# Proposed changes Issue Number: close #6238 Co-authored-by: HappenLee <happenlee@hotmail.com> Co-authored-by: stdpain <34912776+stdpain@users.noreply.github.com> Co-authored-by: Zhengguo Yang <yangzhgg@gmail.com> Co-authored-by: wangbo <506340561@qq.com> Co-authored-by: emmymiao87 <522274284@qq.com> Co-authored-by: Pxl <952130278@qq.com> Co-authored-by: zhangstar333 <87313068+zhangstar333@users.noreply.github.com> Co-authored-by: thinker <zchw100@qq.com> Co-authored-by: Zeno Yang <1521564989@qq.com> Co-authored-by: Wang Shuo <wangshuo128@gmail.com> Co-authored-by: zhoubintao <35688959+zbtzbtzbt@users.noreply.github.com> Co-authored-by: Gabriel <gabrielleebuaa@gmail.com> Co-authored-by: xinghuayu007 <1450306854@qq.com> Co-authored-by: weizuo93 <weizuo@apache.org> Co-authored-by: yiguolei <guoleiyi@tencent.com> Co-authored-by: anneji-dev <85534151+anneji-dev@users.noreply.github.com> Co-authored-by: awakeljw <993007281@qq.com> Co-authored-by: taberylyang <95272637+taberylyang@users.noreply.github.com> Co-authored-by: Cui Kaifeng <48012748+azurenake@users.noreply.github.com> ## Problem Summary: ### 1. Some code from clickhouse **ClickHouse is an excellent implementation of the vectorized execution engine database, so here we have referenced and learned a lot from its excellent implementation in terms of data structure and function implementation. We are based on ClickHouse v19.16.2.2 and would like to thank the ClickHouse community and developers.** The following comment has been added to the code from Clickhouse, eg: // This file is copied from // https://github.com/ClickHouse/ClickHouse/blob/master/src/Interpreters/AggregationCommon.h // and modified by Doris ### 2. Support exec node and query: * vaggregation_node * vanalytic_eval_node * vassert_num_rows_node * vblocking_join_node * vcross_join_node * vempty_set_node * ves_http_scan_node * vexcept_node * vexchange_node * vintersect_node * vmysql_scan_node * vodbc_scan_node * volap_scan_node * vrepeat_node * vschema_scan_node * vselect_node * vset_operation_node * vsort_node * vunion_node * vhash_join_node You can run exec engine of SSB/TPCH and 70% TPCDS stand query test set. ### 3. Data Model Vec Exec Engine Support **Dup/Agg/Unq** table, Support Block Reader Vectorized. Segment Vec is working in process. ### 4. How to use 1. Set the environment variable `set enable_vectorized_engine = true; `(required) 2. Set the environment variable `set batch_size = 4096; ` (recommended) ### 5. Some diff from origin exec engine https://github.com/doris-vectorized/doris-vectorized/issues/294 ## Checklist(Required) 1. Does it affect the original behavior: (No) 2. Has unit tests been added: (Yes) 3. Has document been added or modified: (No) 4. Does it need to update dependencies: (No) 5. Are there any changes that cannot be rolled back: (Yes)
250 lines
7.8 KiB
C++
250 lines
7.8 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
// This file is copied from
|
|
// https://github.com/ClickHouse/ClickHouse/blob/master/src/AggregateFunctions/ColumnDecimal.cpp
|
|
// and modified by Doris
|
|
|
|
#include "vec/columns/column_decimal.h"
|
|
|
|
#include "vec/columns/columns_common.h"
|
|
#include "vec/common/arena.h"
|
|
#include "vec/common/assert_cast.h"
|
|
#include "vec/common/exception.h"
|
|
#include "vec/common/sip_hash.h"
|
|
#include "vec/common/unaligned.h"
|
|
|
|
template <typename T>
|
|
bool decimal_less(T x, T y, doris::vectorized::UInt32 x_scale, doris::vectorized::UInt32 y_scale);
|
|
|
|
namespace doris::vectorized {
|
|
|
|
template <typename T>
|
|
int ColumnDecimal<T>::compare_at(size_t n, size_t m, const IColumn& rhs_, int) const {
|
|
auto& other = static_cast<const Self&>(rhs_);
|
|
const T& a = data[n];
|
|
const T& b = other.data[m];
|
|
|
|
if (scale == other.scale) return a > b ? 1 : (a < b ? -1 : 0);
|
|
return decimal_less<T>(b, a, other.scale, scale)
|
|
? 1
|
|
: (decimal_less<T>(a, b, scale, other.scale) ? -1 : 0);
|
|
}
|
|
|
|
template <typename T>
|
|
StringRef ColumnDecimal<T>::serialize_value_into_arena(size_t n, Arena& arena,
|
|
char const*& begin) const {
|
|
auto pos = arena.alloc_continue(sizeof(T), begin);
|
|
memcpy(pos, &data[n], sizeof(T));
|
|
return StringRef(pos, sizeof(T));
|
|
}
|
|
|
|
template <typename T>
|
|
const char* ColumnDecimal<T>::deserialize_and_insert_from_arena(const char* pos) {
|
|
data.push_back(unaligned_load<T>(pos));
|
|
return pos + sizeof(T);
|
|
}
|
|
|
|
template <typename T>
|
|
UInt64 ColumnDecimal<T>::get64(size_t n) const {
|
|
if constexpr (sizeof(T) > sizeof(UInt64)) {
|
|
LOG(FATAL) << "Method get64 is not supported for " << get_family_name();
|
|
}
|
|
return static_cast<typename T::NativeType>(data[n]);
|
|
}
|
|
|
|
template <typename T>
|
|
void ColumnDecimal<T>::update_hash_with_value(size_t n, SipHash& hash) const {
|
|
hash.update(data[n]);
|
|
}
|
|
|
|
template <typename T>
|
|
void ColumnDecimal<T>::get_permutation(bool reverse, size_t limit, int,
|
|
IColumn::Permutation& res) const {
|
|
#if 1 /// TODO: perf test
|
|
if (data.size() <= std::numeric_limits<UInt32>::max()) {
|
|
PaddedPODArray<UInt32> tmp_res;
|
|
permutation(reverse, limit, tmp_res);
|
|
|
|
res.resize(tmp_res.size());
|
|
for (size_t i = 0; i < tmp_res.size(); ++i) res[i] = tmp_res[i];
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
permutation(reverse, limit, res);
|
|
}
|
|
|
|
template <typename T>
|
|
ColumnPtr ColumnDecimal<T>::permute(const IColumn::Permutation& perm, size_t limit) const {
|
|
size_t size = limit ? std::min(data.size(), limit) : data.size();
|
|
if (perm.size() < size) {
|
|
LOG(FATAL) << "Size of permutation is less than required.";
|
|
}
|
|
|
|
auto res = this->create(size, scale);
|
|
typename Self::Container& res_data = res->get_data();
|
|
|
|
for (size_t i = 0; i < size; ++i) res_data[i] = data[perm[i]];
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
MutableColumnPtr ColumnDecimal<T>::clone_resized(size_t size) const {
|
|
auto res = this->create(0, scale);
|
|
|
|
if (size > 0) {
|
|
auto& new_col = static_cast<Self&>(*res);
|
|
new_col.data.resize(size);
|
|
|
|
size_t count = std::min(this->size(), size);
|
|
memcpy(new_col.data.data(), data.data(), count * sizeof(data[0]));
|
|
|
|
if (size > count) {
|
|
void* tail = &new_col.data[count];
|
|
memset(tail, 0, (size - count) * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
void ColumnDecimal<T>::insert_data(const char* src, size_t /*length*/) {
|
|
T tmp;
|
|
memcpy(&tmp, src, sizeof(T));
|
|
data.emplace_back(tmp);
|
|
}
|
|
|
|
template <typename T>
|
|
void ColumnDecimal<T>::insert_range_from(const IColumn& src, size_t start, size_t length) {
|
|
const ColumnDecimal& src_vec = assert_cast<const ColumnDecimal&>(src);
|
|
|
|
if (start + length > src_vec.data.size()) {
|
|
LOG(FATAL) << fmt::format(
|
|
"Parameters start = {}, length = {} are out of bound in "
|
|
"ColumnDecimal<T>::insert_range_from method (data.size() = {})",
|
|
start, length, src_vec.data.size());
|
|
}
|
|
|
|
size_t old_size = data.size();
|
|
data.resize(old_size + length);
|
|
memcpy(data.data() + old_size, &src_vec.data[start], length * sizeof(data[0]));
|
|
}
|
|
|
|
template <typename T>
|
|
ColumnPtr ColumnDecimal<T>::filter(const IColumn::Filter& filt, ssize_t result_size_hint) const {
|
|
size_t size = data.size();
|
|
if (size != filt.size()) {
|
|
LOG(FATAL) << "Size of filter doesn't match size of column.";
|
|
}
|
|
|
|
auto res = this->create(0, scale);
|
|
Container& res_data = res->get_data();
|
|
|
|
if (result_size_hint) res_data.reserve(result_size_hint > 0 ? result_size_hint : size);
|
|
|
|
const UInt8* filt_pos = filt.data();
|
|
const UInt8* filt_end = filt_pos + size;
|
|
const T* data_pos = data.data();
|
|
|
|
/** A slightly more optimized version.
|
|
* Based on the assumption that often pieces of consecutive values
|
|
* completely pass or do not pass the filter.
|
|
* Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
|
|
*/
|
|
static constexpr size_t SIMD_BYTES = 32;
|
|
const UInt8* filt_end_sse = filt_pos + size / SIMD_BYTES * SIMD_BYTES;
|
|
|
|
while (filt_pos < filt_end_sse) {
|
|
uint32_t mask = bytes32_mask_to_bits32_mask(filt_pos);
|
|
|
|
if (0xFFFFFFFF == mask) {
|
|
res_data.insert(data_pos, data_pos + SIMD_BYTES);
|
|
} else {
|
|
while (mask) {
|
|
const size_t idx = __builtin_ctzll(mask);
|
|
res_data.push_back(data_pos[idx]);
|
|
mask = mask & (mask - 1);
|
|
}
|
|
}
|
|
|
|
filt_pos += SIMD_BYTES;
|
|
data_pos += SIMD_BYTES;
|
|
}
|
|
|
|
while (filt_pos < filt_end) {
|
|
if (*filt_pos) res_data.push_back(*data_pos);
|
|
|
|
++filt_pos;
|
|
++data_pos;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
ColumnPtr ColumnDecimal<T>::replicate(const IColumn::Offsets& offsets) const {
|
|
size_t size = data.size();
|
|
if (size != offsets.size()) {
|
|
LOG(FATAL) << "Size of offsets doesn't match size of column.";
|
|
}
|
|
|
|
auto res = this->create(0, scale);
|
|
if (0 == size) return res;
|
|
|
|
typename Self::Container& res_data = res->get_data();
|
|
res_data.reserve(offsets.back());
|
|
|
|
IColumn::Offset prev_offset = 0;
|
|
for (size_t i = 0; i < size; ++i) {
|
|
size_t size_to_replicate = offsets[i] - prev_offset;
|
|
prev_offset = offsets[i];
|
|
|
|
for (size_t j = 0; j < size_to_replicate; ++j) res_data.push_back(data[i]);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
void ColumnDecimal<T>::get_extremes(Field& min, Field& max) const {
|
|
if (data.size() == 0) {
|
|
min = NearestFieldType<T>(0, scale);
|
|
max = NearestFieldType<T>(0, scale);
|
|
return;
|
|
}
|
|
|
|
T cur_min = data[0];
|
|
T cur_max = data[0];
|
|
|
|
for (const T& x : data) {
|
|
if (x < cur_min)
|
|
cur_min = x;
|
|
else if (x > cur_max)
|
|
cur_max = x;
|
|
}
|
|
|
|
min = NearestFieldType<T>(cur_min, scale);
|
|
max = NearestFieldType<T>(cur_max, scale);
|
|
}
|
|
|
|
template class ColumnDecimal<Decimal32>;
|
|
template class ColumnDecimal<Decimal64>;
|
|
template class ColumnDecimal<Decimal128>;
|
|
} // namespace doris::vectorized
|