Files
doris/be/src/vec/olap/vcollect_iterator.cpp
TengJianPing ef2130de57 [improvement](memory) fix possible memory leak of vcollect iterator (#16822)
Logic in function VCollectIterator::build_heap is not robust, which may cause memory leak:

            Level1Iterator* cumu_iter = new Level1Iterator(
                    cumu_children, _reader, cumu_children.size() > 1, _is_reverse, _skip_same);
            RETURN_IF_NOT_EOF_AND_OK(cumu_iter->init());
            std::list<LevelIterator*> children;
            children.push_back(*base_reader_child);
            children.push_back(cumu_iter);
            _inner_iter.reset(
                    new Level1Iterator(children, _reader, _merge, _is_reverse, _skip_same));
cumu_iter will be leaked if cumu_iter->init()); is not success.
2023-02-17 14:40:15 +08:00

812 lines
29 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/olap/vcollect_iterator.h"
#include "common/status.h"
#include "util/defer_op.h"
namespace doris {
using namespace ErrorCode;
namespace vectorized {
#define RETURN_IF_NOT_EOF_AND_OK(stmt) \
do { \
const Status& _status_ = (stmt); \
if (UNLIKELY(!_status_.ok() && !_status_.is<END_OF_FILE>())) { \
return _status_; \
} \
} while (false)
VCollectIterator::~VCollectIterator() {
for (auto child : _children) {
delete child;
}
}
void VCollectIterator::init(TabletReader* reader, bool ori_data_overlapping, bool force_merge,
bool is_reverse) {
_reader = reader;
// when aggregate is enabled or key_type is DUP_KEYS, we don't merge
// multiple data to aggregate for better performance
if (_reader->_reader_type == READER_QUERY &&
(_reader->_direct_mode || _reader->_tablet->keys_type() == KeysType::DUP_KEYS ||
(_reader->_tablet->keys_type() == KeysType::UNIQUE_KEYS &&
_reader->_tablet->enable_unique_key_merge_on_write()))) {
_merge = false;
}
// When data is none overlapping, no need to build heap to traverse data
if (!ori_data_overlapping) {
_merge = false;
} else if (force_merge) {
_merge = true;
}
_is_reverse = is_reverse;
// use topn_next opt only for DUP_KEYS and UNIQUE_KEYS with MOW
if (_reader->_reader_context.read_orderby_key_limit > 0 &&
(_reader->_tablet->keys_type() == KeysType::DUP_KEYS ||
(_reader->_tablet->keys_type() == KeysType::UNIQUE_KEYS &&
_reader->_tablet->enable_unique_key_merge_on_write()))) {
_topn_limit = _reader->_reader_context.read_orderby_key_limit;
} else {
_topn_limit = 0;
}
}
Status VCollectIterator::add_child(RowsetReaderSharedPtr rs_reader) {
if (use_topn_next()) {
_rs_readers.push_back(rs_reader);
return Status::OK();
}
std::unique_ptr<LevelIterator> child(new Level0Iterator(rs_reader, _reader));
_children.push_back(child.release());
return Status::OK();
}
// Build a merge heap. If _merge is true, a rowset with the max rownum
// status will be used as the base rowset, and the other rowsets will be merged first and
// then merged with the base rowset.
Status VCollectIterator::build_heap(std::vector<RowsetReaderSharedPtr>& rs_readers) {
if (use_topn_next()) {
return Status::OK();
}
DCHECK(rs_readers.size() == _children.size());
_skip_same = _reader->_tablet_schema->keys_type() == KeysType::UNIQUE_KEYS;
if (_children.empty()) {
_inner_iter.reset(nullptr);
return Status::OK();
} else if (_merge) {
DCHECK(!rs_readers.empty());
bool have_multiple_child = false;
for (auto [c_iter, r_iter] = std::pair {_children.begin(), rs_readers.begin()};
c_iter != _children.end();) {
auto s = (*c_iter)->init(have_multiple_child);
if (!s.ok()) {
delete (*c_iter);
c_iter = _children.erase(c_iter);
r_iter = rs_readers.erase(r_iter);
if (!s.is<END_OF_FILE>()) {
return s;
}
} else {
have_multiple_child = true;
++c_iter;
++r_iter;
}
}
// build merge heap with two children, a base rowset as level0iterator and
// other cumulative rowsets as a level1iterator
if (_children.size() > 1) {
// find 'base rowset', 'base rowset' is the rowset which contains the max row number
int64_t max_row_num = 0;
int base_reader_idx = 0;
for (size_t i = 0; i < rs_readers.size(); ++i) {
int64_t cur_row_num = rs_readers[i]->rowset()->rowset_meta()->num_rows();
if (cur_row_num > max_row_num) {
max_row_num = cur_row_num;
base_reader_idx = i;
}
}
auto base_reader_child = _children.begin();
std::advance(base_reader_child, base_reader_idx);
std::list<LevelIterator*> cumu_children;
int i = 0;
for (const auto& child : _children) {
if (i != base_reader_idx) {
cumu_children.push_back(child);
}
++i;
}
bool is_merge = cumu_children.size() > 1;
auto cumu_iter = std::make_unique<Level1Iterator>(std::move(cumu_children), _reader,
is_merge, _is_reverse, _skip_same);
RETURN_IF_NOT_EOF_AND_OK(cumu_iter->init());
std::list<LevelIterator*> children;
children.push_back(*base_reader_child);
children.push_back(cumu_iter.get());
auto level1_iter = new Level1Iterator(std::move(children), _reader, _merge, _is_reverse,
_skip_same);
cumu_iter.release();
_inner_iter.reset(level1_iter);
} else {
// _children.size() == 1
_inner_iter.reset(new Level1Iterator(std::move(_children), _reader, _merge, _is_reverse,
_skip_same));
}
} else {
bool have_multiple_child = false;
bool is_first_child = true;
for (auto iter = _children.begin(); iter != _children.end();) {
auto s = (*iter)->init_for_union(is_first_child, have_multiple_child);
if (!s.ok()) {
delete (*iter);
iter = _children.erase(iter);
if (!s.is<END_OF_FILE>()) {
return s;
}
} else {
have_multiple_child = true;
is_first_child = false;
++iter;
}
}
_inner_iter.reset(
new Level1Iterator(std::move(_children), _reader, _merge, _is_reverse, _skip_same));
}
RETURN_IF_NOT_EOF_AND_OK(_inner_iter->init());
// Clear _children earlier to release any related references
_children.clear();
return Status::OK();
}
bool VCollectIterator::LevelIteratorComparator::operator()(LevelIterator* lhs, LevelIterator* rhs) {
const IteratorRowRef& lhs_ref = *lhs->current_row_ref();
const IteratorRowRef& rhs_ref = *rhs->current_row_ref();
int cmp_res = UNLIKELY(lhs->compare_columns())
? lhs_ref.compare(rhs_ref, lhs->compare_columns())
: lhs_ref.compare(rhs_ref, lhs->tablet_schema().num_key_columns());
if (cmp_res != 0) {
return UNLIKELY(_is_reverse) ? cmp_res < 0 : cmp_res > 0;
}
if (_sequence != -1) {
cmp_res = lhs_ref.block->get_by_position(_sequence).column->compare_at(
lhs_ref.row_pos, rhs_ref.row_pos,
*(rhs_ref.block->get_by_position(_sequence).column), -1);
}
// if row cursors equal, compare data version.
// read data from higher version to lower version.
// for UNIQUE_KEYS just read the highest version and no need agg_update.
// for AGG_KEYS if a version is deleted, the lower version no need to agg_update
bool lower = (cmp_res != 0) ? (cmp_res < 0) : (lhs->version() < rhs->version());
lower ? lhs->set_same(true) : rhs->set_same(true);
return lower;
}
Status VCollectIterator::current_row(IteratorRowRef* ref) const {
if (LIKELY(_inner_iter)) {
*ref = *_inner_iter->current_row_ref();
if (ref->row_pos == -1) {
return Status::Error<END_OF_FILE>();
} else {
return Status::OK();
}
}
return Status::Error<DATA_ROW_BLOCK_ERROR>();
}
Status VCollectIterator::next(IteratorRowRef* ref) {
if (LIKELY(_inner_iter)) {
return _inner_iter->next(ref);
} else {
return Status::Error<END_OF_FILE>();
}
}
Status VCollectIterator::next(Block* block) {
if (use_topn_next()) {
return _topn_next(block);
}
if (LIKELY(_inner_iter)) {
return _inner_iter->next(block);
} else {
return Status::Error<END_OF_FILE>();
}
}
Status VCollectIterator::_topn_next(Block* block) {
if (_topn_eof) {
return Status::Error<END_OF_FILE>();
}
auto cloneBlock = block->clone_empty();
MutableBlock mutable_block = vectorized::MutableBlock::build_mutable_block(&cloneBlock);
size_t first_sort_column_idx = (*_reader->_reader_context.read_orderby_key_columns)[0];
const std::vector<uint32_t>* sort_columns = _reader->_reader_context.read_orderby_key_columns;
BlockRowPosComparator row_pos_comparator(&mutable_block, sort_columns,
_reader->_reader_context.read_orderby_key_reverse);
std::multiset<size_t, BlockRowPosComparator, std::allocator<size_t>> sorted_row_pos(
row_pos_comparator);
if (_is_reverse) {
std::reverse(_rs_readers.begin(), _rs_readers.end());
}
for (auto rs_reader : _rs_readers) {
// init will prune segment by _reader_context.conditions and _reader_context.runtime_conditions
RETURN_NOT_OK(rs_reader->init(&_reader->_reader_context));
// read _topn_limit rows from this rs
size_t read_rows = 0;
bool eof = false;
while (read_rows < _topn_limit && !eof) {
block->clear_column_data();
auto res = rs_reader->next_block(block);
if (!res.ok()) {
if (res.is<END_OF_FILE>()) {
eof = true;
if (block->rows() == 0) {
break;
}
} else {
return res;
}
}
auto col_name = block->get_names()[first_sort_column_idx];
// filter block
RETURN_IF_ERROR(VExprContext::filter_block(
*(_reader->_reader_context.filter_block_vconjunct_ctx_ptr), block,
block->columns()));
// update read rows
read_rows += block->rows();
// insert block rows to mutable_block and adjust sorted_row_pos
bool changed = false;
size_t rows_to_copy = 0;
if (sorted_row_pos.empty()) {
rows_to_copy = std::min(block->rows(), _topn_limit);
} else {
// _is_reverse == true last_row_pos is the pos of smallest row
// _is_reverse == false last_row_pos is biggest row
size_t last_row_pos = *sorted_row_pos.rbegin();
// find the how many rows which is less than the last row in mutable_block
for (size_t i = 0; i < block->rows(); i++) {
// if there is not enough rows in sorted_row_pos, just copy new rows
if (sorted_row_pos.size() + rows_to_copy < _topn_limit) {
rows_to_copy++;
continue;
}
DCHECK_GE(block->columns(), sort_columns->size());
DCHECK_GE(mutable_block.columns(), sort_columns->size());
int res = 0;
for (auto j : *sort_columns) {
DCHECK(block->get_by_position(j).type->equals(
*mutable_block.get_datatype_by_position(j)));
res = block->get_by_position(j).column->compare_at(
i, last_row_pos, *(mutable_block.get_column_by_position(j)), 0);
if (res) {
break;
}
}
// only copy needed rows
// _is_reverse == true > smallest is ok
// _is_reverse == false < biggest is ok
if ((_is_reverse && res > 0) || (!_is_reverse && res < 0)) {
rows_to_copy++;
} else {
break;
}
}
}
if (rows_to_copy > 0) {
// create column that is not in mutable_block but in block
for (size_t i = mutable_block.columns(); i < block->columns(); ++i) {
auto col = block->get_by_position(i).clone_empty();
mutable_block.mutable_columns().push_back(col.column->assume_mutable());
mutable_block.data_types().push_back(std::move(col.type));
mutable_block.get_names().push_back(std::move(col.name));
}
size_t base = mutable_block.rows();
// append block to mutable_block
mutable_block.add_rows(block, 0, rows_to_copy);
// insert appended rows pos in mutable_block to sorted_row_pos and sort it
for (size_t i = 0; i < rows_to_copy; i++) {
sorted_row_pos.insert(base + i);
changed = true;
}
}
// delete to keep _topn_limit row pos
if (sorted_row_pos.size() > _topn_limit) {
auto first = sorted_row_pos.begin();
for (size_t i = 0; i < _topn_limit; i++) {
first++;
}
sorted_row_pos.erase(first, sorted_row_pos.end());
// TODO: mutable_block should also shrink
}
// update runtime_predicate
if (_reader->_reader_context.use_topn_opt && changed &&
sorted_row_pos.size() >= _topn_limit) {
// get field value from column
size_t last_sorted_row = *sorted_row_pos.rbegin();
auto col_ptr = mutable_block.get_column_by_position(first_sort_column_idx).get();
Field new_top;
col_ptr->get(last_sorted_row, new_top);
// update orderby_extrems in query global context
auto query_ctx = _reader->_reader_context.runtime_state->get_query_fragments_ctx();
RETURN_IF_ERROR(
query_ctx->get_runtime_predicate().update(new_top, col_name, _is_reverse));
}
} // end of while (read_rows < _topn_limit && !eof)
} // end of for (auto rs_reader : _rs_readers)
// copy result_block to block
// TODO only copy limit rows
*block = mutable_block.to_block();
_topn_eof = true;
return block->rows() > 0 ? Status::OK() : Status::Error<END_OF_FILE>();
}
bool VCollectIterator::BlockRowPosComparator::operator()(const size_t& lpos,
const size_t& rpos) const {
int ret = _mutable_block->compare_at(lpos, rpos, _compare_columns, *_mutable_block, 0);
return _is_reverse ? ret > 0 : ret < 0;
}
VCollectIterator::Level0Iterator::Level0Iterator(RowsetReaderSharedPtr rs_reader,
TabletReader* reader)
: LevelIterator(reader), _rs_reader(rs_reader), _reader(reader) {
DCHECK_EQ(RowsetTypePB::BETA_ROWSET, rs_reader->type());
}
Status VCollectIterator::Level0Iterator::init(bool get_data_by_ref) {
_get_data_by_ref = get_data_by_ref && _rs_reader->support_return_data_by_ref() &&
config::enable_storage_vectorization;
if (!_get_data_by_ref) {
_block = std::make_shared<Block>(_schema.create_block(
_reader->_return_columns, _reader->_tablet_columns_convert_to_null_set));
}
auto st = _refresh_current_row();
if (_get_data_by_ref && _block_view.size()) {
_ref = _block_view[0];
} else {
_ref = {_block, 0, false};
}
return st;
}
// if is_first_child = true, return first row in block。Unique keys and agg keys will
// read a line first and then start loop :
// while (!eof) {
// collect_iter->next(&_next_row);
// }
// so first child load first row and other child row_pos = -1
Status VCollectIterator::Level0Iterator::init_for_union(bool is_first_child, bool get_data_by_ref) {
_get_data_by_ref = get_data_by_ref && _rs_reader->support_return_data_by_ref() &&
config::enable_storage_vectorization;
if (!_get_data_by_ref) {
_block = std::make_shared<Block>(_schema.create_block(
_reader->_return_columns, _reader->_tablet_columns_convert_to_null_set));
}
auto st = _refresh_current_row();
if (_get_data_by_ref && _block_view.size()) {
if (is_first_child) {
_ref = _block_view[0];
} else {
_ref = _block_view[-1];
}
} else {
if (is_first_child) {
_ref = {_block, 0, false};
} else {
_ref = {_block, -1, false};
}
}
return st;
}
int64_t VCollectIterator::Level0Iterator::version() const {
return _rs_reader->version().second;
}
Status VCollectIterator::Level0Iterator::_refresh_current_row() {
do {
if (!_is_empty() && _current_valid()) {
return Status::OK();
} else {
_reset();
auto res = _refresh();
if (!res.ok() && !res.is<END_OF_FILE>()) {
return res;
}
if (res.is<END_OF_FILE>() && _is_empty()) {
break;
}
if (UNLIKELY(_reader->_reader_context.record_rowids)) {
RETURN_NOT_OK(_rs_reader->current_block_row_locations(&_block_row_locations));
}
}
} while (!_is_empty());
_ref.row_pos = -1;
_current = -1;
return Status::Error<END_OF_FILE>();
}
Status VCollectIterator::Level0Iterator::next(IteratorRowRef* ref) {
if (_get_data_by_ref) {
_current++;
} else {
_ref.row_pos++;
}
RETURN_NOT_OK(_refresh_current_row());
if (_get_data_by_ref) {
_ref = _block_view[_current];
}
*ref = _ref;
return Status::OK();
}
Status VCollectIterator::Level0Iterator::next(Block* block) {
CHECK(!_get_data_by_ref);
if (_ref.row_pos <= 0 && _ref.block != nullptr && UNLIKELY(_ref.block->rows() > 0)) {
block->swap(*_ref.block);
_ref.reset();
return Status::OK();
} else {
auto res = _rs_reader->next_block(block);
if (!res.ok() && !res.is<END_OF_FILE>()) {
return res;
}
if (res.is<END_OF_FILE>() && block->rows() == 0) {
return Status::Error<END_OF_FILE>();
}
if (UNLIKELY(_reader->_reader_context.record_rowids)) {
RETURN_NOT_OK(_rs_reader->current_block_row_locations(&_block_row_locations));
}
return Status::OK();
}
}
RowLocation VCollectIterator::Level0Iterator::current_row_location() {
RowLocation& segment_row_id = _block_row_locations[_get_data_by_ref ? _current : _ref.row_pos];
return RowLocation(_rs_reader->rowset()->rowset_id(), segment_row_id.segment_id,
segment_row_id.row_id);
}
Status VCollectIterator::Level0Iterator::current_block_row_locations(
std::vector<RowLocation>* block_row_locations) {
block_row_locations->resize(_block_row_locations.size());
for (auto i = 0; i < _block_row_locations.size(); i++) {
RowLocation& row_location = _block_row_locations[i];
(*block_row_locations)[i] = RowLocation(_rs_reader->rowset()->rowset_id(),
row_location.segment_id, row_location.row_id);
}
return Status::OK();
}
VCollectIterator::Level1Iterator::Level1Iterator(
std::list<VCollectIterator::LevelIterator*>&& children, TabletReader* reader, bool merge,
bool is_reverse, bool skip_same)
: LevelIterator(reader),
_children(std::move(children)),
_reader(reader),
_merge(merge),
_is_reverse(is_reverse),
_skip_same(skip_same) {
_ref.reset();
// !_merge means that data are in order, so we just reverse children to return data in reverse
if (!_merge && _is_reverse) {
_children.reverse();
}
}
VCollectIterator::Level1Iterator::~Level1Iterator() {
for (auto child : _children) {
if (child != nullptr) {
delete child;
child = nullptr;
}
}
if (_heap) {
while (!_heap->empty()) {
auto child = _heap->top();
_heap->pop();
if (child) {
delete child;
}
}
}
}
// Read next row into *row.
// Returns
// OK when read successfully.
// Status::Error<END_OF_FILE>() and set *row to nullptr when EOF is reached.
// Others when error happens
Status VCollectIterator::Level1Iterator::next(IteratorRowRef* ref) {
if (UNLIKELY(_cur_child == nullptr)) {
_ref.reset();
return Status::Error<END_OF_FILE>();
}
if (_merge) {
return _merge_next(ref);
} else {
return _normal_next(ref);
}
}
// Read next block
// Returns
// OK when read successfully.
// Status::Error<END_OF_FILE>() and set *row to nullptr when EOF is reached.
// Others when error happens
Status VCollectIterator::Level1Iterator::next(Block* block) {
if (UNLIKELY(_cur_child == nullptr)) {
return Status::Error<END_OF_FILE>();
}
if (_merge) {
return _merge_next(block);
} else {
return _normal_next(block);
}
}
int64_t VCollectIterator::Level1Iterator::version() const {
if (_cur_child != nullptr) {
return _cur_child->version();
}
return -1;
}
Status VCollectIterator::Level1Iterator::init(bool get_data_by_ref) {
if (_children.empty()) {
return Status::OK();
}
// Only when there are multiple children that need to be merged
if (_merge && _children.size() > 1) {
auto sequence_loc = -1;
for (int loc = 0; loc < _reader->_return_columns.size(); loc++) {
if (_reader->_return_columns[loc] == _reader->_sequence_col_idx) {
sequence_loc = loc;
break;
}
}
_heap.reset(new MergeHeap {LevelIteratorComparator(sequence_loc, _is_reverse)});
for (auto child : _children) {
DCHECK(child != nullptr);
//DCHECK(child->current_row().ok());
_heap->push(child);
}
_cur_child = _heap->top();
// Clear _children earlier to release any related references
_children.clear();
} else {
_merge = false;
_heap.reset(nullptr);
_cur_child = *_children.begin();
}
_ref = *_cur_child->current_row_ref();
return Status::OK();
}
Status VCollectIterator::Level1Iterator::_merge_next(IteratorRowRef* ref) {
_heap->pop();
auto res = _cur_child->next(ref);
if (LIKELY(res.ok())) {
_heap->push(_cur_child);
_cur_child = _heap->top();
} else if (res.is<END_OF_FILE>()) {
// current child has been read, to read next
delete _cur_child;
if (!_heap->empty()) {
_cur_child = _heap->top();
} else {
_ref.reset();
_cur_child = nullptr;
return Status::Error<END_OF_FILE>();
}
} else {
_ref.reset();
_cur_child = nullptr;
LOG(WARNING) << "failed to get next from child, res=" << res;
return res;
}
if (_skip_same && _cur_child->is_same()) {
_reader->_merged_rows++;
_cur_child->set_same(false);
return _merge_next(ref);
}
_ref = *_cur_child->current_row_ref();
*ref = _ref;
_cur_child->set_same(false);
return Status::OK();
}
Status VCollectIterator::Level1Iterator::_normal_next(IteratorRowRef* ref) {
auto res = _cur_child->next(ref);
if (LIKELY(res.ok())) {
_ref = *ref;
return Status::OK();
} else if (res.is<END_OF_FILE>()) {
// current child has been read, to read next
delete _cur_child;
_children.pop_front();
if (!_children.empty()) {
_cur_child = *(_children.begin());
return _normal_next(ref);
} else {
_cur_child = nullptr;
return Status::Error<END_OF_FILE>();
}
} else {
_cur_child = nullptr;
LOG(WARNING) << "failed to get next from child, res=" << res;
return res;
}
}
Status VCollectIterator::Level1Iterator::_merge_next(Block* block) {
int target_block_row = 0;
auto target_columns = block->mutate_columns();
size_t column_count = block->columns();
IteratorRowRef cur_row = _ref;
IteratorRowRef pre_row_ref = _ref;
// append extra columns (eg. MATCH pred result column) from src_block to block
for (size_t i = block->columns(); i < cur_row.block->columns(); ++i) {
block->insert(cur_row.block->get_by_position(i).clone_empty());
}
auto batch_size = _reader->batch_size();
if (UNLIKELY(_reader->_reader_context.record_rowids)) {
_block_row_locations.resize(batch_size);
}
int continuous_row_in_block = 0;
do {
if (UNLIKELY(_reader->_reader_context.record_rowids)) {
_block_row_locations[target_block_row] = _cur_child->current_row_location();
}
++target_block_row;
++continuous_row_in_block;
// cur block finished, copy before merge_next cause merge_next will
// clear block column data
if (pre_row_ref.row_pos + continuous_row_in_block == pre_row_ref.block->rows()) {
const auto& src_block = pre_row_ref.block;
for (size_t i = 0; i < column_count; ++i) {
target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column),
pre_row_ref.row_pos, continuous_row_in_block);
}
continuous_row_in_block = 0;
pre_row_ref.reset();
}
auto res = _merge_next(&cur_row);
if (UNLIKELY(res.is<END_OF_FILE>())) {
if (UNLIKELY(_reader->_reader_context.record_rowids)) {
_block_row_locations.resize(target_block_row);
}
return res;
}
if (UNLIKELY(!res.ok())) {
LOG(WARNING) << "next failed: " << res;
return res;
}
if (target_block_row >= batch_size) {
if (continuous_row_in_block > 0) {
const auto& src_block = pre_row_ref.block;
for (size_t i = 0; i < column_count; ++i) {
target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column),
pre_row_ref.row_pos,
continuous_row_in_block);
}
}
return Status::OK();
}
if (continuous_row_in_block == 0) {
pre_row_ref = _ref;
continue;
}
// copy row if meet a new block
if (cur_row.block != pre_row_ref.block) {
const auto& src_block = pre_row_ref.block;
for (size_t i = 0; i < column_count; ++i) {
target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column),
pre_row_ref.row_pos, continuous_row_in_block);
}
continuous_row_in_block = 0;
pre_row_ref = cur_row;
}
} while (true);
return Status::OK();
}
Status VCollectIterator::Level1Iterator::_normal_next(Block* block) {
auto res = _cur_child->next(block);
if (LIKELY(res.ok())) {
return Status::OK();
} else if (res.is<END_OF_FILE>()) {
// current child has been read, to read next
delete _cur_child;
_children.pop_front();
if (!_children.empty()) {
_cur_child = *(_children.begin());
return _normal_next(block);
} else {
_cur_child = nullptr;
return Status::Error<END_OF_FILE>();
}
} else {
_cur_child = nullptr;
LOG(WARNING) << "failed to get next from child, res=" << res;
return res;
}
}
Status VCollectIterator::Level1Iterator::current_block_row_locations(
std::vector<RowLocation>* block_row_locations) {
if (!_merge) {
if (UNLIKELY(_cur_child == nullptr)) {
block_row_locations->clear();
return Status::Error<END_OF_FILE>();
}
return _cur_child->current_block_row_locations(block_row_locations);
} else {
DCHECK(_reader->_reader_context.record_rowids);
*block_row_locations = _block_row_locations;
return Status::OK();
}
}
} // namespace vectorized
} // namespace doris