# Proposed changes Issue Number: close #6238 Co-authored-by: HappenLee <happenlee@hotmail.com> Co-authored-by: stdpain <34912776+stdpain@users.noreply.github.com> Co-authored-by: Zhengguo Yang <yangzhgg@gmail.com> Co-authored-by: wangbo <506340561@qq.com> Co-authored-by: emmymiao87 <522274284@qq.com> Co-authored-by: Pxl <952130278@qq.com> Co-authored-by: zhangstar333 <87313068+zhangstar333@users.noreply.github.com> Co-authored-by: thinker <zchw100@qq.com> Co-authored-by: Zeno Yang <1521564989@qq.com> Co-authored-by: Wang Shuo <wangshuo128@gmail.com> Co-authored-by: zhoubintao <35688959+zbtzbtzbt@users.noreply.github.com> Co-authored-by: Gabriel <gabrielleebuaa@gmail.com> Co-authored-by: xinghuayu007 <1450306854@qq.com> Co-authored-by: weizuo93 <weizuo@apache.org> Co-authored-by: yiguolei <guoleiyi@tencent.com> Co-authored-by: anneji-dev <85534151+anneji-dev@users.noreply.github.com> Co-authored-by: awakeljw <993007281@qq.com> Co-authored-by: taberylyang <95272637+taberylyang@users.noreply.github.com> Co-authored-by: Cui Kaifeng <48012748+azurenake@users.noreply.github.com> ## Problem Summary: ### 1. Some code from clickhouse **ClickHouse is an excellent implementation of the vectorized execution engine database, so here we have referenced and learned a lot from its excellent implementation in terms of data structure and function implementation. We are based on ClickHouse v19.16.2.2 and would like to thank the ClickHouse community and developers.** The following comment has been added to the code from Clickhouse, eg: // This file is copied from // https://github.com/ClickHouse/ClickHouse/blob/master/src/Interpreters/AggregationCommon.h // and modified by Doris ### 2. Support exec node and query: * vaggregation_node * vanalytic_eval_node * vassert_num_rows_node * vblocking_join_node * vcross_join_node * vempty_set_node * ves_http_scan_node * vexcept_node * vexchange_node * vintersect_node * vmysql_scan_node * vodbc_scan_node * volap_scan_node * vrepeat_node * vschema_scan_node * vselect_node * vset_operation_node * vsort_node * vunion_node * vhash_join_node You can run exec engine of SSB/TPCH and 70% TPCDS stand query test set. ### 3. Data Model Vec Exec Engine Support **Dup/Agg/Unq** table, Support Block Reader Vectorized. Segment Vec is working in process. ### 4. How to use 1. Set the environment variable `set enable_vectorized_engine = true; `(required) 2. Set the environment variable `set batch_size = 4096; ` (recommended) ### 5. Some diff from origin exec engine https://github.com/doris-vectorized/doris-vectorized/issues/294 ## Checklist(Required) 1. Does it affect the original behavior: (No) 2. Has unit tests been added: (Yes) 3. Has document been added or modified: (No) 4. Does it need to update dependencies: (No) 5. Are there any changes that cannot be rolled back: (Yes)
151 lines
6.1 KiB
C++
151 lines
6.1 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
#include "exec/schema_scanner.h"
|
|
#include "runtime/row_batch.h"
|
|
#include "runtime/tuple_row.h"
|
|
#include "vec/functions/simple_function_factory.h"
|
|
|
|
namespace doris {
|
|
|
|
TEST(ComparisonTest, ComparisonFunctionTest) {
|
|
SchemaScanner::ColumnDesc column_descs[] = {{"k1", TYPE_SMALLINT, sizeof(int16_t), false},
|
|
{"k2", TYPE_INT, sizeof(int32_t), false},
|
|
{"k3", TYPE_DOUBLE, sizeof(double), false}};
|
|
SchemaScanner schema_scanner(column_descs, 3);
|
|
ObjectPool object_pool;
|
|
SchemaScannerParam param;
|
|
schema_scanner.init(¶m, &object_pool);
|
|
|
|
auto tuple_desc = const_cast<TupleDescriptor*>(schema_scanner.tuple_desc());
|
|
RowDescriptor row_desc(tuple_desc, false);
|
|
auto tracker_ptr = MemTracker::CreateTracker(-1, "BlockTest", nullptr, false);
|
|
RowBatch row_batch(row_desc, 1024, tracker_ptr.get());
|
|
|
|
int16_t k1 = -100;
|
|
int32_t k2 = 100;
|
|
double k3 = 7.7;
|
|
|
|
for (int i = 0; i < 1024; ++i, k1++, k2--, k3 += 0.1) {
|
|
auto idx = row_batch.add_row();
|
|
TupleRow* tuple_row = row_batch.get_row(idx);
|
|
|
|
auto tuple = (Tuple*)(row_batch.tuple_data_pool()->allocate(tuple_desc->byte_size()));
|
|
auto slot_desc = tuple_desc->slots()[0];
|
|
memcpy(tuple->get_slot(slot_desc->tuple_offset()), &k1, column_descs[0].size);
|
|
slot_desc = tuple_desc->slots()[1];
|
|
memcpy(tuple->get_slot(slot_desc->tuple_offset()), &k2, column_descs[1].size);
|
|
slot_desc = tuple_desc->slots()[2];
|
|
memcpy(tuple->get_slot(slot_desc->tuple_offset()), &k3, column_descs[2].size);
|
|
|
|
tuple_row->set_tuple(0, tuple);
|
|
row_batch.commit_last_row();
|
|
}
|
|
|
|
vectorized::Block block = row_batch.convert_to_vec_block();
|
|
// 1. compute the k1 > k2
|
|
vectorized::ColumnNumbers arguments;
|
|
arguments.emplace_back(block.get_position_by_name("k1"));
|
|
arguments.emplace_back(block.get_position_by_name("k2"));
|
|
|
|
size_t num_columns_without_result = block.columns();
|
|
block.insert({nullptr, std::make_shared<vectorized::DataTypeUInt8>(), "k1 > k2"});
|
|
|
|
vectorized::ColumnsWithTypeAndName ctn = {block.get_by_position(arguments[0]),
|
|
block.get_by_position(arguments[1])};
|
|
|
|
auto greater_function_ptr = vectorized::SimpleFunctionFactory::instance().get_function(
|
|
"gt", ctn, std::make_shared<vectorized::DataTypeUInt8>());
|
|
greater_function_ptr->execute(nullptr, block, arguments, num_columns_without_result, 1024,
|
|
false);
|
|
|
|
k1 = -100;
|
|
k2 = 100;
|
|
for (int i = 0; i < 1024; ++i, k1++, k2--) {
|
|
vectorized::ColumnPtr column = block.get_columns()[3];
|
|
ASSERT_EQ(column->get_bool(i), k1 > k2);
|
|
}
|
|
|
|
// 2. compute the k2 <= k3
|
|
num_columns_without_result = block.columns();
|
|
block.insert({nullptr, std::make_shared<vectorized::DataTypeUInt8>(), "k2 <= k3"});
|
|
|
|
auto less_or_equals_function_ptr = vectorized::SimpleFunctionFactory::instance().get_function(
|
|
"le", ctn, std::make_shared<vectorized::DataTypeUInt8>());
|
|
|
|
arguments[0] = 1;
|
|
arguments[1] = 2;
|
|
less_or_equals_function_ptr->execute(nullptr, block, arguments, num_columns_without_result,
|
|
1024, false);
|
|
|
|
k2 = 100;
|
|
k3 = 7.7;
|
|
for (int i = 0; i < 1024; ++i, k3 += 0.1, k2--) {
|
|
vectorized::ColumnPtr column = block.get_columns()[4];
|
|
ASSERT_EQ(column->get_bool(i), k2 <= k3);
|
|
}
|
|
|
|
num_columns_without_result = block.columns();
|
|
block.insert({nullptr, std::make_shared<vectorized::DataTypeUInt8>(), "k1 > k2 and k2 <= k3"});
|
|
arguments[0] = 3;
|
|
arguments[1] = 4;
|
|
|
|
vectorized::ColumnsWithTypeAndName ctn2 = {block.get_by_position(arguments[0]),
|
|
block.get_by_position(arguments[1])};
|
|
auto and_function_ptr = vectorized::SimpleFunctionFactory::instance().get_function(
|
|
"and", ctn2, std::make_shared<vectorized::DataTypeUInt8>());
|
|
and_function_ptr->execute(nullptr, block, arguments, num_columns_without_result, 1024, false);
|
|
|
|
k1 = -100;
|
|
k2 = 100;
|
|
k3 = 7.7;
|
|
for (int i = 0; i < 1024; ++i, k1++, k3 += 0.1, k2--) {
|
|
vectorized::ColumnPtr column = block.get_columns()[5];
|
|
ASSERT_EQ(column->get_bool(i), k1 > k2 and k2 <= k3);
|
|
}
|
|
|
|
num_columns_without_result = block.columns();
|
|
block.insert({nullptr, std::make_shared<vectorized::DataTypeUInt8>(), "k1 > k2 or k2 <= k3"});
|
|
arguments[0] = 3;
|
|
arguments[1] = 4;
|
|
|
|
// vectorized::ColumnsWithTypeAndName ctn2 = { block.get_by_position(arguments[0]), block.get_by_position(arguments[1]) };
|
|
auto or_function_ptr = vectorized::SimpleFunctionFactory::instance().get_function(
|
|
"or", ctn2, std::make_shared<vectorized::DataTypeUInt8>());
|
|
or_function_ptr->execute(nullptr, block, arguments, num_columns_without_result, 1024, false);
|
|
|
|
k1 = -100;
|
|
k2 = 100;
|
|
k3 = 7.7;
|
|
for (int i = 0; i < 1024; ++i, k1++, k3 += 0.1, k2--) {
|
|
vectorized::ColumnPtr column = block.get_columns()[6];
|
|
ASSERT_EQ(column->get_bool(i), k1 > k2 or k2 <= k3);
|
|
}
|
|
}
|
|
|
|
} // namespace doris
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|