPlanNode& tnode, RuntimeState* state) {
RETURN_IF_ERROR(ExecNode::init(tnode, state));
std::vector<std::vector<::doris::TExpr>> result_texpr_lists;
// Create result_expr_ctx_lists_ from thrift exprs.
if (tnode.node_type == TPlanNodeType::type::INTERSECT_NODE) {
result_texpr_lists = tnode.intersect_node.result_expr_lists;
} else if (tnode.node_type == TPlanNodeType::type::EXCEPT_NODE) {
result_texpr_lists = tnode.except_node.result_expr_lists;
} else {
return Status::NotSupported("Not Implemented, Check The Operation Node.");
}
for (auto& texprs : result_texpr_lists) {
std::vector<VExprContext*> ctxs;
RETURN_IF_ERROR(VExpr::create_expr_trees(_pool, texprs, &ctxs));
_child_expr_lists.push_back(ctxs);
}
_probe_finished_children_index.assign(_child_expr_lists.size(), false);
return Status::OK();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::alloc_resource(RuntimeState* state) {
// open result expr lists.
for (const std::vector<VExprContext*>& exprs : _child_expr_lists) {
RETURN_IF_ERROR(VExpr::open(exprs, state));
}
_probe_columns.resize(_child_expr_lists[1].size());
return Status::OK();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::open(RuntimeState* state) {
START_AND_SCOPE_SPAN(state->get_tracer(), span, "VSetOperationNode<is_intersect>::open");
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::open(state));
SCOPED_CONSUME_MEM_TRACKER(mem_tracker_growh());
// TODO: build the hash table in a thread to open other children asynchronously.
RETURN_IF_ERROR(hash_table_build(state));
bool eos = false;
Status st = Status::OK();
for (int i = 1; i < _children.size(); ++i) {
RETURN_IF_ERROR(child(i)->open(state));
eos = false;
while (!eos) {
release_block_memory(_probe_block, i);
RETURN_IF_CANCELLED(state);
RETURN_IF_ERROR_AND_CHECK_SPAN(
child(i)->get_next_after_projects(
state, &_probe_block, &eos,
std::bind((Status(ExecNode::*)(RuntimeState*, vectorized::Block*,
bool*)) &
ExecNode::get_next,
_children[i], std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3)),
child(i)->get_next_span(), eos);
RETURN_IF_ERROR(sink_probe(state, i, &_probe_block, eos));
}
}
return st;
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::get_next(RuntimeState* state, Block* output_block,
bool* eos) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
INIT_AND_SCOPE_GET_NEXT_SPAN(state->get_tracer(), _get_next_span, "VExceptNode::get_next");
return pull(state, output_block, eos);
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::prepare(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::prepare(state));
SCOPED_CONSUME_MEM_TRACKER(mem_tracker_growh());
_build_timer = ADD_TIMER(runtime_profile(), "BuildTime");
_probe_timer = ADD_TIMER(runtime_profile(), "ProbeTime");
_pull_timer = ADD_TIMER(runtime_profile(), "PullTime");
// Prepare result expr lists.
for (int i = 0; i < _child_expr_lists.size(); ++i) {
RETURN_IF_ERROR(VExpr::prepare(_child_expr_lists[i], state, child(i)->row_desc()));
}
for (auto ctx : _child_expr_lists[0]) {
_build_not_ignore_null.push_back(ctx->root()->is_nullable());
_left_table_data_types.push_back(ctx->root()->data_type());
}
hash_table_init();
return Status::OK();
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::hash_table_init() {
if (_child_expr_lists[0].size() == 1 && (!_build_not_ignore_null[0])) {
// Single column optimization
switch (_child_expr_lists[0][0]->root()->result_type()) {
case TYPE_BOOLEAN:
case TYPE_TINYINT:
_hash_table_variants->emplace<I8HashTableContext<RowRefListWithFlags>>();
break;
case TYPE_SMALLINT:
_hash_table_variants->emplace<I16HashTableContext<RowRefListWithFlags>>();
break;
case TYPE_INT:
case TYPE_FLOAT:
case TYPE_DATEV2:
case TYPE_DECIMAL32:
_hash_table_variants->emplace<I32HashTableContext<RowRefListWithFlags>>();
break;
case TYPE_BIGINT:
case TYPE_DOUBLE:
case TYPE_DATETIME:
case TYPE_DATE:
case TYPE_DECIMAL64:
case TYPE_DATETIMEV2:
_hash_table_variants->emplace<I64HashTableContext<RowRefListWithFlags>>();
break;
case TYPE_LARGEINT:
case TYPE_DECIMALV2:
case TYPE_DECIMAL128I:
_hash_table_variants->emplace<I128HashTableContext<RowRefListWithFlags>>();
break;
default:
_hash_table_variants->emplace<SerializedHashTableContext<RowRefListWithFlags>>();
}
return;
}
bool use_fixed_key = true;
bool has_null = false;
int key_byte_size = 0;
_probe_key_sz.resize(_child_expr_lists[1].size());
_build_key_sz.resize(_child_expr_lists[0].size());
for (int i = 0; i < _child_expr_lists[0].size(); ++i) {
const auto vexpr = _child_expr_lists[0][i]->root();
const auto& data_type = vexpr->data_type();
if (!data_type->have_maximum_size_of_value()) {
use_fixed_key = false;
break;
}
auto is_null = data_type->is_nullable();
has_null |= is_null;
_build_key_sz[i] = data_type->get_maximum_size_of_value_in_memory() - (is_null ? 1 : 0);
_probe_key_sz[i] = _build_key_sz[i];
key_byte_size += _probe_key_sz[i];
}
if (std::tuple_size<KeysNullMap<UInt256>>::value + key_byte_size > sizeof(UInt256)) {
use_fixed_key = false;
}
if (use_fixed_key) {
if (has_null) {
if (std::tuple_size<KeysNullMap<UInt64>>::value + key_byte_size <= sizeof(UInt64)) {
_hash_table_variants
->emplace<I64FixedKeyHashTableContext<true, RowRefListWithFlags>>();
} else if (std::tuple_size<KeysNullMap<UInt128>>::value + key_byte_size <=
sizeof(UInt128)) {
_hash_table_variants
->emplace<I128FixedKeyHashTableContext<true, RowRefListWithFlags>>();
} else {
_hash_table_variants
->emplace<I256FixedKeyHashTableContext<true, RowRefListWithFlags>>();
}
} else {
if (key_byte_size <= sizeof(UInt64)) {
_hash_table_variants
->emplace<I64FixedKeyHashTableContext<false, RowRefListWithFlags>>();
} else if (key_byte_size <= sizeof(UInt128)) {
_hash_table_variants
->emplace<I128FixedKeyHashTableContext<false, RowRefListWithFlags>>();
} else {
_hash_table_variants
->emplace<I256FixedKeyHashTableContext<false, RowRefListWithFlags>>();
}
}
} else {
_hash_table_variants->emplace<SerializedHashTableContext<RowRefListWithFlags>>();
}
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::sink(RuntimeState*, Block* block, bool eos) {
constexpr static auto BUILD_BLOCK_MAX_SIZE = 4 * 1024UL * 1024UL * 1024UL;
if (block->rows() != 0) {
_mem_used += block->allocated_bytes();
_mutable_block.merge(*block);
}
if (eos || _mutable_block.allocated_bytes() >= BUILD_BLOCK_MAX_SIZE) {
_build_blocks.emplace_back(_mutable_block.to_block());
RETURN_IF_ERROR(process_build_block(_build_blocks[_build_block_index], _build_block_index));
_mutable_block.clear();
++_build_block_index;
if (eos) {
if constexpr (is_intersect) {
_valid_element_in_hash_tbl = 0;
} else {
std::visit(
[&](auto&& arg) {
using HashTableCtxType = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<HashTableCtxType, std::monostate>) {
_valid_element_in_hash_tbl = arg.hash_table.size();
}
},
*_hash_table_variants);
}
_build_finished = true;
}
}
return Status::OK();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::pull(RuntimeState* state, Block* output_block, bool* eos) {
SCOPED_TIMER(_pull_timer);
create_mutable_cols(output_block);
auto st = std::visit(
[&](auto&& arg) -> Status {
using HashTableCtxType = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<HashTableCtxType, std::monostate>) {
return get_data_in_hashtable<HashTableCtxType>(arg, output_block,
state->batch_size(), eos);
} else {
LOG(FATAL) << "FATAL: uninited hash table";
}
},
*_hash_table_variants);
RETURN_IF_ERROR(st);
RETURN_IF_ERROR(
VExprContext::filter_block(_vconjunct_ctx_ptr, output_block, output_block->columns()));
reached_limit(output_block, eos);
return Status::OK();
}
//build a hash table from child(0)
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::hash_table_build(RuntimeState* state) {
SCOPED_TIMER(_build_timer);
RETURN_IF_ERROR(child(0)->open(state));
Block block;
MutableBlock mutable_block(child(0)->row_desc().tuple_descriptors());
bool eos = false;
while (!eos) {
block.clear_column_data();
RETURN_IF_CANCELLED(state);
RETURN_IF_ERROR_AND_CHECK_SPAN(
child(0)->get_next_after_projects(
state, &block, &eos,
std::bind((Status(ExecNode::*)(RuntimeState*, vectorized::Block*, bool*)) &
ExecNode::get_next,
_children[0], std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3)),
child(0)->get_next_span(), eos);
if (eos) {
child(0)->close(state);
}
sink(state, &block, eos);
}
return Status::OK();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::process_build_block(Block& block, uint8_t offset) {
size_t rows = block.rows();
if (rows == 0) {
return Status::OK();
}
vectorized::materialize_block_inplace(block);
ColumnRawPtrs raw_ptrs(_child_expr_lists[0].size());
RETURN_IF_ERROR(extract_build_column(block, raw_ptrs));
std::visit(
[&](auto&& arg) {
using HashTableCtxType = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<HashTableCtxType, std::monostate>) {
HashTableBuild<HashTableCtxType, is_intersect> hash_table_build_process(
rows, raw_ptrs, this, offset);
hash_table_build_process(arg);
} else {
LOG(FATAL) << "FATAL: uninited hash table";
}
},
*_hash_table_variants);
return Status::OK();
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::add_result_columns(RowRefListWithFlags& value,
int& block_size) {
auto it = value.begin();
for (auto idx = _build_col_idx.begin(); idx != _build_col_idx.end(); ++idx) {
auto& column = *_build_blocks[it->block_offset].get_by_position(idx->first).column;
_mutable_cols[idx->second]->insert_from(column, it->row_num);
}
block_size++;
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::sink_probe(RuntimeState* state, int child_id, Block* block,
bool eos) {
SCOPED_TIMER(_probe_timer);
CHECK(_build_finished) << "cannot sink probe data before build finished";
if (child_id > 1) {
CHECK(_probe_finished_children_index[child_id - 1])
<< fmt::format("child with id: {} should be probed first", child_id);
}
auto probe_rows = block->rows();
if (probe_rows > 0) {
RETURN_IF_ERROR(extract_probe_column(*block, _probe_columns, child_id));
RETURN_IF_ERROR(std::visit(
[&](auto&& arg) -> Status {
using HashTableCtxType = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<HashTableCtxType, std::monostate>) {
HashTableProbe<HashTableCtxType, is_intersect> process_hashtable_ctx(
this, probe_rows);
return process_hashtable_ctx.mark_data_in_hashtable(arg);
} else {
LOG(FATAL) << "FATAL: uninited hash table";
}
},
*_hash_table_variants));
}
return eos ? finalize_probe(state, child_id) : Status::OK();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::finalize_probe(RuntimeState* /*state*/, int child_id) {
if (child_id != (_children.size() - 1)) {
refresh_hash_table();
if constexpr (is_intersect) {
_valid_element_in_hash_tbl = 0;
} else {
std::visit(
[&](auto&& arg) {
using HashTableCtxType = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<HashTableCtxType, std::monostate>) {
_valid_element_in_hash_tbl = arg.hash_table.size();
}
},
*_hash_table_variants);
}
_probe_columns.resize(_child_expr_lists[child_id + 1].size());
} else {
_can_read = true;
}
_probe_finished_children_index[child_id] = true;
return Status::OK();
}
template <bool is_intersect>
bool VSetOperationNode<is_intersect>::is_child_finished(int child_id) const {
if (child_id == 0) {
return _build_finished;
}
return _probe_finished_children_index[child_id];
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::extract_build_column(Block& block,
ColumnRawPtrs& raw_ptrs) {
for (size_t i = 0; i < _child_expr_lists[0].size(); ++i) {
int result_col_id = -1;
RETURN_IF_ERROR(_child_expr_lists[0][i]->execute(&block, &result_col_id));
block.get_by_position(result_col_id).column =
block.get_by_position(result_col_id).column->convert_to_full_column_if_const();
auto column = block.get_by_position(result_col_id).column.get();
if (auto* nullable = check_and_get_column<ColumnNullable>(*column)) {
auto& col_nested = nullable->get_nested_column();
if (_build_not_ignore_null[i])
raw_ptrs[i] = nullable;
else
raw_ptrs[i] = &col_nested;
} else {
raw_ptrs[i] = column;
}
DCHECK_GE(result_col_id, 0);
_build_col_idx.insert({result_col_id, i});
}
return Status::OK();
}
template <bool is_intersect>
Status VSetOperationNode<is_intersect>::extract_probe_column(Block& block, ColumnRawPtrs& raw_ptrs,
int child_id) {
for (size_t i = 0; i < _child_expr_lists[child_id].size(); ++i) {
int result_col_id = -1;
RETURN_IF_ERROR(_child_expr_lists[child_id][i]->execute(&block, &result_col_id));
block.get_by_position(result_col_id).column =
block.get_by_position(result_col_id).column->convert_to_full_column_if_const();
auto column = block.get_by_position(result_col_id).column.get();
if (auto* nullable = check_and_get_column<ColumnNullable>(*column)) {
auto& col_nested = nullable->get_nested_column();
if (_build_not_ignore_null[i]) { //same as build column
raw_ptrs[i] = nullable;
} else {
raw_ptrs[i] = &col_nested;
}
} else {
if (_build_not_ignore_null[i]) {
auto column_ptr = make_nullable(block.get_by_position(result_col_id).column, false);
_probe_column_inserted_id.emplace_back(block.columns());
block.insert(
{column_ptr, make_nullable(block.get_by_position(result_col_id).type), ""});
column = column_ptr.get();
}
raw_ptrs[i] = column;
}
}
return Status::OK();
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::create_mutable_cols(Block* output_block) {
_mutable_cols.resize(_left_table_data_types.size());
bool mem_reuse = output_block->mem_reuse();
for (int i = 0; i < _left_table_data_types.size(); ++i) {
if (mem_reuse) {
_mutable_cols[i] = (std::move(*output_block->get_by_position(i).column).mutate());
} else {
_mutable_cols[i] = (_left_table_data_types[i]->create_column());
}
}
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::debug_string(int indentation_level,
std::stringstream* out) const {
*out << string(indentation_level * 2, ' ');
*out << " _child_expr_lists=[";
for (int i = 0; i < _child_expr_lists.size(); ++i) {
*out << VExpr::debug_string(_child_expr_lists[i]) << ", ";
}
*out << "] \n";
ExecNode::debug_string(indentation_level, out);
*out << ")" << std::endl;
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::release_mem() {
_hash_table_variants = nullptr;
_arena = nullptr;
std::vector<Block> tmp_build_blocks;
_build_blocks.swap(tmp_build_blocks);
_probe_block.clear();
}
template <bool is_intersect>
void VSetOperationNode<is_intersect>::refresh_hash_table() {
std::visit(
[&](auto&& arg) {
using HashTableCtxType = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<HashTableCtxType, std::monostate>) {
if constexpr (std::is_same_v<typename HashTableCtxType::Mapped,
RowRefListWithFlags>) {
HashTableCtxType tmp_hash_table;
bool is_need_shrink =
arg.hash_table.should_be_shrink(_valid_element_in_hash_tbl);
if (is_need_shrink) {
tmp_hash_table.hash_table.init_buf_size(
_valid_element_in_hash_tbl / arg.hash_table.get_factor() + 1);
}
arg.init_once();
auto& iter = arg.iter;
auto iter_end = arg.hash_table.end();
while (iter != iter_end) {
auto& mapped = iter->get_second();
auto it = mapped.begin();
if constexpr (is_intersect) { //intersected
if (it->visited) {
it->visited = false;
if (is_need_shrink) {
tmp_hash_table.hash_table.insert(iter->get_value());
}
++iter;
} else {
if (!is_need_shrink) {
arg.hash_table.delete_zero_key(iter->get_first());
// the ++iter would check if the current key is zero. if it does, the iterator will be moved to the container's head.
// so we do ++iter before set_zero to make the iterator move to next valid key correctly.
auto iter_prev = iter;
++iter;
iter_prev->set_zero();
} else {
++iter;
}
}
} else { //except
if (!it->visited && is_need_shrink) {
tmp_hash_table.hash_table.insert(iter->get_value());
}
++iter;
}
}
arg.inited = false;
if (is_need_shrink) {
arg.hash_table = std::move(tmp_hash_table.hash_table);
}
} else {
LOG(FATAL) << "FATAL: Invalid RowRefList";
}
} else {
LOG(FATAL) << "FATAL: uninited hash table";
}
},
*_hash_table_variants);
}
template <bool is_intersected>
template <typename HashTableContext>
Status VSetOperationNode<is_intersected>::get_data_in_hashtable(HashTableContext& hash_table_ctx,
Block* output_block,
const int batch_size, bool* eos) {
hash_table_ctx.init_once();
int left_col_len = _left_table_data_types.size();
auto& iter = hash_table_ctx.iter;
auto block_size = 0;
if constexpr (std::is_same_v<typename HashTableContext::Mapped, RowRefListWithFlags>) {
for (; iter != hash_table_ctx.hash_table.end() && block_size < batch_size; ++iter) {
auto& value = iter->get_second();
auto it = value.begin();
if constexpr (is_intersected) {
if (it->visited) { //intersected: have done probe, so visited values it's the result
add_result_columns(value, block_size);
}
} else {
if (!it->visited) { //except: haven't visited values it's the needed result
add_result_columns(value, block_size);
}
}
}
} else {
LOG(FATAL) << "Invalid RowRefListType!";
}
*eos = iter == hash_table_ctx.hash_table.end();
if (!output_block->mem_reuse()) {
for (int i = 0; i < left_col_len; ++i) {
output_block->insert(ColumnWithTypeAndName(std::move(_mutable_cols[i]),
_left_table_data_types[i], ""));
}
} else {
_mutable_cols.clear();
}
return Status::OK();
}
template class VSetOperationNode<true>;
template class VSetOperationNode<false>;
} // namespace vectorized
} // namespace doris