Files
doris/be/test/exec/tablet_sink_test.cpp
Xinyi Zou e17aef9467 [refactor] refactor the implement of MemTracker, and related usage (#8322)
Modify the implementation of MemTracker:
1. Simplify a lot of useless logic;
2. Added MemTrackerTaskPool, as the ancestor of all query and import trackers, This is used to track the local memory usage of all tasks executing;
3. Add cosume/release cache, trigger a cosume/release when the memory accumulation exceeds the parameter mem_tracker_consume_min_size_bytes;
4. Add a new memory leak detection mode (Experimental feature), throw an exception when the remaining statistical value is greater than the specified range when the MemTracker is destructed, and print the accurate statistical value in HTTP, the parameter memory_leak_detection
5. Added Virtual MemTracker, cosume/release will not sync to parent. It will be used when introducing TCMalloc Hook to record memory later, to record the specified memory independently;
6. Modify the GC logic, register the buffer cached in DiskIoMgr as a GC function, and add other GC functions later;
7. Change the global root node from Root MemTracker to Process MemTracker, and remove Process MemTracker in exec_env;
8. Modify the macro that detects whether the memory has reached the upper limit, modify the parameters and default behavior of creating MemTracker, modify the error message format in mem_limit_exceeded, extend and apply transfer_to, remove Metric in MemTracker, etc.;

Modify where MemTracker is used:
1. MemPool adds a constructor to create a temporary tracker to avoid a lot of redundant code;
2. Added trackers for global objects such as ChunkAllocator and StorageEngine;
3. Added more fine-grained trackers such as ExprContext;
4. RuntimeState removes FragmentMemTracker, that is, PlanFragmentExecutor mem_tracker, which was previously used for independent statistical scan process memory, and replaces it with _scanner_mem_tracker in OlapScanNode;
5. MemTracker is no longer recorded in ReservationTracker, and ReservationTracker will be removed later;
2022-03-11 22:04:23 +08:00

1000 lines
35 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/tablet_sink.h"
#include <gtest/gtest.h>
#include "common/config.h"
#include "gen_cpp/HeartbeatService_types.h"
#include "gen_cpp/internal_service.pb.h"
#include "runtime/bufferpool/reservation_tracker.h"
#include "runtime/decimalv2_value.h"
#include "runtime/descriptor_helper.h"
#include "runtime/exec_env.h"
#include "runtime/result_queue_mgr.h"
#include "runtime/row_batch.h"
#include "runtime/runtime_state.h"
#include "runtime/stream_load/load_stream_mgr.h"
#include "runtime/thread_resource_mgr.h"
#include "runtime/types.h"
#include "runtime/tuple_row.h"
#include "service/brpc.h"
#include "util/brpc_client_cache.h"
#include "util/cpu_info.h"
#include "util/debug/leakcheck_disabler.h"
#include "util/proto_util.h"
namespace doris {
namespace stream_load {
Status k_add_batch_status;
class OlapTableSinkTest : public testing::Test {
public:
OlapTableSinkTest() {}
virtual ~OlapTableSinkTest() {}
void SetUp() override {
k_add_batch_status = Status::OK();
_env = ExecEnv::GetInstance();
_env->_thread_mgr = new ThreadResourceMgr();
_env->_master_info = new TMasterInfo();
_env->_load_stream_mgr = new LoadStreamMgr();
_env->_internal_client_cache = new BrpcClientCache<PBackendService_Stub>();
_env->_function_client_cache = new BrpcClientCache<PFunctionService_Stub>();
_env->_buffer_reservation = new ReservationTracker();
_env->_task_pool_mem_tracker_registry.reset(new MemTrackerTaskPool());
ThreadPoolBuilder("SendBatchThreadPool")
.set_min_threads(1)
.set_max_threads(5)
.set_max_queue_size(100)
.build(&_env->_send_batch_thread_pool);
config::tablet_writer_open_rpc_timeout_sec = 60;
config::max_send_batch_parallelism_per_job = 1;
}
void TearDown() override {
SAFE_DELETE(_env->_internal_client_cache);
SAFE_DELETE(_env->_function_client_cache);
SAFE_DELETE(_env->_load_stream_mgr);
SAFE_DELETE(_env->_master_info);
SAFE_DELETE(_env->_thread_mgr);
SAFE_DELETE(_env->_buffer_reservation);
if (_server) {
_server->Stop(100);
_server->Join();
SAFE_DELETE(_server);
}
}
private:
ExecEnv* _env = nullptr;
brpc::Server* _server = nullptr;
};
TDataSink get_data_sink(TDescriptorTable* desc_tbl) {
int64_t db_id = 1;
int64_t table_id = 2;
int64_t partition_id = 3;
int64_t index1_id = 4;
int64_t tablet1_id = 6;
int64_t tablet2_id = 7;
TDataSink data_sink;
data_sink.type = TDataSinkType::OLAP_TABLE_SINK;
data_sink.__isset.olap_table_sink = true;
TOlapTableSink& tsink = data_sink.olap_table_sink;
tsink.load_id.hi = 123;
tsink.load_id.lo = 456;
tsink.txn_id = 789;
tsink.db_id = 1;
tsink.table_id = 2;
tsink.tuple_id = 0;
tsink.num_replicas = 3;
tsink.db_name = "testDb";
tsink.table_name = "testTable";
// construct schema
TOlapTableSchemaParam& tschema = tsink.schema;
tschema.db_id = 1;
tschema.table_id = 2;
tschema.version = 0;
// descriptor
{
TDescriptorTableBuilder dtb;
{
TTupleDescriptorBuilder tuple_builder;
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_INT)
.column_name("c1")
.column_pos(1)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_BIGINT)
.column_name("c2")
.column_pos(2)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.string_type(10)
.column_name("c3")
.column_pos(3)
.build());
tuple_builder.build(&dtb);
}
{
TTupleDescriptorBuilder tuple_builder;
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_INT)
.column_name("c1")
.column_pos(1)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_BIGINT)
.column_name("c2")
.column_pos(2)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.string_type(20)
.column_name("c3")
.column_pos(3)
.build());
tuple_builder.build(&dtb);
}
*desc_tbl = dtb.desc_tbl();
tschema.slot_descs = desc_tbl->slotDescriptors;
tschema.tuple_desc = desc_tbl->tupleDescriptors[0];
}
// index
tschema.indexes.resize(1);
tschema.indexes[0].id = index1_id;
tschema.indexes[0].columns = {"c1", "c2", "c3"};
// tschema.indexes[1].id = 5;
// tschema.indexes[1].columns = {"c1", "c3"};
// partition
TOlapTablePartitionParam& tpartition = tsink.partition;
tpartition.db_id = db_id;
tpartition.table_id = table_id;
tpartition.version = table_id;
tpartition.__set_partition_column("c2");
tpartition.__set_distributed_columns({"c1", "c3"});
tpartition.partitions.resize(1);
tpartition.partitions[0].id = partition_id;
tpartition.partitions[0].num_buckets = 2;
tpartition.partitions[0].indexes.resize(1);
tpartition.partitions[0].indexes[0].index_id = index1_id;
tpartition.partitions[0].indexes[0].tablets = {tablet1_id, tablet2_id};
// location
TOlapTableLocationParam& location = tsink.location;
location.db_id = db_id;
location.table_id = table_id;
location.version = 0;
location.tablets.resize(2);
location.tablets[0].tablet_id = tablet1_id;
location.tablets[0].node_ids = {0, 1, 2};
location.tablets[1].tablet_id = tablet2_id;
location.tablets[1].node_ids = {0, 1, 2};
// location
TPaloNodesInfo& nodes_info = tsink.nodes_info;
nodes_info.nodes.resize(3);
nodes_info.nodes[0].id = 0;
nodes_info.nodes[0].host = "127.0.0.1";
nodes_info.nodes[0].async_internal_port = 4356;
nodes_info.nodes[1].id = 1;
nodes_info.nodes[1].host = "127.0.0.1";
nodes_info.nodes[1].async_internal_port = 4356;
nodes_info.nodes[2].id = 2;
nodes_info.nodes[2].host = "127.0.0.1";
nodes_info.nodes[2].async_internal_port = 4357;
return data_sink;
}
TDataSink get_decimal_sink(TDescriptorTable* desc_tbl) {
int64_t db_id = 1;
int64_t table_id = 2;
int64_t partition_id = 3;
int64_t index1_id = 4;
int64_t tablet1_id = 6;
int64_t tablet2_id = 7;
TDataSink data_sink;
data_sink.type = TDataSinkType::OLAP_TABLE_SINK;
data_sink.__isset.olap_table_sink = true;
TOlapTableSink& tsink = data_sink.olap_table_sink;
tsink.load_id.hi = 123;
tsink.load_id.lo = 456;
tsink.txn_id = 789;
tsink.db_id = 1;
tsink.table_id = 2;
tsink.tuple_id = 0;
tsink.num_replicas = 3;
tsink.db_name = "testDb";
tsink.table_name = "testTable";
// construct schema
TOlapTableSchemaParam& tschema = tsink.schema;
tschema.db_id = 1;
tschema.table_id = 2;
tschema.version = 0;
// descriptor
{
TDescriptorTableBuilder dtb;
{
TTupleDescriptorBuilder tuple_builder;
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_INT)
.column_name("c1")
.column_pos(1)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.decimal_type(5, 2)
.column_name("c2")
.column_pos(2)
.build());
tuple_builder.build(&dtb);
}
*desc_tbl = dtb.desc_tbl();
tschema.slot_descs = desc_tbl->slotDescriptors;
tschema.tuple_desc = desc_tbl->tupleDescriptors[0];
}
// index
tschema.indexes.resize(1);
tschema.indexes[0].id = index1_id;
tschema.indexes[0].columns = {"c1", "c2"};
// tschema.indexes[1].id = 5;
// tschema.indexes[1].columns = {"c1", "c3"};
// partition
TOlapTablePartitionParam& tpartition = tsink.partition;
tpartition.db_id = db_id;
tpartition.table_id = table_id;
tpartition.version = table_id;
tpartition.__set_partition_column("c1");
tpartition.__set_distributed_columns({"c2"});
tpartition.partitions.resize(1);
tpartition.partitions[0].id = partition_id;
tpartition.partitions[0].num_buckets = 2;
tpartition.partitions[0].indexes.resize(1);
tpartition.partitions[0].indexes[0].index_id = index1_id;
tpartition.partitions[0].indexes[0].tablets = {tablet1_id, tablet2_id};
// location
TOlapTableLocationParam& location = tsink.location;
location.db_id = db_id;
location.table_id = table_id;
location.version = 0;
location.tablets.resize(2);
location.tablets[0].tablet_id = tablet1_id;
location.tablets[0].node_ids = {0, 1, 2};
location.tablets[1].tablet_id = tablet2_id;
location.tablets[1].node_ids = {0, 1, 2};
// location
TPaloNodesInfo& nodes_info = tsink.nodes_info;
nodes_info.nodes.resize(3);
nodes_info.nodes[0].id = 0;
nodes_info.nodes[0].host = "127.0.0.1";
nodes_info.nodes[0].async_internal_port = 4356;
nodes_info.nodes[1].id = 1;
nodes_info.nodes[1].host = "127.0.0.1";
nodes_info.nodes[1].async_internal_port = 4356;
nodes_info.nodes[2].id = 2;
nodes_info.nodes[2].host = "127.0.0.1";
nodes_info.nodes[2].async_internal_port = 4357;
return data_sink;
}
class TestInternalService : public PBackendService {
public:
TestInternalService() {}
virtual ~TestInternalService() {}
void transmit_data(::google::protobuf::RpcController* controller,
const ::doris::PTransmitDataParams* request,
::doris::PTransmitDataResult* response,
::google::protobuf::Closure* done) override {
brpc::ClosureGuard done_guard(done);
}
void tablet_writer_open(google::protobuf::RpcController* controller,
const PTabletWriterOpenRequest* request,
PTabletWriterOpenResult* response,
google::protobuf::Closure* done) override {
brpc::ClosureGuard done_guard(done);
Status status;
status.to_protobuf(response->mutable_status());
}
void tablet_writer_add_batch(google::protobuf::RpcController* controller,
const PTabletWriterAddBatchRequest* request,
PTabletWriterAddBatchResult* response,
google::protobuf::Closure* done) override {
brpc::ClosureGuard done_guard(done);
{
std::lock_guard<std::mutex> l(_lock);
_row_counters += request->tablet_ids_size();
if (request->eos()) {
_eof_counters++;
}
k_add_batch_status.to_protobuf(response->mutable_status());
if (request->has_row_batch() && _row_desc != nullptr) {
auto tracker = std::make_shared<MemTracker>();
brpc::Controller* cntl = static_cast<brpc::Controller*>(controller);
attachment_transfer_request_row_batch<PTabletWriterAddBatchRequest>(request, cntl);
RowBatch batch(*_row_desc, request->row_batch(), tracker.get());
for (int i = 0; i < batch.num_rows(); ++i) {
LOG(INFO) << batch.get_row(i)->to_string(*_row_desc);
_output_set->emplace(batch.get_row(i)->to_string(*_row_desc));
}
}
}
}
void tablet_writer_cancel(google::protobuf::RpcController* controller,
const PTabletWriterCancelRequest* request,
PTabletWriterCancelResult* response,
google::protobuf::Closure* done) override {
brpc::ClosureGuard done_guard(done);
}
std::mutex _lock;
int64_t _eof_counters = 0;
int64_t _row_counters = 0;
RowDescriptor* _row_desc = nullptr;
std::set<std::string>* _output_set = nullptr;
};
TEST_F(OlapTableSinkTest, normal) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
// state._query_mem_tracker.reset(new MemTracker());
// state._instance_mem_tracker.reset(new MemTracker(-1, "test", state._query_mem_tracker.get()));
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
LOG(INFO) << "tuple_desc=" << tuple_desc->debug_string();
RowDescriptor row_desc(*desc_tbl, {0}, {false});
OlapTableSink sink(&obj_pool, row_desc, {}, &st);
ASSERT_TRUE(st.ok());
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
// prepare
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
// open
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
// 12, 9, "abc"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 9;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 3;
memcpy(str_val->ptr, "abc", str_val->len);
batch.commit_last_row();
}
// 13, 25, "abcd"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 13;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 25;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 4;
memcpy(str_val->ptr, "abcd", str_val->len);
batch.commit_last_row();
}
// 14, 50, "abcde"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 14;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 50;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = reinterpret_cast<char*>(batch.tuple_data_pool()->allocate(16));
str_val->len = 15;
memcpy(str_val->ptr, "abcde1234567890", str_val->len);
batch.commit_last_row();
}
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// close
st = sink.close(&state, Status::OK());
ASSERT_TRUE(st.ok() || st.to_string() == "Internal error: wait close failed. ")
<< st.to_string();
// each node has a eof
ASSERT_EQ(2, service->_eof_counters);
ASSERT_EQ(2 * 2, service->_row_counters);
// 2node * 2
ASSERT_EQ(1, state.num_rows_load_filtered());
}
TEST_F(OlapTableSinkTest, convert) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1024;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[4].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
// prepare
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
// open
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
// 12, 9, "abc"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 9;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 3;
memcpy(str_val->ptr, "abc", str_val->len);
batch.commit_last_row();
}
// 13, 25, "abcd"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 13;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 25;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 4;
memcpy(str_val->ptr, "abcd", str_val->len);
batch.commit_last_row();
}
// 14, 50, "abcde"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 14;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 50;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = reinterpret_cast<char*>(batch.tuple_data_pool()->allocate(10));
str_val->len = 5;
memcpy(str_val->ptr, "abcde", str_val->len);
batch.commit_last_row();
}
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// close
st = sink.close(&state, Status::OK());
ASSERT_TRUE(st.ok() || st.to_string() == "Internal error: wait close failed. ")
<< st.to_string();
// each node has a eof
ASSERT_EQ(2, service->_eof_counters);
ASSERT_EQ(2 * 3, service->_row_counters);
// 2node * 2
ASSERT_EQ(0, state.num_rows_load_filtered());
}
TEST_F(OlapTableSinkTest, init_fail1) {
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(1);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
{
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 5;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
{
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
}
TEST_F(OlapTableSinkTest, init_fail3) {
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
TEST_F(OlapTableSinkTest, init_fail4) {
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[4].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
t_data_sink.olap_table_sink.partition.partitions[0].indexes[0].tablets = {101, 102};
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
TEST_F(OlapTableSinkTest, add_batch_failed) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
// ObjectPool create before RuntimeState, simulate actual situation better.
ObjectPool obj_pool;
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[4].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
// 12, 9, "abc"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 9;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 3;
memcpy(str_val->ptr, "abc", str_val->len);
batch.commit_last_row();
}
// Channels will be cancelled internally, coz brpc returns k_add_batch_status.
k_add_batch_status = Status::InternalError("dummy failed");
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// Send batch multiple times, can make _cur_batch or _pending_batches(in channels) not empty.
// To ensure the order of releasing resource is OK.
sink.send(&state, &batch);
sink.send(&state, &batch);
// close
st = sink.close(&state, Status::OK());
ASSERT_FALSE(st.ok());
}
TEST_F(OlapTableSinkTest, decimal) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_decimal_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
LOG(INFO) << "tuple_desc=" << tuple_desc->debug_string();
RowDescriptor row_desc(*desc_tbl, {0}, {false});
service->_row_desc = &row_desc;
std::set<std::string> output_set;
service->_output_set = &output_set;
OlapTableSink sink(&obj_pool, row_desc, {}, &st);
ASSERT_TRUE(st.ok());
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
// prepare
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
// open
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
// 12, 12.3
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
DecimalV2Value* dec_val = reinterpret_cast<DecimalV2Value*>(tuple->get_slot(16));
*dec_val = DecimalV2Value(std::string("12.3"));
batch.commit_last_row();
}
// 13, 123.123456789
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 13;
DecimalV2Value* dec_val = reinterpret_cast<DecimalV2Value*>(tuple->get_slot(16));
*dec_val = DecimalV2Value(std::string("123.123456789"));
batch.commit_last_row();
}
// 14, 123456789123.1234
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 14;
DecimalV2Value* dec_val = reinterpret_cast<DecimalV2Value*>(tuple->get_slot(16));
*dec_val = DecimalV2Value(std::string("123456789123.1234"));
batch.commit_last_row();
}
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// close
st = sink.close(&state, Status::OK());
ASSERT_TRUE(st.ok() || st.to_string() == "Internal error: wait close failed. ")
<< st.to_string();
ASSERT_EQ(2, output_set.size());
ASSERT_TRUE(output_set.count("[(12 12.3)]") > 0);
ASSERT_TRUE(output_set.count("[(13 123.12)]") > 0);
// ASSERT_TRUE(output_set.count("[(14 999.99)]") > 0);
}
} // namespace stream_load
} // namespace doris
int main(int argc, char* argv[]) {
doris::CpuInfo::init();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}