Files
doris/be/src/runtime/query_context.h

383 lines
14 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <gen_cpp/PaloInternalService_types.h>
#include <gen_cpp/Types_types.h>
#include <atomic>
#include <memory>
#include <string>
#include "common/config.h"
#include "common/factory_creator.h"
#include "common/object_pool.h"
#include "runtime/exec_env.h"
#include "runtime/memory/mem_tracker_limiter.h"
#include "runtime/query_statistics.h"
#include "runtime/runtime_filter_mgr.h"
#include "runtime/runtime_predicate.h"
#include "util/threadpool.h"
#include "vec/exec/scan/scanner_scheduler.h"
#include "vec/runtime/shared_hash_table_controller.h"
#include "vec/runtime/shared_scanner_controller.h"
#include "workload_group/workload_group.h"
namespace doris {
namespace pipeline {
class PipelineFragmentContext;
} // namespace pipeline
struct ReportStatusRequest {
bool is_pipeline_x;
const Status status;
std::vector<RuntimeState*> runtime_states;
RuntimeProfile* profile = nullptr;
RuntimeProfile* load_channel_profile = nullptr;
bool done;
TNetworkAddress coord_addr;
TUniqueId query_id;
int fragment_id;
TUniqueId fragment_instance_id;
int backend_num;
RuntimeState* runtime_state;
std::function<Status(Status)> update_fn;
std::function<void(const PPlanFragmentCancelReason&, const std::string&)> cancel_fn;
};
enum class QuerySource {
INTERNAL_FRONTEND,
STREAM_LOAD,
GROUP_COMMIT_LOAD,
ROUTINE_LOAD,
EXTERNAL_CONNECTOR
};
const std::string toString(QuerySource query_source);
// Save the common components of fragments in a query.
// Some components like DescriptorTbl may be very large
// that will slow down each execution of fragments when DeSer them every time.
class DescriptorTbl;
class QueryContext {
ENABLE_FACTORY_CREATOR(QueryContext);
public:
QueryContext(TUniqueId query_id, int total_fragment_num, ExecEnv* exec_env,
const TQueryOptions& query_options, TNetworkAddress coord_addr, bool is_pipeline,
bool is_nereids, TNetworkAddress current_connect_fe, QuerySource query_type);
~QueryContext();
// Notice. For load fragments, the fragment_num sent by FE has a small probability of 0.
// this may be a bug, bug <= 1 in theory it shouldn't cause any problems at this stage.
bool countdown(int instance_num) {
return fragment_num.fetch_sub(instance_num) <= instance_num;
}
ExecEnv* exec_env() { return _exec_env; }
bool is_timeout(const VecDateTimeValue& now) const {
if (timeout_second <= 0) {
return false;
}
if (now.second_diff(_start_time) > timeout_second) {
return true;
}
return false;
}
int64_t query_time(VecDateTimeValue& now) { return now.second_diff(_start_time); }
void set_thread_token(int concurrency, bool is_serial) {
_thread_token = _exec_env->scanner_scheduler()->new_limited_scan_pool_token(
is_serial ? ThreadPool::ExecutionMode::SERIAL
: ThreadPool::ExecutionMode::CONCURRENT,
concurrency);
}
ThreadPoolToken* get_token() { return _thread_token.get(); }
void set_ready_to_execute(bool is_cancelled);
[[nodiscard]] bool is_cancelled() const { return _is_cancelled.load(); }
void cancel_all_pipeline_context(const PPlanFragmentCancelReason& reason,
const std::string& msg);
Status cancel_pipeline_context(const int fragment_id, const PPlanFragmentCancelReason& reason,
const std::string& msg);
void set_pipeline_context(const int fragment_id,
std::shared_ptr<pipeline::PipelineFragmentContext> pip_ctx);
void cancel(std::string msg, Status new_status, int fragment_id = -1);
void set_exec_status(Status new_status) {
if (new_status.ok()) {
return;
}
std::lock_guard<std::mutex> l(_exec_status_lock);
if (!_exec_status.ok()) {
return;
}
_exec_status = new_status;
}
[[nodiscard]] Status exec_status() {
std::lock_guard<std::mutex> l(_exec_status_lock);
return _exec_status;
}
void set_execution_dependency_ready();
void set_ready_to_execute_only();
bool is_ready_to_execute() {
std::lock_guard<std::mutex> l(_start_lock);
return _ready_to_execute;
}
bool wait_for_start() {
int wait_time = config::max_fragment_start_wait_time_seconds;
std::unique_lock<std::mutex> l(_start_lock);
while (!_ready_to_execute.load() && !_is_cancelled.load() && --wait_time > 0) {
_start_cond.wait_for(l, std::chrono::seconds(1));
}
return _ready_to_execute.load() && !_is_cancelled.load();
}
std::shared_ptr<vectorized::SharedHashTableController> get_shared_hash_table_controller() {
return _shared_hash_table_controller;
}
std::shared_ptr<vectorized::SharedScannerController> get_shared_scanner_controller() {
return _shared_scanner_controller;
}
vectorized::RuntimePredicate& get_runtime_predicate(int source_node_id) {
DCHECK(_runtime_predicates.contains(source_node_id) || _runtime_predicates.contains(0));
if (_runtime_predicates.contains(source_node_id)) {
return _runtime_predicates[source_node_id];
}
return _runtime_predicates[0];
}
void init_runtime_predicates(std::vector<int> source_node_ids) {
for (int id : source_node_ids) {
_runtime_predicates.try_emplace(id);
}
}
Status set_workload_group(WorkloadGroupPtr& tg);
int execution_timeout() const {
return _query_options.__isset.execution_timeout ? _query_options.execution_timeout
: _query_options.query_timeout;
}
int32_t runtime_filter_wait_time_ms() const {
return _query_options.runtime_filter_wait_time_ms;
}
bool runtime_filter_wait_infinitely() const {
return _query_options.__isset.runtime_filter_wait_infinitely &&
_query_options.runtime_filter_wait_infinitely;
}
bool enable_pipeline_exec() const {
return _query_options.__isset.enable_pipeline_engine &&
_query_options.enable_pipeline_engine;
}
bool enable_pipeline_x_exec() const {
return _query_options.__isset.enable_pipeline_x_engine &&
_query_options.enable_pipeline_x_engine;
}
int be_exec_version() const {
if (!_query_options.__isset.be_exec_version) {
return 0;
}
return _query_options.be_exec_version;
}
[[nodiscard]] int64_t get_fe_process_uuid() const {
return _query_options.__isset.fe_process_uuid ? _query_options.fe_process_uuid : 0;
}
// global runtime filter mgr, the runtime filter have remote target or
// need local merge should regist here. before publish() or push_to_remote()
// the runtime filter should do the local merge work
RuntimeFilterMgr* runtime_filter_mgr() { return _runtime_filter_mgr.get(); }
TUniqueId query_id() const { return _query_id; }
vectorized::SimplifiedScanScheduler* get_scan_scheduler() { return _scan_task_scheduler; }
vectorized::SimplifiedScanScheduler* get_remote_scan_scheduler() {
return _remote_scan_task_scheduler;
}
pipeline::Dependency* get_execution_dependency() { return _execution_dependency.get(); }
void register_query_statistics(std::shared_ptr<QueryStatistics> qs);
std::shared_ptr<QueryStatistics> get_query_statistics();
void register_memory_statistics();
void register_cpu_statistics();
std::shared_ptr<QueryStatistics> get_cpu_statistics() { return _cpu_statistics; }
doris::pipeline::TaskScheduler* get_pipe_exec_scheduler();
ThreadPool* get_memtable_flush_pool();
int64_t mem_limit() const { return _bytes_limit; }
void set_merge_controller_handler(
std::shared_ptr<RuntimeFilterMergeControllerEntity>& handler) {
_merge_controller_handler = handler;
}
bool is_nereids() const { return _is_nereids; }
WorkloadGroupPtr workload_group() const { return _workload_group; }
void inc_running_big_mem_op_num() {
_running_big_mem_op_num.fetch_add(1, std::memory_order_relaxed);
}
void dec_running_big_mem_op_num() {
_running_big_mem_op_num.fetch_sub(1, std::memory_order_relaxed);
}
int32_t get_running_big_mem_op_num() {
return _running_big_mem_op_num.load(std::memory_order_relaxed);
}
void set_weighted_memory(int64_t weighted_limit, double weighted_ratio) {
std::lock_guard<std::mutex> l(_weighted_mem_lock);
_weighted_limit = weighted_limit;
_weighted_ratio = weighted_ratio;
}
void get_weighted_memory(int64_t& weighted_limit, int64_t& weighted_consumption) {
std::lock_guard<std::mutex> l(_weighted_mem_lock);
weighted_limit = _weighted_limit;
weighted_consumption = int64_t(query_mem_tracker->consumption() * _weighted_ratio);
}
DescriptorTbl* desc_tbl = nullptr;
bool set_rsc_info = false;
std::string user;
std::string group;
TNetworkAddress coord_addr;
TNetworkAddress current_connect_fe;
TQueryGlobals query_globals;
/// In the current implementation, for multiple fragments executed by a query on the same BE node,
/// we store some common components in QueryContext, and save QueryContext in FragmentMgr.
/// When all Fragments are executed, QueryContext needs to be deleted from FragmentMgr.
/// Here we use a counter to store the number of Fragments that have not yet been completed,
/// and after each Fragment is completed, this value will be reduced by one.
/// When the last Fragment is completed, the counter is cleared, and the worker thread of the last Fragment
/// will clean up QueryContext.
std::atomic<int> fragment_num;
int timeout_second;
ObjectPool obj_pool;
// MemTracker that is shared by all fragment instances running on this host.
std::shared_ptr<MemTrackerLimiter> query_mem_tracker;
std::vector<TUniqueId> fragment_instance_ids;
// plan node id -> TFileScanRangeParams
// only for file scan node
std::map<int, TFileScanRangeParams> file_scan_range_params_map;
void update_wg_cpu_adder(int64_t delta_cpu_time) {
if (_workload_group != nullptr) {
_workload_group->update_cpu_adder(delta_cpu_time);
}
}
private:
TUniqueId _query_id;
ExecEnv* _exec_env = nullptr;
VecDateTimeValue _start_time;
int64_t _bytes_limit = 0;
bool _is_pipeline = false;
bool _is_nereids = false;
std::atomic<int> _running_big_mem_op_num = 0;
// A token used to submit olap scanner to the "_limited_scan_thread_pool",
// This thread pool token is created from "_limited_scan_thread_pool" from exec env.
// And will be shared by all instances of this query.
// So that we can control the max thread that a query can be used to execute.
// If this token is not set, the scanner will be executed in "_scan_thread_pool" in exec env.
std::unique_ptr<ThreadPoolToken> _thread_token;
std::mutex _start_lock;
std::condition_variable _start_cond;
// Only valid when _need_wait_execution_trigger is set to true in PlanFragmentExecutor.
// And all fragments of this query will start execution when this is set to true.
std::atomic<bool> _ready_to_execute {false};
std::atomic<bool> _is_cancelled {false};
void _init_query_mem_tracker();
std::shared_ptr<vectorized::SharedHashTableController> _shared_hash_table_controller;
std::shared_ptr<vectorized::SharedScannerController> _shared_scanner_controller;
std::unordered_map<int, vectorized::RuntimePredicate> _runtime_predicates;
WorkloadGroupPtr _workload_group = nullptr;
std::unique_ptr<RuntimeFilterMgr> _runtime_filter_mgr;
const TQueryOptions _query_options;
std::mutex _exec_status_lock;
// All pipeline tasks use the same query context to report status. So we need a `_exec_status`
// to report the real message if failed.
Status _exec_status = Status::OK();
doris::pipeline::TaskScheduler* _task_scheduler = nullptr;
vectorized::SimplifiedScanScheduler* _scan_task_scheduler = nullptr;
ThreadPool* _memtable_flush_pool = nullptr;
vectorized::SimplifiedScanScheduler* _remote_scan_task_scheduler = nullptr;
std::unique_ptr<pipeline::Dependency> _execution_dependency;
std::shared_ptr<QueryStatistics> _cpu_statistics = nullptr;
// This shared ptr is never used. It is just a reference to hold the object.
// There is a weak ptr in runtime filter manager to reference this object.
std::shared_ptr<RuntimeFilterMergeControllerEntity> _merge_controller_handler;
std::map<int, std::weak_ptr<pipeline::PipelineFragmentContext>> _fragment_id_to_pipeline_ctx;
std::mutex _pipeline_map_write_lock;
std::mutex _weighted_mem_lock;
double _weighted_ratio = 0;
int64_t _weighted_limit = 0;
timespec _query_arrival_timestamp;
// Distinguish the query source, for query that comes from fe, we will have some memory structure on FE to
// help us manage the query.
QuerySource _query_source;
public:
timespec get_query_arrival_timestamp() const { return this->_query_arrival_timestamp; }
QuerySource get_query_source() const { return this->_query_source; }
};
} // namespace doris