511 lines
22 KiB
C++
511 lines
22 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "olap/memtable.h"
|
|
|
|
#include <fmt/format.h>
|
|
#include <gen_cpp/olap_file.pb.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <shared_mutex>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "common/config.h"
|
|
#include "common/consts.h"
|
|
#include "common/logging.h"
|
|
#include "olap/olap_define.h"
|
|
#include "olap/rowset/beta_rowset.h"
|
|
#include "olap/rowset/rowset_writer.h"
|
|
#include "olap/rowset/segment_v2/segment.h"
|
|
#include "olap/schema.h"
|
|
#include "olap/schema_change.h"
|
|
#include "olap/tablet_schema.h"
|
|
#include "runtime/descriptors.h"
|
|
#include "runtime/exec_env.h"
|
|
#include "runtime/load_channel_mgr.h"
|
|
#include "runtime/thread_context.h"
|
|
#include "util/doris_metrics.h"
|
|
#include "util/runtime_profile.h"
|
|
#include "util/stopwatch.hpp"
|
|
#include "vec/aggregate_functions/aggregate_function_reader.h"
|
|
#include "vec/aggregate_functions/aggregate_function_simple_factory.h"
|
|
#include "vec/columns/column.h"
|
|
#include "vec/columns/column_object.h"
|
|
#include "vec/columns/column_string.h"
|
|
#include "vec/common/assert_cast.h"
|
|
#include "vec/core/column_with_type_and_name.h"
|
|
#include "vec/data_types/data_type.h"
|
|
#include "vec/json/path_in_data.h"
|
|
#include "vec/jsonb/serialize.h"
|
|
|
|
namespace doris {
|
|
using namespace ErrorCode;
|
|
|
|
MemTable::MemTable(TabletSharedPtr tablet, Schema* schema, const TabletSchema* tablet_schema,
|
|
const std::vector<SlotDescriptor*>* slot_descs, TupleDescriptor* tuple_desc,
|
|
RowsetWriter* rowset_writer, std::shared_ptr<MowContext> mow_context,
|
|
const std::shared_ptr<MemTracker>& insert_mem_tracker,
|
|
const std::shared_ptr<MemTracker>& flush_mem_tracker)
|
|
: _tablet(std::move(tablet)),
|
|
_keys_type(_tablet->keys_type()),
|
|
_schema(schema),
|
|
_tablet_schema(tablet_schema),
|
|
_insert_mem_tracker(insert_mem_tracker),
|
|
_flush_mem_tracker(flush_mem_tracker),
|
|
_schema_size(_schema->schema_size()),
|
|
_rowset_writer(rowset_writer),
|
|
_is_first_insertion(true),
|
|
_agg_functions(schema->num_columns()),
|
|
_offsets_of_aggregate_states(schema->num_columns()),
|
|
_total_size_of_aggregate_states(0),
|
|
_mem_usage(0),
|
|
_mow_context(mow_context) {
|
|
#ifndef BE_TEST
|
|
_insert_mem_tracker_use_hook = std::make_unique<MemTracker>(
|
|
fmt::format("MemTableHookInsert:TabletId={}", std::to_string(tablet_id())),
|
|
ExecEnv::GetInstance()->load_channel_mgr()->mem_tracker());
|
|
#else
|
|
_insert_mem_tracker_use_hook = std::make_unique<MemTracker>(
|
|
fmt::format("MemTableHookInsert:TabletId={}", std::to_string(tablet_id())));
|
|
#endif
|
|
_arena = std::make_unique<vectorized::Arena>();
|
|
_vec_row_comparator = std::make_shared<RowInBlockComparator>(_schema);
|
|
// TODO: Support ZOrderComparator in the future
|
|
_vec_skip_list = std::make_unique<VecTable>(_vec_row_comparator.get(), _arena.get(),
|
|
_keys_type == KeysType::DUP_KEYS);
|
|
_init_columns_offset_by_slot_descs(slot_descs, tuple_desc);
|
|
_num_columns = _tablet_schema->num_columns();
|
|
if (_tablet_schema->is_partial_update()) {
|
|
_num_columns = _tablet_schema->partial_input_column_size();
|
|
}
|
|
}
|
|
void MemTable::_init_columns_offset_by_slot_descs(const std::vector<SlotDescriptor*>* slot_descs,
|
|
const TupleDescriptor* tuple_desc) {
|
|
for (auto slot_desc : *slot_descs) {
|
|
const auto& slots = tuple_desc->slots();
|
|
for (int j = 0; j < slots.size(); ++j) {
|
|
if (slot_desc->id() == slots[j]->id()) {
|
|
_column_offset.emplace_back(j);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemTable::_init_agg_functions(const vectorized::Block* block) {
|
|
for (uint32_t cid = _schema->num_key_columns(); cid < _num_columns; ++cid) {
|
|
vectorized::AggregateFunctionPtr function;
|
|
if (_keys_type == KeysType::UNIQUE_KEYS && _tablet->enable_unique_key_merge_on_write()) {
|
|
// In such table, non-key column's aggregation type is NONE, so we need to construct
|
|
// the aggregate function manually.
|
|
function = vectorized::AggregateFunctionSimpleFactory::instance().get(
|
|
"replace_load", {block->get_data_type(cid)},
|
|
block->get_data_type(cid)->is_nullable());
|
|
} else {
|
|
function =
|
|
_tablet_schema->column(cid).get_aggregate_function(vectorized::AGG_LOAD_SUFFIX);
|
|
}
|
|
|
|
DCHECK(function != nullptr);
|
|
_agg_functions[cid] = function;
|
|
}
|
|
|
|
for (uint32_t cid = _schema->num_key_columns(); cid < _num_columns; ++cid) {
|
|
_offsets_of_aggregate_states[cid] = _total_size_of_aggregate_states;
|
|
_total_size_of_aggregate_states += _agg_functions[cid]->size_of_data();
|
|
|
|
// If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned.
|
|
if (cid + 1 < _num_columns) {
|
|
size_t alignment_of_next_state = _agg_functions[cid + 1]->align_of_data();
|
|
|
|
/// Extend total_size to next alignment requirement
|
|
/// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state.
|
|
_total_size_of_aggregate_states =
|
|
(_total_size_of_aggregate_states + alignment_of_next_state - 1) /
|
|
alignment_of_next_state * alignment_of_next_state;
|
|
}
|
|
}
|
|
}
|
|
|
|
MemTable::~MemTable() {
|
|
if (_vec_skip_list != nullptr && _keys_type != KeysType::DUP_KEYS) {
|
|
VecTable::Iterator it(_vec_skip_list.get());
|
|
for (it.SeekToFirst(); it.Valid(); it.Next()) {
|
|
// We should release agg_places here, because they are not released when a
|
|
// load is canceled.
|
|
for (size_t i = _schema->num_key_columns(); i < _num_columns; ++i) {
|
|
auto function = _agg_functions[i];
|
|
DCHECK(function != nullptr);
|
|
DCHECK(it.key()->agg_places(i) != nullptr);
|
|
function->destroy(it.key()->agg_places(i));
|
|
}
|
|
}
|
|
}
|
|
std::for_each(_row_in_blocks.begin(), _row_in_blocks.end(), std::default_delete<RowInBlock>());
|
|
_insert_mem_tracker->release(_mem_usage);
|
|
_flush_mem_tracker->set_consumption(0);
|
|
DCHECK_EQ(_insert_mem_tracker->consumption(), 0)
|
|
<< std::endl
|
|
<< MemTracker::log_usage(_insert_mem_tracker->make_snapshot());
|
|
DCHECK_EQ(_flush_mem_tracker->consumption(), 0);
|
|
}
|
|
|
|
int RowInBlockComparator::operator()(const RowInBlock* left, const RowInBlock* right) const {
|
|
return _pblock->compare_at(left->_row_pos, right->_row_pos, _schema->num_key_columns(),
|
|
*_pblock, -1);
|
|
}
|
|
|
|
void MemTable::insert(const vectorized::Block* input_block, const std::vector<int>& row_idxs,
|
|
bool is_append) {
|
|
SCOPED_CONSUME_MEM_TRACKER(_insert_mem_tracker_use_hook.get());
|
|
vectorized::Block target_block = *input_block;
|
|
if (!_tablet_schema->is_dynamic_schema()) {
|
|
// This insert may belong to a rollup tablet, rollup columns is a subset of base table
|
|
// but for dynamic table, it's need full columns, so input_block should ignore _column_offset
|
|
// of each column and avoid copy_block
|
|
target_block = input_block->copy_block(_column_offset);
|
|
}
|
|
if (_is_first_insertion) {
|
|
_is_first_insertion = false;
|
|
auto cloneBlock = target_block.clone_without_columns();
|
|
_input_mutable_block = vectorized::MutableBlock::build_mutable_block(&cloneBlock);
|
|
_vec_row_comparator->set_block(&_input_mutable_block);
|
|
_output_mutable_block = vectorized::MutableBlock::build_mutable_block(&cloneBlock);
|
|
if (_keys_type != KeysType::DUP_KEYS) {
|
|
_init_agg_functions(&target_block);
|
|
}
|
|
}
|
|
|
|
auto num_rows = row_idxs.size();
|
|
size_t cursor_in_mutableblock = _input_mutable_block.rows();
|
|
if (is_append) {
|
|
// Append the block, call insert range from
|
|
_input_mutable_block.add_rows(&target_block, 0, target_block.rows());
|
|
num_rows = target_block.rows();
|
|
} else {
|
|
_input_mutable_block.add_rows(&target_block, row_idxs.data(), row_idxs.data() + num_rows);
|
|
}
|
|
size_t input_size = target_block.allocated_bytes() * num_rows / target_block.rows();
|
|
_mem_usage += input_size;
|
|
_insert_mem_tracker->consume(input_size);
|
|
for (int i = 0; i < num_rows; i++) {
|
|
_row_in_blocks.emplace_back(new RowInBlock {cursor_in_mutableblock + i});
|
|
_insert_one_row_from_block(_row_in_blocks.back());
|
|
}
|
|
}
|
|
|
|
void MemTable::_insert_one_row_from_block(RowInBlock* row_in_block) {
|
|
_rows++;
|
|
bool overwritten = false;
|
|
if (_keys_type == KeysType::DUP_KEYS) {
|
|
// for dup keys, already store row_in_block in vector and will sort it on flush stage.
|
|
DCHECK(!overwritten) << "Duplicate key model meet overwrite in SkipList";
|
|
return;
|
|
}
|
|
|
|
bool is_exist = _vec_skip_list->Find(row_in_block, &_vec_hint);
|
|
if (is_exist) {
|
|
_merged_rows++;
|
|
_aggregate_two_row_in_block(row_in_block, _vec_hint.curr->key);
|
|
} else {
|
|
row_in_block->init_agg_places(_arena->aligned_alloc(_total_size_of_aggregate_states, 16),
|
|
_offsets_of_aggregate_states.data());
|
|
for (auto cid = _schema->num_key_columns(); cid < _num_columns; cid++) {
|
|
try {
|
|
auto col_ptr = _input_mutable_block.mutable_columns()[cid].get();
|
|
auto data = row_in_block->agg_places(cid);
|
|
_agg_functions[cid]->create(data);
|
|
_agg_functions[cid]->add(data,
|
|
const_cast<const doris::vectorized::IColumn**>(&col_ptr),
|
|
row_in_block->_row_pos, nullptr);
|
|
} catch (...) {
|
|
for (size_t i = _schema->num_key_columns(); i < cid; ++i) {
|
|
_agg_functions[i]->destroy(row_in_block->agg_places(i));
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
_vec_skip_list->InsertWithHint(row_in_block, is_exist, &_vec_hint);
|
|
}
|
|
}
|
|
|
|
void MemTable::_aggregate_two_row_in_block(RowInBlock* new_row, RowInBlock* row_in_skiplist) {
|
|
if (_tablet_schema->has_sequence_col()) {
|
|
auto sequence_idx = _tablet_schema->sequence_col_idx();
|
|
DCHECK_LT(sequence_idx, _input_mutable_block.columns());
|
|
auto col_ptr = _input_mutable_block.mutable_columns()[sequence_idx].get();
|
|
auto res = col_ptr->compare_at(row_in_skiplist->_row_pos, new_row->_row_pos, *col_ptr, -1);
|
|
// dst sequence column larger than src, don't need to update
|
|
if (res > 0) {
|
|
return;
|
|
}
|
|
// need to update the row pos in skiplist to the new row pos when has
|
|
// sequence column
|
|
row_in_skiplist->_row_pos = new_row->_row_pos;
|
|
}
|
|
// dst is non-sequence row, or dst sequence is smaller
|
|
for (uint32_t cid = _schema->num_key_columns(); cid < _num_columns; ++cid) {
|
|
auto col_ptr = _input_mutable_block.mutable_columns()[cid].get();
|
|
_agg_functions[cid]->add(row_in_skiplist->agg_places(cid),
|
|
const_cast<const doris::vectorized::IColumn**>(&col_ptr),
|
|
new_row->_row_pos, nullptr);
|
|
}
|
|
}
|
|
template <bool is_final>
|
|
void MemTable::_collect_vskiplist_results() {
|
|
if (_keys_type == KeysType::DUP_KEYS) {
|
|
if (_schema->num_key_columns() > 0) {
|
|
_collect_dup_table_with_keys();
|
|
} else {
|
|
// skip sort if the table is dup table without keys
|
|
_collect_dup_table_without_keys();
|
|
}
|
|
} else {
|
|
VecTable::Iterator it(_vec_skip_list.get());
|
|
vectorized::Block in_block = _input_mutable_block.to_block();
|
|
size_t idx = 0;
|
|
for (it.SeekToFirst(); it.Valid(); it.Next()) {
|
|
auto& block_data = in_block.get_columns_with_type_and_name();
|
|
// move key columns
|
|
for (size_t i = 0; i < _schema->num_key_columns(); ++i) {
|
|
_output_mutable_block.get_column_by_position(i)->insert_from(
|
|
*block_data[i].column.get(), it.key()->_row_pos);
|
|
}
|
|
// get value columns from agg_places
|
|
for (size_t i = _schema->num_key_columns(); i < _num_columns; ++i) {
|
|
auto function = _agg_functions[i];
|
|
auto agg_place = it.key()->agg_places(i);
|
|
auto col_ptr = _output_mutable_block.get_column_by_position(i).get();
|
|
function->insert_result_into(agg_place, *col_ptr);
|
|
if constexpr (is_final) {
|
|
function->destroy(agg_place);
|
|
} else {
|
|
function->reset(agg_place);
|
|
function->add(agg_place,
|
|
const_cast<const doris::vectorized::IColumn**>(&col_ptr), idx,
|
|
nullptr);
|
|
}
|
|
}
|
|
if constexpr (!is_final) {
|
|
// re-index the row_pos in VSkipList
|
|
it.key()->_row_pos = idx;
|
|
idx++;
|
|
}
|
|
}
|
|
if constexpr (!is_final) {
|
|
// if is not final, we collect the agg results to input_block and then continue to insert
|
|
size_t shrunked_after_agg = _output_mutable_block.allocated_bytes();
|
|
// flush will not run here, so will not duplicate `_flush_mem_tracker`
|
|
_insert_mem_tracker->consume(shrunked_after_agg - _mem_usage);
|
|
_mem_usage = shrunked_after_agg;
|
|
_input_mutable_block.swap(_output_mutable_block);
|
|
//TODO(weixang):opt here.
|
|
std::unique_ptr<vectorized::Block> empty_input_block =
|
|
in_block.create_same_struct_block(0);
|
|
_output_mutable_block =
|
|
vectorized::MutableBlock::build_mutable_block(empty_input_block.get());
|
|
_output_mutable_block.clear_column_data();
|
|
}
|
|
}
|
|
|
|
if (is_final) {
|
|
_vec_skip_list.reset();
|
|
}
|
|
}
|
|
|
|
void MemTable::_collect_dup_table_with_keys() {
|
|
vectorized::Block in_block = _input_mutable_block.to_block();
|
|
vectorized::MutableBlock mutable_block =
|
|
vectorized::MutableBlock::build_mutable_block(&in_block);
|
|
_vec_row_comparator->set_block(&mutable_block);
|
|
std::sort(_row_in_blocks.begin(), _row_in_blocks.end(),
|
|
[this](const RowInBlock* l, const RowInBlock* r) -> bool {
|
|
auto value = (*(this->_vec_row_comparator))(l, r);
|
|
if (value == 0) {
|
|
return l->_row_pos > r->_row_pos;
|
|
} else {
|
|
return value < 0;
|
|
}
|
|
});
|
|
std::vector<int> row_pos_vec;
|
|
DCHECK(in_block.rows() <= std::numeric_limits<int>::max());
|
|
row_pos_vec.reserve(in_block.rows());
|
|
for (int i = 0; i < _row_in_blocks.size(); i++) {
|
|
row_pos_vec.emplace_back(_row_in_blocks[i]->_row_pos);
|
|
}
|
|
_output_mutable_block.add_rows(&in_block, row_pos_vec.data(),
|
|
row_pos_vec.data() + in_block.rows());
|
|
}
|
|
|
|
void MemTable::_collect_dup_table_without_keys() {
|
|
_output_mutable_block.swap(_input_mutable_block);
|
|
}
|
|
|
|
void MemTable::shrink_memtable_by_agg() {
|
|
SCOPED_CONSUME_MEM_TRACKER(_insert_mem_tracker_use_hook.get());
|
|
if (_keys_type == KeysType::DUP_KEYS) {
|
|
return;
|
|
}
|
|
_collect_vskiplist_results<false>();
|
|
}
|
|
|
|
bool MemTable::need_flush() const {
|
|
auto max_size = config::write_buffer_size;
|
|
if (_tablet_schema->is_partial_update()) {
|
|
auto update_columns_size = _tablet_schema->partial_input_column_size();
|
|
max_size = max_size * update_columns_size / _tablet_schema->num_columns();
|
|
max_size = max_size > 1048576 ? max_size : 1048576;
|
|
}
|
|
return memory_usage() >= max_size;
|
|
}
|
|
|
|
bool MemTable::need_agg() const {
|
|
if (_keys_type == KeysType::AGG_KEYS) {
|
|
auto max_size = config::write_buffer_size_for_agg;
|
|
if (_tablet_schema->is_partial_update()) {
|
|
auto update_columns_size = _tablet_schema->partial_input_column_size();
|
|
max_size = max_size * update_columns_size / _tablet_schema->num_columns();
|
|
max_size = max_size > 1048576 ? max_size : 1048576;
|
|
}
|
|
return memory_usage() >= max_size;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Status MemTable::_generate_delete_bitmap(int64_t atomic_num_segments_before_flush,
|
|
int64_t atomic_num_segments_after_flush) {
|
|
// generate delete bitmap, build a tmp rowset and load recent segment
|
|
if (!_tablet->enable_unique_key_merge_on_write()) {
|
|
return Status::OK();
|
|
}
|
|
auto rowset = _rowset_writer->build_tmp();
|
|
auto beta_rowset = reinterpret_cast<BetaRowset*>(rowset.get());
|
|
std::vector<segment_v2::SegmentSharedPtr> segments;
|
|
if (atomic_num_segments_before_flush >= atomic_num_segments_after_flush) {
|
|
return Status::OK();
|
|
}
|
|
RETURN_IF_ERROR(beta_rowset->load_segments(atomic_num_segments_before_flush,
|
|
atomic_num_segments_after_flush, &segments));
|
|
std::shared_lock meta_rlock(_tablet->get_header_lock());
|
|
// tablet is under alter process. The delete bitmap will be calculated after conversion.
|
|
if (_tablet->tablet_state() == TABLET_NOTREADY &&
|
|
SchemaChangeHandler::tablet_in_converting(_tablet->tablet_id())) {
|
|
return Status::OK();
|
|
}
|
|
RETURN_IF_ERROR(_tablet->calc_delete_bitmap(rowset, segments, &_mow_context->rowset_ids,
|
|
_mow_context->delete_bitmap,
|
|
_mow_context->max_version));
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MemTable::flush() {
|
|
VLOG_CRITICAL << "begin to flush memtable for tablet: " << tablet_id()
|
|
<< ", memsize: " << memory_usage() << ", rows: " << _rows;
|
|
int64_t duration_ns = 0;
|
|
// For merge_on_write table, it must get all segments in this flush.
|
|
// The id of new segment is set by the _num_segment of beta_rowset_writer,
|
|
// and new segment ids is between [atomic_num_segments_before_flush, atomic_num_segments_after_flush),
|
|
// and use the ids to load segment data file for calc delete bitmap.
|
|
int64_t atomic_num_segments_before_flush = _rowset_writer->get_atomic_num_segment();
|
|
RETURN_IF_ERROR(_do_flush(duration_ns));
|
|
int64_t atomic_num_segments_after_flush = _rowset_writer->get_atomic_num_segment();
|
|
if (!_tablet_schema->is_partial_update()) {
|
|
RETURN_IF_ERROR(_generate_delete_bitmap(atomic_num_segments_before_flush,
|
|
atomic_num_segments_after_flush));
|
|
}
|
|
DorisMetrics::instance()->memtable_flush_total->increment(1);
|
|
DorisMetrics::instance()->memtable_flush_duration_us->increment(duration_ns / 1000);
|
|
VLOG_CRITICAL << "after flush memtable for tablet: " << tablet_id()
|
|
<< ", flushsize: " << _flush_size;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MemTable::_do_flush(int64_t& duration_ns) {
|
|
SCOPED_CONSUME_MEM_TRACKER(_flush_mem_tracker);
|
|
SCOPED_RAW_TIMER(&duration_ns);
|
|
_collect_vskiplist_results<true>();
|
|
vectorized::Block block = _output_mutable_block.to_block();
|
|
if (_tablet_schema->is_dynamic_schema()) {
|
|
// Unfold variant column
|
|
unfold_variant_column(block);
|
|
}
|
|
RETURN_IF_ERROR(_rowset_writer->flush_single_memtable(&block, &_flush_size));
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MemTable::close() {
|
|
return flush();
|
|
}
|
|
|
|
void MemTable::unfold_variant_column(vectorized::Block& block) {
|
|
if (block.rows() == 0) {
|
|
return;
|
|
}
|
|
vectorized::ColumnWithTypeAndName* variant_column =
|
|
block.try_get_by_name(BeConsts::DYNAMIC_COLUMN_NAME);
|
|
if (!variant_column) {
|
|
return;
|
|
}
|
|
// remove it
|
|
vectorized::ColumnObject& object_column =
|
|
assert_cast<vectorized::ColumnObject&>(variant_column->column->assume_mutable_ref());
|
|
// extend
|
|
for (auto& entry : object_column.get_subcolumns()) {
|
|
if (entry->path.get_path() == vectorized::ColumnObject::COLUMN_NAME_DUMMY) {
|
|
continue;
|
|
}
|
|
block.insert({entry->data.get_finalized_column().get_ptr(),
|
|
entry->data.get_least_common_type(), entry->path.get_path()});
|
|
}
|
|
block.erase(BeConsts::DYNAMIC_COLUMN_NAME);
|
|
}
|
|
|
|
void MemTable::serialize_block_to_row_column(vectorized::Block& block) {
|
|
if (block.rows() == 0) {
|
|
return;
|
|
}
|
|
MonotonicStopWatch watch;
|
|
watch.start();
|
|
// find row column id
|
|
int row_column_id = 0;
|
|
for (int i = 0; i < _num_columns; ++i) {
|
|
if (_tablet_schema->column(i).is_row_store_column()) {
|
|
row_column_id = i;
|
|
break;
|
|
}
|
|
}
|
|
if (row_column_id == 0) {
|
|
return;
|
|
}
|
|
vectorized::ColumnString* row_store_column =
|
|
static_cast<vectorized::ColumnString*>(block.get_by_position(row_column_id)
|
|
.column->assume_mutable_ref()
|
|
.assume_mutable()
|
|
.get());
|
|
row_store_column->clear();
|
|
vectorized::JsonbSerializeUtil::block_to_jsonb(*_tablet_schema, block, *row_store_column,
|
|
_num_columns);
|
|
VLOG_DEBUG << "serialize , num_rows:" << block.rows() << ", row_column_id:" << row_column_id
|
|
<< ", total_byte_size:" << block.allocated_bytes() << ", serialize_cost(us)"
|
|
<< watch.elapsed_time() / 1000;
|
|
}
|
|
|
|
} // namespace doris
|