Files
doris/be/test/exec/hash_table_test.cpp
Xinyi Zou e17aef9467 [refactor] refactor the implement of MemTracker, and related usage (#8322)
Modify the implementation of MemTracker:
1. Simplify a lot of useless logic;
2. Added MemTrackerTaskPool, as the ancestor of all query and import trackers, This is used to track the local memory usage of all tasks executing;
3. Add cosume/release cache, trigger a cosume/release when the memory accumulation exceeds the parameter mem_tracker_consume_min_size_bytes;
4. Add a new memory leak detection mode (Experimental feature), throw an exception when the remaining statistical value is greater than the specified range when the MemTracker is destructed, and print the accurate statistical value in HTTP, the parameter memory_leak_detection
5. Added Virtual MemTracker, cosume/release will not sync to parent. It will be used when introducing TCMalloc Hook to record memory later, to record the specified memory independently;
6. Modify the GC logic, register the buffer cached in DiskIoMgr as a GC function, and add other GC functions later;
7. Change the global root node from Root MemTracker to Process MemTracker, and remove Process MemTracker in exec_env;
8. Modify the macro that detects whether the memory has reached the upper limit, modify the parameters and default behavior of creating MemTracker, modify the error message format in mem_limit_exceeded, extend and apply transfer_to, remove Metric in MemTracker, etc.;

Modify where MemTracker is used:
1. MemPool adds a constructor to create a temporary tracker to avoid a lot of redundant code;
2. Added trackers for global objects such as ChunkAllocator and StorageEngine;
3. Added more fine-grained trackers such as ExprContext;
4. RuntimeState removes FragmentMemTracker, that is, PlanFragmentExecutor mem_tracker, which was previously used for independent statistical scan process memory, and replaces it with _scanner_mem_tracker in OlapScanNode;
5. MemTracker is no longer recorded in ReservationTracker, and ReservationTracker will be removed later;
2022-03-11 22:04:23 +08:00

405 lines
14 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/hash_table.hpp"
#include <gtest/gtest.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <map>
#include <memory>
#include <unordered_map>
#include <vector>
#include "common/compiler_util.h"
#include "exprs/expr.h"
#include "exprs/expr_context.h"
#include "exprs/slot_ref.h"
#include "runtime/exec_env.h"
#include "runtime/mem_pool.h"
#include "runtime/mem_tracker.h"
#include "runtime/runtime_state.h"
#include "runtime/string_value.h"
#include "runtime/test_env.h"
#include "test_util/test_util.h"
#include "util/cpu_info.h"
#include "util/runtime_profile.h"
#include "util/time.h"
namespace doris {
class HashTableTest : public testing::Test {
public:
HashTableTest() {
_tracker = MemTracker::create_tracker(-1, "root");
_pool_tracker = MemTracker::create_tracker(-1, "mem-pool", _tracker);
_mem_pool.reset(new MemPool(_pool_tracker.get()));
_state = _pool.add(new RuntimeState(TQueryGlobals()));
_state->init_instance_mem_tracker();
_state->_exec_env = ExecEnv::GetInstance();
}
protected:
RuntimeState* _state;
std::shared_ptr<MemTracker> _tracker;
std::shared_ptr<MemTracker> _pool_tracker;
ObjectPool _pool;
std::shared_ptr<MemPool> _mem_pool;
std::vector<ExprContext*> _build_expr;
std::vector<ExprContext*> _probe_expr;
virtual void SetUp() {
RowDescriptor desc;
Status status;
TypeDescriptor int_desc(TYPE_INT);
auto build_slot_ref = _pool.add(new SlotRef(int_desc, 0));
_build_expr.push_back(_pool.add(new ExprContext(build_slot_ref)));
status = Expr::prepare(_build_expr, _state, desc, _tracker);
EXPECT_TRUE(status.ok());
auto probe_slot_ref = _pool.add(new SlotRef(int_desc, 0));
_probe_expr.push_back(_pool.add(new ExprContext(probe_slot_ref)));
status = Expr::prepare(_probe_expr, _state, desc, _tracker);
EXPECT_TRUE(status.ok());
}
void TearDown() {
Expr::close(_build_expr, _state);
Expr::close(_probe_expr, _state);
}
TupleRow* create_tuple_row(int32_t val);
// Wrapper to call private methods on HashTable
// TODO: understand google testing, there must be a more natural way to do this
void resize_table(HashTable* table, int64_t new_size) { table->resize_buckets(new_size); }
// Do a full table scan on table. All values should be between [min,max). If
// all_unique, then each key(int value) should only appear once. Results are
// stored in results, indexed by the key. Results must have been preallocated to
// be at least max size.
void full_scan(HashTable* table, int min, int max, bool all_unique, TupleRow** results,
TupleRow** expected) {
HashTable::Iterator iter = table->begin();
while (iter != table->end()) {
TupleRow* row = iter.get_row();
int32_t val = *reinterpret_cast<int32_t*>(_build_expr[0]->get_value(row));
EXPECT_GE(val, min);
EXPECT_LT(val, max);
if (all_unique) {
EXPECT_TRUE(results[val] == nullptr);
}
EXPECT_EQ(row->get_tuple(0), expected[val]->get_tuple(0));
results[val] = row;
iter.next<false>();
}
}
// Validate that probe_row evaluates overs probe_exprs is equal to build_row
// evaluated over build_exprs
void validate_match(TupleRow* probe_row, TupleRow* build_row) {
EXPECT_TRUE(probe_row != build_row);
int32_t build_val = *reinterpret_cast<int32_t*>(_build_expr[0]->get_value(probe_row));
int32_t probe_val = *reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(build_row));
EXPECT_EQ(build_val, probe_val);
}
struct ProbeTestData {
TupleRow* probe_row;
std::vector<TupleRow*> expected_build_rows;
};
void probe_test(HashTable* table, ProbeTestData* data, int num_data, bool scan) {
for (int i = 0; i < num_data; ++i) {
TupleRow* row = data[i].probe_row;
HashTable::Iterator iter;
iter = table->find(row);
if (data[i].expected_build_rows.size() == 0) {
EXPECT_TRUE(iter == table->end());
} else {
if (scan) {
std::map<TupleRow*, bool> matched;
while (iter != table->end()) {
EXPECT_TRUE(matched.find(iter.get_row()) == matched.end());
matched[iter.get_row()] = true;
iter.next<true>();
}
EXPECT_EQ(matched.size(), data[i].expected_build_rows.size());
for (int j = 0; i < data[j].expected_build_rows.size(); ++j) {
EXPECT_TRUE(matched[data[i].expected_build_rows[j]]);
}
} else {
EXPECT_EQ(data[i].expected_build_rows.size(), 1);
EXPECT_EQ(data[i].expected_build_rows[0]->get_tuple(0),
iter.get_row()->get_tuple(0));
validate_match(row, iter.get_row());
}
}
}
}
};
TupleRow* HashTableTest::create_tuple_row(int32_t val) {
uint8_t* tuple_row_mem = _mem_pool->allocate(sizeof(int32_t*));
uint8_t* tuple_mem = _mem_pool->allocate(sizeof(int32_t));
*reinterpret_cast<int32_t*>(tuple_mem) = val;
TupleRow* row = reinterpret_cast<TupleRow*>(tuple_row_mem);
row->set_tuple(0, reinterpret_cast<Tuple*>(tuple_mem));
return row;
}
TEST_F(HashTableTest, SetupTest) {
TupleRow* build_row1 = create_tuple_row(1);
TupleRow* build_row2 = create_tuple_row(2);
TupleRow* probe_row3 = create_tuple_row(3);
TupleRow* probe_row4 = create_tuple_row(4);
int32_t* val_row1 = reinterpret_cast<int32_t*>(_build_expr[0]->get_value(build_row1));
int32_t* val_row2 = reinterpret_cast<int32_t*>(_build_expr[0]->get_value(build_row2));
int32_t* val_row3 = reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(probe_row3));
int32_t* val_row4 = reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(probe_row4));
EXPECT_EQ(*val_row1, 1);
EXPECT_EQ(*val_row2, 2);
EXPECT_EQ(*val_row3, 3);
EXPECT_EQ(*val_row4, 4);
}
// This tests inserts the build rows [0->5) to hash table. It validates that they
// are all there using a full table scan. It also validates that find() is correct
// testing for probe rows that are both there and not.
// The hash table is rehashed a few times and the scans/finds are tested again.
TEST_F(HashTableTest, BasicTest) {
std::shared_ptr<MemTracker> hash_table_tracker =
MemTracker::create_tracker(-1, "hash-table-basic-tracker", _tracker);
TupleRow* build_rows[5];
TupleRow* scan_rows[5] = {0};
for (int i = 0; i < 5; ++i) {
build_rows[i] = create_tuple_row(i);
}
ProbeTestData probe_rows[10];
for (int i = 0; i < 10; ++i) {
probe_rows[i].probe_row = create_tuple_row(i);
if (i < 5) {
probe_rows[i].expected_build_rows.push_back(build_rows[i]);
}
}
std::vector<bool> is_null_safe = {false};
int initial_seed = 1;
int64_t num_buckets = 4;
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
hash_table_tracker, num_buckets);
for (int i = 0; i < 5; ++i) {
hash_table.insert(build_rows[i]);
}
EXPECT_EQ(hash_table.size(), 5);
// Do a full table scan and validate returned pointers
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
probe_test(&hash_table, probe_rows, 10, false);
// Resize and scan again
resize_table(&hash_table, 64);
EXPECT_EQ(hash_table.num_buckets(), 64);
EXPECT_EQ(hash_table.size(), 5);
memset(scan_rows, 0, sizeof(scan_rows));
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
probe_test(&hash_table, probe_rows, 10, false);
// Resize to two and cause some collisions
resize_table(&hash_table, 2);
EXPECT_EQ(hash_table.num_buckets(), 2);
EXPECT_EQ(hash_table.size(), 5);
memset(scan_rows, 0, sizeof(scan_rows));
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
probe_test(&hash_table, probe_rows, 10, false);
// Resize to one and turn it into a linked list
resize_table(&hash_table, 1);
EXPECT_EQ(hash_table.num_buckets(), 1);
EXPECT_EQ(hash_table.size(), 5);
memset(scan_rows, 0, sizeof(scan_rows));
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
probe_test(&hash_table, probe_rows, 10, false);
hash_table.close();
}
// This tests makes sure we can scan ranges of buckets
TEST_F(HashTableTest, ScanTest) {
std::shared_ptr<MemTracker> hash_table_tracker =
MemTracker::create_tracker(-1, "hash-table-scan-tracker", _tracker);
std::vector<bool> is_null_safe = {false};
int initial_seed = 1;
int64_t num_buckets = 4;
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
hash_table_tracker, num_buckets);
// Add 1 row with val 1, 2 with val 2, etc
std::vector<TupleRow*> build_rows;
ProbeTestData probe_rows[15];
probe_rows[0].probe_row = create_tuple_row(0);
for (int val = 1; val <= 10; ++val) {
probe_rows[val].probe_row = create_tuple_row(val);
for (int i = 0; i < val; ++i) {
TupleRow* row = create_tuple_row(val);
hash_table.insert(row);
build_rows.push_back(row);
probe_rows[val].expected_build_rows.push_back(row);
}
}
// Add some more probe rows that aren't there
for (int val = 11; val < 15; ++val) {
probe_rows[val].probe_row = create_tuple_row(val);
}
// Test that all the builds were found
probe_test(&hash_table, probe_rows, 15, true);
// Resize and try again
resize_table(&hash_table, 128);
EXPECT_EQ(hash_table.num_buckets(), 128);
probe_test(&hash_table, probe_rows, 15, true);
resize_table(&hash_table, 16);
EXPECT_EQ(hash_table.num_buckets(), 16);
probe_test(&hash_table, probe_rows, 15, true);
resize_table(&hash_table, 2);
EXPECT_EQ(hash_table.num_buckets(), 2);
probe_test(&hash_table, probe_rows, 15, true);
hash_table.close();
}
// This test continues adding to the hash table to trigger the resize code paths
TEST_F(HashTableTest, GrowTableTest) {
int build_row_val = 0;
int num_to_add = LOOP_LESS_OR_MORE(2, 4);
int expected_size = 0;
std::shared_ptr<MemTracker> mem_tracker =
MemTracker::create_tracker(1024 * 1024, "hash-table-grow-tracker", _tracker);
std::vector<bool> is_null_safe = {false};
int initial_seed = 1;
int64_t num_buckets = 4;
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
mem_tracker, num_buckets);
EXPECT_FALSE(mem_tracker->limit_exceeded());
for (int i = 0; i < LOOP_LESS_OR_MORE(1, 20); ++i) {
for (int j = 0; j < num_to_add; ++build_row_val, ++j) {
hash_table.insert(create_tuple_row(build_row_val));
}
expected_size += num_to_add;
num_to_add *= 2;
EXPECT_EQ(hash_table.size(), expected_size);
}
LOG(INFO) << "consume:" << mem_tracker->consumption() << ",expected_size:" << expected_size;
EXPECT_EQ(LOOP_LESS_OR_MORE(0, 1), mem_tracker->limit_exceeded());
// Validate that we can find the entries
for (int i = 0; i < expected_size * 5; i += 100000) {
TupleRow* probe_row = create_tuple_row(i);
HashTable::Iterator iter = hash_table.find(probe_row);
if (i < expected_size) {
EXPECT_TRUE(iter != hash_table.end());
validate_match(probe_row, iter.get_row());
} else {
EXPECT_TRUE(iter == hash_table.end());
}
}
hash_table.close();
}
// This test continues adding to the hash table to trigger the resize code paths
TEST_F(HashTableTest, GrowTableTest2) {
int build_row_val = 0;
std::shared_ptr<MemTracker> mem_tracker =
MemTracker::create_tracker(1024 * 1024 * 1024, "hash-table-grow2-tracker", _tracker);
std::vector<bool> is_null_safe = {false};
int initial_seed = 1;
int64_t num_buckets = 4;
HashTable hash_table(_build_expr, _probe_expr, 1, false, is_null_safe, initial_seed,
mem_tracker, num_buckets);
LOG(INFO) << time(nullptr);
// constexpr const int test_size = 5 * 1024 * 1024;
constexpr const int test_size = 5 * 1024 * 100;
for (int i = 0; i < test_size; ++i) {
hash_table.insert(create_tuple_row(build_row_val++));
}
LOG(INFO) << time(nullptr);
// Validate that we can find the entries
for (int i = 0; i < test_size; ++i) {
TupleRow* probe_row = create_tuple_row(i++);
hash_table.find(probe_row);
}
LOG(INFO) << time(nullptr);
size_t counter = 0;
auto func = [&](TupleRow* row) { counter++; };
hash_table.for_each_row(func);
ASSERT_EQ(counter, hash_table.size());
hash_table.close();
}
} // namespace doris
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
std::string conffile = std::string(getenv("DORIS_HOME")) + "/conf/be.conf";
if (!doris::config::init(conffile.c_str(), false)) {
fprintf(stderr, "error read config file. \n");
return -1;
}
doris::CpuInfo::init();
doris::MemInfo::init();
return RUN_ALL_TESTS();
}