Files
doris/be/test/vec/function/function_test_util.h
Adonis Ling e412dd12e8 [chore](build) Use include-what-you-use to optimize includes (PART II) (#18761)
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
2023-04-19 23:11:48 +08:00

324 lines
12 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <time.h>
#include <any>
#include <iostream>
#include <string>
#include "testutil/any_type.h"
#include "testutil/function_utils.h"
#include "udf/udf.h"
#include "util/jsonb_utils.h"
#include "vec/columns/column.h"
#include "vec/columns/column_const.h"
#include "vec/core/columns_with_type_and_name.h"
#include "vec/data_types/data_type_date.h"
#include "vec/data_types/data_type_date_time.h"
#include "vec/data_types/data_type_decimal.h"
#include "vec/data_types/data_type_jsonb.h"
#include "vec/data_types/data_type_number.h"
#include "vec/data_types/data_type_string.h"
#include "vec/data_types/data_type_time.h"
#include "vec/data_types/data_type_time_v2.h"
#include "vec/exprs/table_function/table_function.h"
#include "vec/functions/simple_function_factory.h"
namespace doris::vectorized {
using InputDataSet = std::vector<std::vector<AnyType>>; // without result
using CellSet = std::vector<AnyType>;
using Expect = AnyType;
using Row = std::pair<CellSet, Expect>;
using DataSet = std::vector<Row>;
using InputTypeSet = std::vector<AnyType>;
int64_t str_to_date_time(std::string datetime_str, bool data_time = true);
uint32_t str_to_date_v2(std::string datetime_str, std::string datetime_format);
uint64_t str_to_datetime_v2(std::string datetime_str, std::string datetime_format);
struct Nullable {
TypeIndex tp;
};
struct Notnull {
TypeIndex tp;
};
struct ConstedNotnull {
TypeIndex tp;
};
namespace ut_type {
using BOOLEAN = uint8_t;
using TINYINT = int8_t;
using SMALLINT = int16_t;
using INT = int32_t;
using BIGINT = int64_t;
using LARGEINT = int128_t;
using VARCHAR = std::string;
using CHAR = std::string;
using STRING = std::string;
using DOUBLE = double;
using FLOAT = float;
inline auto DECIMAL = Decimal128::double_to_decimal;
inline auto DECIMALFIELD = [](double v) {
return DecimalField<Decimal128>(Decimal128::double_to_decimal(v), 9);
};
using DATETIME = std::string;
template <typename T>
struct DataTypeTraits;
template <>
struct DataTypeTraits<DataTypeInt8> {
using type = Int8;
};
template <>
struct DataTypeTraits<DataTypeInt16> {
using type = Int16;
};
template <>
struct DataTypeTraits<DataTypeInt32> {
using type = Int32;
};
template <>
struct DataTypeTraits<DataTypeInt64> {
using type = Int64;
};
template <>
struct DataTypeTraits<DataTypeInt128> {
using type = Int128;
};
template <>
struct DataTypeTraits<DataTypeFloat32> {
using type = Float32;
};
template <>
struct DataTypeTraits<DataTypeFloat64> {
using type = Float64;
};
template <typename To, typename From>
constexpr decltype(auto) convert_to(From value) {
using ToType = typename DataTypeTraits<To>::type;
return ToType(value);
}
template <typename T>
constexpr TypeIndex get_type_index() {
if constexpr (std::is_same_v<T, DataTypeInt8>) {
return TypeIndex::Int8;
} else if constexpr (std::is_same_v<T, DataTypeInt16>) {
return TypeIndex::Int16;
} else if constexpr (std::is_same_v<T, DataTypeInt32>) {
return TypeIndex::Int32;
} else if constexpr (std::is_same_v<T, DataTypeInt64>) {
return TypeIndex::Int64;
} else if constexpr (std::is_same_v<T, DataTypeInt128>) {
return TypeIndex::Int128;
} else if constexpr (std::is_same_v<T, DataTypeFloat32>) {
return TypeIndex::Float32;
} else if constexpr (std::is_same_v<T, DataTypeFloat64>) {
return TypeIndex::Float64;
}
}
struct UTDataTypeDesc {
DataTypePtr data_type;
doris::TypeDescriptor type_desc;
std::string col_name;
bool is_const = false;
bool is_nullable = true;
};
using UTDataTypeDescs = std::vector<UTDataTypeDesc>;
} // namespace ut_type
size_t type_index_to_data_type(const std::vector<AnyType>& input_types, size_t index,
ut_type::UTDataTypeDesc& ut_desc, DataTypePtr& type);
bool parse_ut_data_type(const std::vector<AnyType>& input_types, ut_type::UTDataTypeDescs& descs);
bool insert_cell(MutableColumnPtr& column, DataTypePtr type_ptr, const AnyType& cell);
Block* create_block_from_inputset(const InputTypeSet& input_types, const InputDataSet& input_set);
Block* process_table_function(TableFunction* fn, Block* input_block,
const InputTypeSet& output_types);
void check_vec_table_function(TableFunction* fn, const InputTypeSet& input_types,
const InputDataSet& input_set, const InputTypeSet& output_types,
const InputDataSet& output_set);
// Null values are represented by Null()
// The type of the constant column is represented as follows: Consted {TypeIndex::String}
// A DataSet with a constant column can only have one row of data
template <typename ReturnType, bool nullable = false>
Status check_function(const std::string& func_name, const InputTypeSet& input_types,
const DataSet& data_set, bool expect_fail = false) {
// 1.0 create data type
ut_type::UTDataTypeDescs descs;
EXPECT_TRUE(parse_ut_data_type(input_types, descs));
// 1.1 insert data and create block
auto row_size = data_set.size();
Block block;
for (size_t i = 0; i < descs.size(); ++i) {
auto& desc = descs[i];
auto column = desc.data_type->create_column();
column->reserve(row_size);
auto type_ptr = desc.data_type->is_nullable()
? ((DataTypeNullable*)(desc.data_type.get()))->get_nested_type()
: desc.data_type;
for (int j = 0; j < row_size; j++) {
EXPECT_TRUE(insert_cell(column, type_ptr, data_set[j].first[i]));
}
if (desc.is_const) {
column = ColumnConst::create(std::move(column), row_size);
}
block.insert({std::move(column), desc.data_type, desc.col_name});
}
// 1.2 prepare args for function call
ColumnNumbers arguments;
std::vector<doris::TypeDescriptor> arg_types;
std::vector<std::shared_ptr<ColumnPtrWrapper>> constant_col_ptrs;
std::vector<std::shared_ptr<ColumnPtrWrapper>> constant_cols;
for (size_t i = 0; i < descs.size(); ++i) {
auto& desc = descs[i];
arguments.push_back(i);
arg_types.push_back(desc.type_desc);
if (desc.is_const) {
constant_col_ptrs.push_back(
std::make_shared<ColumnPtrWrapper>(block.get_by_position(i).column));
constant_cols.push_back(constant_col_ptrs.back());
} else {
constant_cols.push_back(nullptr);
}
}
// 2. execute function
auto return_type = nullable ? make_nullable(std::make_shared<ReturnType>())
: std::make_shared<ReturnType>();
auto func = SimpleFunctionFactory::instance().get_function(
func_name, block.get_columns_with_type_and_name(), return_type);
EXPECT_TRUE(func != nullptr);
doris::TypeDescriptor fn_ctx_return;
if constexpr (std::is_same_v<ReturnType, DataTypeUInt8>) {
fn_ctx_return.type = doris::PrimitiveType::TYPE_BOOLEAN;
} else if constexpr (std::is_same_v<ReturnType, DataTypeInt32>) {
fn_ctx_return.type = doris::PrimitiveType::TYPE_INT;
} else if constexpr (std::is_same_v<ReturnType, DataTypeFloat64> ||
std::is_same_v<ReturnType, DataTypeTime>) {
fn_ctx_return.type = doris::PrimitiveType::TYPE_DOUBLE;
} else if constexpr (std::is_same_v<ReturnType, DateTime>) {
fn_ctx_return.type = doris::PrimitiveType::TYPE_DATETIME;
} else if (std::is_same_v<ReturnType, DateV2>) {
fn_ctx_return.type = doris::PrimitiveType::TYPE_DATEV2;
} else if (std::is_same_v<ReturnType, DateTimeV2>) {
fn_ctx_return.type = doris::PrimitiveType::TYPE_DATETIMEV2;
} else {
fn_ctx_return.type = doris::PrimitiveType::INVALID_TYPE;
}
FunctionUtils fn_utils(fn_ctx_return, arg_types, 0);
auto* fn_ctx = fn_utils.get_fn_ctx();
fn_ctx->set_constant_cols(constant_cols);
func->open(fn_ctx, FunctionContext::FRAGMENT_LOCAL);
func->open(fn_ctx, FunctionContext::THREAD_LOCAL);
block.insert({nullptr, return_type, "result"});
auto result = block.columns() - 1;
auto st = func->execute(fn_ctx, block, arguments, result, row_size);
if (expect_fail) {
EXPECT_NE(Status::OK(), st);
return st;
} else {
EXPECT_EQ(Status::OK(), st);
}
func->close(fn_ctx, FunctionContext::THREAD_LOCAL);
func->close(fn_ctx, FunctionContext::FRAGMENT_LOCAL);
// 3. check the result of function
ColumnPtr column = block.get_columns()[result];
EXPECT_TRUE(column != nullptr);
for (int i = 0; i < row_size; ++i) {
auto check_column_data = [&]() {
if constexpr (std::is_same_v<ReturnType, DataTypeJsonb>) {
const auto& expect_data = any_cast<String>(data_set[i].second);
auto s = column->get_data_at(i);
if (expect_data.size() == 0) {
// zero size result means invalid
EXPECT_EQ(0, s.size) << " invalid result size should be 0 at row " << i;
} else {
// convert jsonb binary value to json string to compare with expected json text
EXPECT_EQ(expect_data, JsonbToJson::jsonb_to_json_string(s.data, s.size))
<< " at row " << i;
}
} else {
Field field;
column->get(i, field);
const auto& expect_data =
any_cast<typename ReturnType::FieldType>(data_set[i].second);
if constexpr (std::is_same_v<ReturnType, DataTypeDecimal<Decimal128>>) {
const auto& column_data = field.get<DecimalField<Decimal128>>().get_value();
EXPECT_EQ(expect_data.value, column_data.value) << " at row " << i;
} else if constexpr (std::is_same_v<ReturnType, DataTypeFloat32> ||
std::is_same_v<ReturnType, DataTypeFloat64> ||
std::is_same_v<ReturnType, DataTypeTime>) {
const auto& column_data = field.get<DataTypeFloat64::FieldType>();
EXPECT_DOUBLE_EQ(expect_data, column_data) << " at row " << i;
} else {
const auto& column_data = field.get<typename ReturnType::FieldType>();
EXPECT_EQ(expect_data, column_data) << " at row " << i;
}
}
};
if constexpr (nullable) {
bool is_null = data_set[i].second.type() == &typeid(Null);
EXPECT_EQ(is_null, column->is_null_at(i)) << " at row " << i;
if (!is_null) check_column_data();
} else {
check_column_data();
}
}
return Status::OK();
}
} // namespace doris::vectorized