Files
doris/be/src/vec/common/aggregation_common.h

267 lines
9.1 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Interpreters/AggregationCommon.h
// and modified by Doris
#pragma once
#include <array>
#include "vec/columns/column.h"
#include "vec/columns/columns_number.h"
#include "vec/common/arena.h"
#include "vec/common/assert_cast.h"
#include "vec/common/hash_table/hash.h"
#include "vec/common/memcpy_small.h"
#include "vec/common/sip_hash.h"
#include "vec/common/string_ref.h"
#include "vec/common/uint128.h"
namespace doris::vectorized {
using Sizes = std::vector<size_t>;
/// When packing the values of nullable columns at a given row, we have to
/// store the fact that these values are nullable or not. This is achieved
/// by encoding this information as a bitmap. Let S be the size in bytes of
/// a packed values binary blob and T the number of bytes we may place into
/// this blob, the size that the bitmap shall occupy in the blob is equal to:
/// ceil(T/8). Thus we must have: S = T + ceil(T/8). Below we indicate for
/// each value of S, the corresponding value of T, and the bitmap size:
///
/// 32,28,4
/// 16,14,2
/// 8,7,1
/// 4,3,1
/// 2,1,1
///
namespace {
// clang-format off
template <typename T>
constexpr auto get_bitmap_size() {
return (sizeof(T) == 32)
? 4: (sizeof(T) == 16)
? 2: ((sizeof(T) == 8)
? 1: ((sizeof(T) == 4)
? 1: ((sizeof(T) == 2)
? 1: 0)));
}
// clang-format on
} // namespace
template <typename T>
using KeysNullMap = std::array<UInt8, get_bitmap_size<T>()>;
/// Pack into a binary blob of type T a set of fixed-size keys. Granted that all the keys fit into the
/// binary blob, they are disposed in it consecutively.
template <typename T, bool has_low_cardinality = false>
static inline T ALWAYS_INLINE
pack_fixed(size_t i, size_t keys_size, const ColumnRawPtrs& key_columns, const Sizes& key_sizes,
const ColumnRawPtrs* low_cardinality_positions [[maybe_unused]] = nullptr,
const Sizes* low_cardinality_sizes [[maybe_unused]] = nullptr) {
union {
T key;
char bytes[sizeof(key)] = {};
};
size_t offset = 0;
for (size_t j = 0; j < keys_size; ++j) {
size_t index = i;
const IColumn* column = key_columns[j];
if constexpr (has_low_cardinality) {
if (const IColumn* positions = (*low_cardinality_positions)[j]) {
switch ((*low_cardinality_sizes)[j]) {
case sizeof(UInt8):
index = assert_cast<const ColumnUInt8*>(positions)->get_element(i);
break;
case sizeof(UInt16):
index = assert_cast<const ColumnUInt16*>(positions)->get_element(i);
break;
case sizeof(UInt32):
index = assert_cast<const ColumnUInt32*>(positions)->get_element(i);
break;
case sizeof(UInt64):
index = assert_cast<const ColumnUInt64*>(positions)->get_element(i);
break;
default:
LOG(FATAL) << "Unexpected size of index type for low cardinality column.";
}
}
}
switch (key_sizes[j]) {
case 1:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(column)->get_raw_data_begin<1>() + index,
1);
offset += 1;
break;
case 2:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(column)->get_raw_data_begin<2>() +
index * 2,
2);
offset += 2;
break;
case 4:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(column)->get_raw_data_begin<4>() +
index * 4,
4);
offset += 4;
break;
case 8:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(column)->get_raw_data_begin<8>() +
index * 8,
8);
offset += 8;
break;
default:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(column)->get_raw_data_begin<1>() +
index * key_sizes[j],
key_sizes[j]);
offset += key_sizes[j];
}
}
return key;
}
/// Similar as above but supports nullable values.
template <typename T>
static inline T ALWAYS_INLINE pack_fixed(size_t i, size_t keys_size,
const ColumnRawPtrs& key_columns, const Sizes& key_sizes,
const KeysNullMap<T>& bitmap) {
union {
T key;
char bytes[sizeof(key)] = {};
};
size_t offset = 0;
static constexpr auto bitmap_size = std::tuple_size<KeysNullMap<T>>::value;
static constexpr bool has_bitmap = bitmap_size > 0;
if (has_bitmap) {
memcpy(bytes + offset, bitmap.data(), bitmap_size * sizeof(UInt8));
offset += bitmap_size;
}
for (size_t j = 0; j < keys_size; ++j) {
bool is_null;
if (!has_bitmap)
is_null = false;
else {
size_t bucket = j / 8;
size_t off = j % 8;
is_null = ((bitmap[bucket] >> off) & 1) == 1;
}
if (is_null) continue;
switch (key_sizes[j]) {
case 1:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(key_columns[j])->get_raw_data_begin<1>() +
i,
1);
offset += 1;
break;
case 2:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(key_columns[j])->get_raw_data_begin<2>() +
i * 2,
2);
offset += 2;
break;
case 4:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(key_columns[j])->get_raw_data_begin<4>() +
i * 4,
4);
offset += 4;
break;
case 8:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(key_columns[j])->get_raw_data_begin<8>() +
i * 8,
8);
offset += 8;
break;
default:
memcpy(bytes + offset,
static_cast<const ColumnVectorHelper*>(key_columns[j])->get_raw_data_begin<1>() +
i * key_sizes[j],
key_sizes[j]);
offset += key_sizes[j];
}
}
return key;
}
/// Hash a set of keys into a UInt128 value.
static inline UInt128 ALWAYS_INLINE hash128(size_t i, size_t keys_size,
const ColumnRawPtrs& key_columns) {
UInt128 key;
SipHash hash;
for (size_t j = 0; j < keys_size; ++j) key_columns[j]->update_hash_with_value(i, hash);
hash.get128(key.low, key.high);
return key;
}
/// Copy keys to the pool. Then put into pool StringRefs to them and return the pointer to the first.
static inline StringRef* ALWAYS_INLINE place_keys_in_pool(size_t keys_size, StringRefs& keys,
Arena& pool) {
for (size_t j = 0; j < keys_size; ++j) {
char* place = pool.alloc(keys[j].size);
memcpy_small_allow_read_write_overflow15(place, keys[j].data, keys[j].size);
keys[j].data = place;
}
/// Place the StringRefs on the newly copied keys in the pool.
char* res = pool.aligned_alloc(keys_size * sizeof(StringRef), alignof(StringRef));
memcpy_small_allow_read_write_overflow15(res, keys.data(), keys_size * sizeof(StringRef));
return reinterpret_cast<StringRef*>(res);
}
/** Serialize keys into a continuous chunk of memory.
*/
static inline StringRef ALWAYS_INLINE serialize_keys_to_pool_contiguous(
size_t i, size_t keys_size, const ColumnRawPtrs& key_columns, Arena& pool) {
const char* begin = nullptr;
size_t sum_size = 0;
for (size_t j = 0; j < keys_size; ++j)
sum_size += key_columns[j]->serialize_value_into_arena(i, pool, begin).size;
return {begin, sum_size};
}
} // namespace doris::vectorized