/* ------------------------------------------------------------------------- * * gtm_thread.c * Thread handling * * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * Portions Copyright (c) 2010-2012 Postgres-XC Development Group * * * IDENTIFICATION * $PostgreSQL$ * * ------------------------------------------------------------------------- */ #include #include "gtm/gtm.h" #include "gtm/memutils.h" #include "gtm/gtm_txn.h" #include "gtm/libpq.h" static void* GTM_ThreadMainWrapper(void* argp); static void GTM_ThreadCleanup(void* argp); GTM_Threads GTMThreadsData; GTM_Threads* GTMThreads = >MThreadsData; #define GTM_MIN_THREADS 32 /* Provision for minimum threads */ #define GTM_MAX_THREADS 1024 /* Max threads allowed in the GTM */ #define GTMThreadsFull (GTMThreads->gt_thread_count == GTMThreads->gt_array_size) /* * Add the given thrinfo structure to the global array, expanding it if * necessary */ int GTM_ThreadAdd(GTM_ThreadInfo* thrinfo) { int ii; GTM_RWLockAcquire(>MThreads->gt_lock, GTM_LOCKMODE_WRITE); if (GTMThreadsFull) { uint32 newsize; /* * TODO Optimize lock management by not holding any locks during memory * allocation. */ if (GTMThreads->gt_array_size == GTM_MAX_THREADS) elog(ERROR, "Too many threads active"); if (GTMThreads->gt_array_size == 0) newsize = GTM_MIN_THREADS; else { /* * We ran out of the array size. Just double the size, bound by the * upper limit */ newsize = GTMThreads->gt_array_size * 2; } /* Can't have more than GTM_MAX_THREADS */ if (newsize > GTM_MAX_THREADS) newsize = GTM_MAX_THREADS; if (GTMThreads->gt_threads == NULL) GTMThreads->gt_threads = (GTM_ThreadInfo**)palloc0(sizeof(GTM_ThreadInfo*) * newsize); else { void* old_ptr = GTMThreads->gt_threads; GTMThreads->gt_threads = (GTM_ThreadInfo**)palloc0(sizeof(GTM_ThreadInfo*) * newsize); errno_t rc = 0; rc = memcpy_s(GTMThreads->gt_threads, GTMThreads->gt_array_size * sizeof(GTM_ThreadInfo*), old_ptr, GTMThreads->gt_array_size * sizeof(GTM_ThreadInfo*)); securec_check(rc, "\0", "\0"); pfree(old_ptr); } GTMThreads->gt_array_size = newsize; } /* * Now that we have free entries in the array, find a free slot and add the * thrinfo pointer to it. * * TODO Optimize this later by tracking few free slots and reusing them. * The free slots can be updated when a thread exits and reused when a new * thread is added to the pool. */ for (ii = 0; ii < GTMThreads->gt_array_size; ii++) { if (GTMThreads->gt_threads[ii] == NULL) { GTMThreads->gt_threads[ii] = thrinfo; GTMThreads->gt_thread_count++; break; } } GTM_RWLockRelease(>MThreads->gt_lock); /* * Track the slot information in the thrinfo. This is useful to quickly * find the slot given the thrinfo structure. */ thrinfo->thr_localid = ii; return ii; } int GTM_ThreadRemove(GTM_ThreadInfo* thrinfo) { int ii; GTM_RWLockAcquire(>MThreads->gt_lock, GTM_LOCKMODE_WRITE); for (ii = 0; ii < GTMThreads->gt_array_size; ii++) { if (GTMThreads->gt_threads[ii] == thrinfo) break; } if (ii == GTMThreads->gt_array_size) { elog(ERROR, "Thread not found "); } GTMThreads->gt_threads[ii] = NULL; GTMThreads->gt_thread_count--; GTM_RWLockRelease(>MThreads->gt_lock); pfree(thrinfo); return 0; } /* * Create a new thread and assign the given connection to it. * * This function is responsible for setting up the various memory contextes for * the thread as well as registering this thread with the Thread Manager. * * Upon successful creation, the thread will start running the given * "startroutine". The thread information is returned to the calling process. */ GTM_ThreadInfo* GTM_ThreadCreate(GTM_ConnectionInfo* conninfo, void* (*startroutine)(void*)) { GTM_ThreadInfo* thrinfo; int err; /* * We are still running in the context of the main thread. So the * allocation below would last as long as the main thread exists or the * memory is explicitely freed. */ thrinfo = (GTM_ThreadInfo*)palloc0(sizeof(GTM_ThreadInfo)); thrinfo->thr_conn = conninfo; GTM_RWLockInit(&thrinfo->thr_lock); /* * The thread status is set to GTM_THREAD_STARTING and will be changed by * the thread itself when it actually starts executing */ thrinfo->thr_status = GTM_THREAD_STARTING; /* * Install the ThreadInfo structure in the global array. We do this before * starting the thread */ if (GTM_ThreadAdd(thrinfo) == -1) elog(ERROR, "Error starting a new thread"); /* * Set up memory contextes before actually starting the threads * * The TopThreadContext is a child of TopMemoryContext and it will last as * long as the main process or this thread lives * * Thread context is not shared between other threads */ thrinfo->thr_thread_context = AllocSetContextCreate(TopMemoryContext, "TopMemoryContext", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE, false); /* * Since the thread is not yes started, TopMemoryContext still points to * the context of the calling thread */ thrinfo->thr_parent_context = TopMemoryContext; /* * Each thread gets its own ErrorContext and its a child of ErrorContext of * the main process * * This is a thread-specific context and is not shared between other * threads */ thrinfo->thr_error_context = AllocSetContextCreate(ErrorContext, "ErrorContext", 8 * 1024, 8 * 1024, 8 * 1024, false); thrinfo->thr_startroutine = startroutine; /* * Now start the thread. The thread will start executing the given * "startroutine". The thrinfo structure is also passed to the thread. Any * additional parameters should be passed via the thrinfo strcuture. * * Return the thrinfo structure to the caller */ if ((err = pthread_create(&thrinfo->thr_id, NULL, GTM_ThreadMainWrapper, thrinfo))) ereport(ERROR, (err, errmsg("Failed to create a new thread: error %d", err))); return thrinfo; } /* * Exit the current thread */ void GTM_ThreadExit(void) { /* XXX To be implemented */ } int GTM_ThreadJoin(GTM_ThreadInfo* thrinfo) { int error; void* data; error = pthread_join(thrinfo->thr_id, &data); return error; } /* * Get thread information for the given thread, identified by the * thread_id */ GTM_ThreadInfo* GTM_GetThreadInfo(GTM_ThreadID thrid) { return NULL; } /* * Cleanup routine for the thread */ static void GTM_ThreadCleanup(void* argp) { GTM_ThreadInfo* thrinfo = (GTM_ThreadInfo*)argp; elog(DEBUG1, "Cleaning up thread state"); if (thrinfo->thr_status == GTM_THREAD_BACKUP) { int ii; for (ii = 0; ii < GTMThreads->gt_array_size; ii++) { if (GTMThreads->gt_threads[ii] && GTMThreads->gt_threads[ii] != thrinfo) GTM_RWLockRelease(>MThreads->gt_threads[ii]->thr_lock); } } /* * Close a connection to GTM standby. */ if (thrinfo->thr_conn->standby) { elog(DEBUG1, "Closing a connection to the GTM standby."); GTMPQfinish(thrinfo->thr_conn->standby); thrinfo->thr_conn->standby = NULL; } /* * TODO Close the open connection. */ StreamClose(thrinfo->thr_conn->con_port->sock); /* Free the port */ ConnFree(thrinfo->thr_conn->con_port); thrinfo->thr_conn->con_port = NULL; /* Free the connection info structure */ pfree(thrinfo->thr_conn); thrinfo->thr_conn = NULL; /* * Switch to the memory context of the main process so that we can free up * our memory contextes easily. * * XXX We don't setup cleanup handlers for the main process. So this * routine would never be called for the main process/thread. */ MemoryContextSwitchTo(thrinfo->thr_parent_context); MemoryContextDelete(thrinfo->thr_message_context); thrinfo->thr_message_context = NULL; MemoryContextDelete(thrinfo->thr_error_context); thrinfo->thr_error_context = NULL; MemoryContextDelete(thrinfo->thr_thread_context); thrinfo->thr_thread_context = NULL; /* * TODO Now cleanup the thrinfo structure itself and remove it from the global * array. */ GTM_ThreadRemove(thrinfo); /* * Reset the thread-specific information. This should be done only after we * are sure that memory contextes are not required. * * Note: elog calls need memory contextes, so no elog calls beyond this * point. */ SetMyThreadInfo(NULL); return; } /* * A wrapper around the start routine of the thread. This helps us doing any * initialization and setting up cleanup handlers before the main routine is * started. */ void* GTM_ThreadMainWrapper(void* argp) { GTM_ThreadInfo* thrinfo = (GTM_ThreadInfo*)argp; pthread_detach(thrinfo->thr_id); SetMyThreadInfo(thrinfo); MemoryContextSwitchTo(TopMemoryContext); pthread_cleanup_push(GTM_ThreadCleanup, thrinfo); thrinfo->thr_startroutine(thrinfo); pthread_cleanup_pop(1); return thrinfo; } void GTM_LockAllOtherThreads(void) { GTM_ThreadInfo* my_threadinfo = GetMyThreadInfo; int ii; for (ii = 0; ii < GTMThreads->gt_array_size; ii++) { if (GTMThreads->gt_threads[ii] && GTMThreads->gt_threads[ii] != my_threadinfo) GTM_RWLockAcquire(>MThreads->gt_threads[ii]->thr_lock, GTM_LOCKMODE_WRITE); } } void GTM_UnlockAllOtherThreads(void) { GTM_ThreadInfo* my_threadinfo = GetMyThreadInfo; int ii; for (ii = 0; ii < GTMThreads->gt_array_size; ii++) { if (GTMThreads->gt_threads[ii] && GTMThreads->gt_threads[ii] != my_threadinfo) GTM_RWLockRelease(>MThreads->gt_threads[ii]->thr_lock); } } void GTM_DoForAllOtherThreads(void (*process_routine)(GTM_ThreadInfo*)) { GTM_ThreadInfo* my_threadinfo = GetMyThreadInfo; int ii; for (ii = 0; ii < GTMThreads->gt_array_size; ii++) { if (GTMThreads->gt_threads[ii] && GTMThreads->gt_threads[ii] != my_threadinfo) (process_routine)(GTMThreads->gt_threads[ii]); } }