/* ------------------------------------------------------------------------- * * execMain.cpp * top level executor interface routines * * INTERFACE ROUTINES * ExecutorStart() * ExecutorRun() * ExecutorFinish() * ExecutorEnd() * * These four procedures are the external interface to the executor. * In each case, the query descriptor is required as an argument. * * ExecutorStart must be called at the beginning of execution of any * query plan and ExecutorEnd must always be called at the end of * execution of a plan (unless it is aborted due to error). * * ExecutorRun accepts direction and count arguments that specify whether * the plan is to be executed forwards, backwards, and for how many tuples. * In some cases ExecutorRun may be called multiple times to process all * the tuples for a plan. It is also acceptable to stop short of executing * the whole plan (but only if it is a SELECT). * * ExecutorFinish must be called after the final ExecutorRun call and * before ExecutorEnd. This can be omitted only in case of EXPLAIN, * which should also omit ExecutorRun. * * Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd. * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * Portions Copyright (c) 2021, openGauss Contributors * * * IDENTIFICATION * src/gausskernel/runtime/executor/execMain.cpp * * ------------------------------------------------------------------------- */ #include "codegen/gscodegen.h" #include "postgres.h" #include "knl/knl_variable.h" #include "access/htup.h" #include "access/sysattr.h" #include "access/tableam.h" #include "access/transam.h" #include "access/xact.h" #include "access/ustore/knl_uheap.h" #include "catalog/pg_partition_fn.h" #include "catalog/pg_statistic.h" #include "catalog/pg_statistic_ext.h" #include "catalog/namespace.h" #include "commands/trigger.h" #include "executor/exec/execdebug.h" #include "executor/node/nodeRecursiveunion.h" #include "foreign/fdwapi.h" #include "libpq/libpq.h" #include "libpq/pqformat.h" #include "libpq/pqsignal.h" #include "mb/pg_wchar.h" #include "miscadmin.h" #include "optimizer/clauses.h" #include "parser/parsetree.h" #include "pgstat.h" #include "storage/buf/bufmgr.h" #include "storage/lmgr.h" #include "tcop/utility.h" #include "utils/acl.h" #include "utils/lsyscache.h" #include "utils/memutils.h" #include "utils/snapmgr.h" #include "access/heapam.h" #ifdef PGXC #include "pgxc/pgxc.h" #include "commands/copy.h" #endif #include "vecexecutor/vectorbatch.h" #include "vecexecutor/vecexecutor.h" #include "utils/anls_opt.h" #include "utils/memprot.h" #include "utils/memtrack.h" #include "workload/workload.h" #include "distributelayer/streamProducer.h" #include "commands/explain.h" #include "workload/workload.h" #include "instruments/instr_unique_sql.h" #include "gstrace/gstrace_infra.h" #include "gstrace/executer_gstrace.h" #include "instruments/instr_slow_query.h" #include "instruments/instr_statement.h" #ifdef ENABLE_MOT #include "storage/mot/jit_exec.h" #endif #include "gs_ledger/ledger_utils.h" #include "gs_policy/gs_policy_masking.h" #include "optimizer/gplanmgr.h" /* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */ THR_LOCAL ExecutorStart_hook_type ExecutorStart_hook = NULL; THR_LOCAL ExecutorRun_hook_type ExecutorRun_hook = NULL; THR_LOCAL ExecutorFinish_hook_type ExecutorFinish_hook = NULL; THR_LOCAL ExecutorEnd_hook_type ExecutorEnd_hook = NULL; /* Hook for plugin to get control in ExecCheckRTPerms() */ THR_LOCAL ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL; #define THREAD_INTSERVAL_60S 60 /* Debug information to hold the string of top plan node's node tag */ THR_LOCAL char *producer_top_plannode_str = NULL; THR_LOCAL bool is_syncup_producer = false; /* decls for local routines only used within this module */ void InitPlan(QueryDesc *queryDesc, int eflags); static void CheckValidRowMarkRel(Relation rel, RowMarkType markType); static void ExecPostprocessPlan(EState *estate); static void ExecEndPlan(PlanState *planstate, EState *estate); static void ExecCollectMaterialForSubplan(EState *estate); #ifdef ENABLE_MOT static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples, ScanDirection direction, DestReceiver *dest, JitExec::MotJitContext* motJitContext); #else static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples, ScanDirection direction, DestReceiver *dest); #endif static void ExecuteVectorizedPlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples, ScanDirection direction, DestReceiver *dest); static bool ExecCheckRTEPerms(RangeTblEntry *rte); static bool ExecCheckRTEPermsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols, AclMode requiredPerms); void ExecCheckXactReadOnly(PlannedStmt *plannedstmt); static void EvalPlanQualStart(EPQState *epqstate, EState *parentestate, Plan *planTree, bool isUHeap = false); extern char* ExecBuildSlotValueDescription( Oid reloid, TupleTableSlot *slot, TupleDesc tupdesc, Bitmapset *modifiedCols, int maxfieldlen); extern void BuildStreamFlow(PlannedStmt *plan); extern void StartUpStreamInParallel(PlannedStmt* pstmt, EState* estate); extern void CodeGenThreadRuntimeSetup(); extern bool CodeGenThreadObjectReady(); extern void CodeGenThreadRuntimeCodeGenerate(); extern void CodeGenThreadTearDown(); extern bool anls_opt_is_on(AnalysisOpt dfx_opt); /* * Note that GetUpdatedColumns() also exists in commands/trigger.c. There does * not appear to be any good header to put it into, given the structures that * it uses, so we let them be duplicated. Be sure to update both if one needs * to be changed, however. */ #define GetInsertedColumns(relinfo, estate) \ (rt_fetch((relinfo)->ri_RangeTableIndex, (estate)->es_range_table)->insertedCols) #define GetUpdatedColumns(relinfo, estate) \ (rt_fetch((relinfo)->ri_RangeTableIndex, (estate)->es_range_table)->updatedCols) #define GET_ALL_UPDATED_COLUMNS(relinfo, estate) \ (bms_union(exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->updatedCols, \ exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->extraUpdatedCols)) /* ---------------------------------------------------------------- * report_iud_time * * send the finish time of insert/update/delete operations to pgstat collector. * ---------------------------------------------------------------- */ static void report_iud_time(QueryDesc *query) { ListCell *lc = NULL; Oid rid; if (u_sess->attr.attr_sql.enable_save_datachanged_timestamp == false) { return; } PlannedStmt *plannedstmt = query->plannedstmt; foreach (lc, (List*)linitial(plannedstmt->resultRelations)) { Index idx = lfirst_int(lc); rid = getrelid(idx, plannedstmt->rtable); if (OidIsValid(rid) == false || rid < FirstNormalObjectId) { continue; } Relation rel = NULL; rel = heap_open(rid, AccessShareLock); if (rel->rd_rel->relkind == RELKIND_RELATION) { if (rel->rd_rel->relpersistence == RELPERSISTENCE_PERMANENT || rel->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED) { pgstat_report_data_changed(rid, STATFLG_RELATION, rel->rd_rel->relisshared); } } heap_close(rel, AccessShareLock); } } /* ---------------------------------------------------------------- * ExecutorStart * * This routine must be called at the beginning of any execution of any * query plan * * Takes a QueryDesc previously created by CreateQueryDesc (which is separate * only because some places use QueryDescs for utility commands). The tupDesc * field of the QueryDesc is filled in to describe the tuples that will be * returned, and the internal fields (estate and planstate) are set up. * * eflags contains flag bits as described in executor.h. * * NB: the CurrentMemoryContext when this is called will become the parent * of the per-query context used for this Executor invocation. * * We provide a function hook variable that lets loadable plugins * get control when ExecutorStart is called. Such a plugin would * normally call standard_ExecutorStart(). * ---------------------------------------------------------------- */ void ExecutorStart(QueryDesc* queryDesc, int eflags) { gstrace_entry(GS_TRC_ID_ExecutorStart); /* it's unsafe to deal with plugins hooks as dynamic lib may be released */ if (ExecutorStart_hook && !(g_instance.status > NoShutdown)) (*ExecutorStart_hook)(queryDesc, eflags); else standard_ExecutorStart(queryDesc, eflags); gstrace_exit(GS_TRC_ID_ExecutorStart); } void standard_ExecutorStart(QueryDesc *queryDesc, int eflags) { EState *estate = NULL; MemoryContext old_context; double totaltime = 0; /* sanity checks: queryDesc must not be started already */ Assert(queryDesc != NULL); Assert(queryDesc->estate == NULL); #ifdef MEMORY_CONTEXT_CHECKING /* Check all memory contexts when executor starts */ MemoryContextCheck(t_thrd.top_mem_cxt, false); #endif /* * If the transaction is read-only, we need to check if any writes are * planned to non-temporary tables. EXPLAIN is considered read-only. */ if (u_sess->attr.attr_common.XactReadOnly && !(eflags & EXEC_FLAG_EXPLAIN_ONLY)) { ExecCheckXactReadOnly(queryDesc->plannedstmt); } /* reset the sequent number of memory context */ t_thrd.utils_cxt.mctx_sequent_count = 0; /* Initialize the memory tracking information */ MemoryTrackingInit(); /* * Build EState, switch into per-query memory context for startup. */ estate = CreateExecutorState(); queryDesc->estate = estate; /* record the init memory track of the executor engine */ #ifndef ENABLE_MEMORY_CHECK t_thrd.utils_cxt.ExecutorMemoryTrack = ((AllocSet)(estate->es_query_cxt))->track; #else t_thrd.utils_cxt.ExecutorMemoryTrack = ((AsanSet)(estate->es_query_cxt))->track; #endif #ifndef ENABLE_MULTIPLE_NODES (void)InitStreamObject(queryDesc->plannedstmt); #endif if (StreamTopConsumerAmI() && queryDesc->instrument_options != 0 && IS_PGXC_DATANODE) { int dop = queryDesc->plannedstmt->query_dop; if (queryDesc->plannedstmt->in_compute_pool) { dop = 1; } AutoContextSwitch streamCxtGuard(u_sess->stream_cxt.stream_runtime_mem_cxt); u_sess->instr_cxt.global_instr = StreamInstrumentation::InitOnDn(queryDesc, dop); // u_sess->instr_cxt.thread_instr in DN u_sess->instr_cxt.thread_instr = u_sess->instr_cxt.global_instr->allocThreadInstrumentation(queryDesc->plannedstmt->planTree->plan_node_id); } /* CN of the compute pool. */ if (StreamTopConsumerAmI() && queryDesc->instrument_options != 0 && IS_PGXC_COORDINATOR && queryDesc->plannedstmt->in_compute_pool) { const int dop = 1; /* m_instrDataContext in CN of compute pool is under t_thrd.mem_cxt.stream_runtime_mem_cxt */ AutoContextSwitch streamCxtGuard(u_sess->stream_cxt.stream_runtime_mem_cxt); u_sess->instr_cxt.global_instr = StreamInstrumentation::InitOnCP(queryDesc, dop); u_sess->instr_cxt.thread_instr = u_sess->instr_cxt.global_instr->allocThreadInstrumentation(queryDesc->plannedstmt->planTree->plan_node_id); } old_context = MemoryContextSwitchTo(estate->es_query_cxt); #ifdef ENABLE_LLVM_COMPILE /* Initialize the actual CodeGenObj */ CodeGenThreadRuntimeSetup(); #endif /* * Fill in external parameters, if any, from queryDesc; and allocate * workspace for internal parameters */ estate->es_param_list_info = queryDesc->params; if (queryDesc->plannedstmt->nParamExec > 0) { estate->es_param_exec_vals = (ParamExecData *)palloc0(queryDesc->plannedstmt->nParamExec * sizeof(ParamExecData)); } /* * If non-read-only query, set the command ID to mark output tuples with */ switch (queryDesc->operation) { case CMD_SELECT: /* * SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark tuples */ if (queryDesc->plannedstmt->rowMarks != NIL || queryDesc->plannedstmt->hasModifyingCTE) { estate->es_output_cid = GetCurrentCommandId(true); } /* * A SELECT without modifying CTEs can't possibly queue triggers, * so force skip-triggers mode. This is just a marginal efficiency * hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't * all that expensive, but we might as well do it. */ if (!queryDesc->plannedstmt->hasModifyingCTE) { eflags |= EXEC_FLAG_SKIP_TRIGGERS; } break; case CMD_INSERT: case CMD_DELETE: case CMD_UPDATE: case CMD_MERGE: estate->es_output_cid = GetCurrentCommandId(true); break; default: ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized operation code: %d", (int)queryDesc->operation))); break; } /* * Copy other important information into the EState */ estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot); estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot); estate->es_top_eflags = eflags; estate->es_instrument = queryDesc->instrument_options; /* Apply BloomFilter array space. */ if (queryDesc->plannedstmt->MaxBloomFilterNum > 0) { int bloom_size = queryDesc->plannedstmt->MaxBloomFilterNum; estate->es_bloom_filter.array_size = bloom_size; estate->es_bloom_filter.bfarray = (filter::BloomFilter **)palloc0(bloom_size * sizeof(filter::BloomFilter *)); } #ifdef ENABLE_MULTIPLE_NODES /* statement always start from CN or dn connected by client directly. */ if (IS_PGXC_COORDINATOR || IsConnFromApp()) { #else /* statement always start in non-stream thread */ if (!StreamThreadAmI()) { #endif SetCurrentStmtTimestamp(); } /* else stmtSystemTimestamp synchronize from CN */ /* * Initialize the plan state tree */ #ifndef ENABLE_LITE_MODE instr_time starttime; (void)INSTR_TIME_SET_CURRENT(starttime); #endif IPC_PERFORMANCE_LOG_OUTPUT("standard_ExecutorStart InitPlan start."); InitPlan(queryDesc, eflags); IPC_PERFORMANCE_LOG_OUTPUT("standard_ExecutorStart InitPlan end."); #ifndef ENABLE_LITE_MODE totaltime += elapsed_time(&starttime); #endif /* * if current plan is working for expression, no need to collect instrumentation. */ if (estate->es_instrument != INSTRUMENT_NONE && StreamTopConsumerAmI() && u_sess->instr_cxt.global_instr && u_sess->instr_cxt.thread_instr) { int node_id = queryDesc->plannedstmt->planTree->plan_node_id - 1; int *m_instrArrayMap = u_sess->instr_cxt.thread_instr->m_instrArrayMap; u_sess->instr_cxt.thread_instr->m_instrArray[m_instrArrayMap[node_id]].instr.instruPlanData.init_time = totaltime; } /* * Set up an AFTER-trigger statement context, unless told not to, or * unless it's EXPLAIN-only mode (when ExecutorFinish won't be called). */ if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY))) { AfterTriggerBeginQuery(); } (void)MemoryContextSwitchTo(old_context); } /* ---------------------------------------------------------------- * ExecutorRun * * This is the main routine of the executor module. It accepts * the query descriptor from the traffic cop and executes the * query plan. * * ExecutorStart must have been called already. * * If direction is NoMovementScanDirection then nothing is done * except to start up/shut down the destination. Otherwise, * we retrieve up to 'count' tuples in the specified direction. * * Note: count = 0 is interpreted as no portal limit, i.e., run to * completion. Also note that the count limit is only applied to * retrieved tuples, not for instance to those inserted/updated/deleted * by a ModifyTable plan node. * * There is no return value, but output tuples (if any) are sent to * the destination receiver specified in the QueryDesc; and the number * of tuples processed at the top level can be found in * estate->es_processed. * * We provide a function hook variable that lets loadable plugins * get control when ExecutorRun is called. Such a plugin would * normally call standard_ExecutorRun(). * * ---------------------------------------------------------------- */ void ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, long count) { /* sql active feature, opeartor history statistics */ int instrument_option = 0; bool has_track_operator = false; char* old_stmt_name = u_sess->pcache_cxt.cur_stmt_name; u_sess->statement_cxt.executer_run_level++; if (u_sess->SPI_cxt._connected >= 0) { u_sess->pcache_cxt.cur_stmt_name = NULL; } exec_explain_plan(queryDesc); if (u_sess->attr.attr_resource.use_workload_manager && u_sess->attr.attr_resource.resource_track_level == RESOURCE_TRACK_OPERATOR && queryDesc != NULL && queryDesc->plannedstmt != NULL && queryDesc->plannedstmt->is_stream_plan && u_sess->exec_cxt.need_track_resource) { #ifdef STREAMPLAN if (queryDesc->instrument_options) { instrument_option = queryDesc->instrument_options; } if (IS_PGXC_COORDINATOR && instrument_option != 0 && u_sess->instr_cxt.global_instr == NULL && queryDesc->plannedstmt->num_nodes != 0) { has_track_operator = true; queryDesc->plannedstmt->instrument_option = instrument_option; AutoContextSwitch streamCxtGuard(t_thrd.mem_cxt.msg_mem_cxt); int dop = queryDesc->plannedstmt->query_dop; u_sess->instr_cxt.global_instr = StreamInstrumentation::InitOnCn(queryDesc, dop); MemoryContext old_context = u_sess->instr_cxt.global_instr->getInstrDataContext(); u_sess->instr_cxt.thread_instr = u_sess->instr_cxt.global_instr->allocThreadInstrumentation( queryDesc->plannedstmt->planTree->plan_node_id); (void)MemoryContextSwitchTo(old_context); } #endif } bool can_operator_history_statistics = false; if (u_sess->exec_cxt.need_track_resource && queryDesc && (has_track_operator || (IS_PGXC_DATANODE && queryDesc->instrument_options))) { can_operator_history_statistics = true; } if (can_operator_history_statistics) { ExplainNodeFinish(queryDesc->planstate, NULL, (TimestampTz)0.0, true); } if (ExecutorRun_hook) { (*ExecutorRun_hook)(queryDesc, direction, count); } else { standard_ExecutorRun(queryDesc, direction, count); } if (IS_PGXC_COORDINATOR || IS_SINGLE_NODE) { if (queryDesc->operation == CMD_INSERT || queryDesc->operation == CMD_DELETE || queryDesc->operation == CMD_UPDATE || queryDesc->operation == CMD_MERGE) { report_iud_time(queryDesc); } } /* SQL Self-Tuning : Analyze query plan issues based on runtime info when query execution is finished */ if (u_sess->exec_cxt.need_track_resource && queryDesc != NULL && has_track_operator && (IS_PGXC_COORDINATOR || IS_SINGLE_NODE)) { List *issue_results = PlanAnalyzerOperator(queryDesc, queryDesc->planstate); /* If plan issue is found, store it in sysview gs_wlm_session_history */ if (issue_results != NIL) { RecordQueryPlanIssues(issue_results); } } print_duration(queryDesc); instr_stmt_report_query_plan(queryDesc); instr_stmt_report_cause_type(queryDesc->plannedstmt->cause_type); /* sql active feature, opeartor history statistics */ if (can_operator_history_statistics) { u_sess->instr_cxt.can_record_to_table = true; ExplainNodeFinish(queryDesc->planstate, queryDesc->plannedstmt, GetCurrentTimestamp(), false); if ((IS_PGXC_COORDINATOR) && u_sess->instr_cxt.global_instr != NULL) { delete u_sess->instr_cxt.global_instr; u_sess->instr_cxt.thread_instr = NULL; u_sess->instr_cxt.global_instr = NULL; } } /* * Record the number of rows affected into the session, but only support * DML statement now */ if(queryDesc!=NULL && queryDesc->estate!=NULL){ switch (queryDesc->operation) { case CMD_INSERT: case CMD_UPDATE: case CMD_DELETE: case CMD_MERGE: u_sess->statement_cxt.current_row_count = queryDesc->estate->es_processed; u_sess->statement_cxt.last_row_count = u_sess->statement_cxt.current_row_count; break; case CMD_SELECT: u_sess->statement_cxt.current_row_count = -1; u_sess->statement_cxt.last_row_count = u_sess->statement_cxt.current_row_count; break; default: /* default set queryDesc->estate->es_processed */ u_sess->statement_cxt.current_row_count = queryDesc->estate->es_processed; u_sess->statement_cxt.last_row_count = u_sess->statement_cxt.current_row_count; break; } } u_sess->pcache_cxt.cur_stmt_name = old_stmt_name; u_sess->statement_cxt.executer_run_level--; } void standard_ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, long count) { EState *estate = NULL; CmdType operation; DestReceiver *dest = NULL; bool send_tuples = false; MemoryContext old_context; double totaltime = 0; /* sanity checks */ Assert(queryDesc != NULL); estate = queryDesc->estate; Assert(estate != NULL); Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY)); /* * Switch into per-query memory context */ old_context = MemoryContextSwitchTo(estate->es_query_cxt); #ifdef ENABLE_LLVM_COMPILE /* * Generate machine code for this query. */ if (CodeGenThreadObjectReady()) { if (anls_opt_is_on(ANLS_LLVM_COMPILE) && estate->es_instrument > 0) { TRACK_START(queryDesc->planstate->plan->plan_node_id, LLVM_COMPILE_TIME); CodeGenThreadRuntimeCodeGenerate(); TRACK_END(queryDesc->planstate->plan->plan_node_id, LLVM_COMPILE_TIME); } else { CodeGenThreadRuntimeCodeGenerate(); } } #endif /* Allow instrumentation of Executor overall runtime */ if (queryDesc->totaltime) { queryDesc->totaltime->memoryinfo.nodeContext = estate->es_query_cxt; InstrStartNode(queryDesc->totaltime); } /* * extract information from the query descriptor and the query feature. */ operation = queryDesc->operation; dest = queryDesc->dest; /* * startup tuple receiver, if we will be emitting tuples */ estate->es_processed = 0; estate->es_last_processed = 0; estate->es_lastoid = InvalidOid; send_tuples = (operation == CMD_SELECT || queryDesc->plannedstmt->hasReturning); /* * In order to ensure the integrity of the message(T-C-Z), regardless of the value of * u_sess->exec_cxt.executor_stop_flag, the 'T' message should be sent. */ if (send_tuples) (*dest->rStartup)(dest, operation, queryDesc->tupDesc); if (queryDesc->plannedstmt->bucketMap[0] != NULL) { u_sess->exec_cxt.global_bucket_map = queryDesc->plannedstmt->bucketMap[0]; u_sess->exec_cxt.global_bucket_cnt = queryDesc->plannedstmt->bucketCnt[0]; } else { u_sess->exec_cxt.global_bucket_map = NULL; u_sess->exec_cxt.global_bucket_cnt = 0; } #ifndef ENABLE_LITE_MODE instr_time starttime; (void)INSTR_TIME_SET_CURRENT(starttime); #endif /* * run plan */ if (!ScanDirectionIsNoMovement(direction)) { if (queryDesc->planstate->vectorized) { ExecuteVectorizedPlan(estate, queryDesc->planstate, operation, send_tuples, count, direction, dest); } else { #ifdef ENABLE_MOT ExecutePlan(estate, queryDesc->planstate, operation, send_tuples, count, direction, dest, queryDesc->mot_jit_context); #else ExecutePlan(estate, queryDesc->planstate, operation, send_tuples, count, direction, dest); #endif } } #ifndef ENABLE_LITE_MODE totaltime += elapsed_time(&starttime); #endif queryDesc->executed = true; /* * if current plan is working for expression, no need to collect instrumentation. */ if ( #ifndef ENABLE_MULTIPLE_NODES !u_sess->attr.attr_common.enable_seqscan_fusion && #endif estate->es_instrument != INSTRUMENT_NONE && StreamTopConsumerAmI() && u_sess->instr_cxt.global_instr && u_sess->instr_cxt.thread_instr) { int node_id = queryDesc->plannedstmt->planTree->plan_node_id - 1; int* m_instrArrayMap = u_sess->instr_cxt.thread_instr->m_instrArrayMap; u_sess->instr_cxt.thread_instr->m_instrArray[m_instrArrayMap[node_id]].instr.instruPlanData.run_time = totaltime; } /* * shutdown tuple receiver, if we started it */ if (send_tuples) { (*dest->rShutdown)(dest); } if (queryDesc->totaltime) { InstrStopNode(queryDesc->totaltime, estate->es_processed); } (void)MemoryContextSwitchTo(old_context); } /* ---------------------------------------------------------------- * ExecutorFinish * * This routine must be called after the last ExecutorRun call. * It performs cleanup such as firing AFTER triggers. It is * separate from ExecutorEnd because EXPLAIN ANALYZE needs to * include these actions in the total runtime. * * We provide a function hook variable that lets loadable plugins * get control when ExecutorFinish is called. Such a plugin would * normally call standard_ExecutorFinish(). * * ---------------------------------------------------------------- */ void ExecutorFinish(QueryDesc *queryDesc) { if (ExecutorFinish_hook) { (*ExecutorFinish_hook)(queryDesc); } else { standard_ExecutorFinish(queryDesc); } } void standard_ExecutorFinish(QueryDesc *queryDesc) { EState *estate = NULL; MemoryContext old_context; /* sanity checks */ Assert(queryDesc != NULL); estate = queryDesc->estate; Assert(estate != NULL); Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY)); /* This should be run once and only once per Executor instance */ Assert(!estate->es_finished); /* Switch into per-query memory context */ old_context = MemoryContextSwitchTo(estate->es_query_cxt); /* Allow instrumentation of Executor overall runtime */ if (queryDesc->totaltime) InstrStartNode(queryDesc->totaltime); /* Run ModifyTable nodes to completion */ ExecPostprocessPlan(estate); /* Execute queued AFTER triggers, unless told not to */ if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS)) { AfterTriggerEndQuery(estate); } if (queryDesc->totaltime) { InstrStopNode(queryDesc->totaltime, 0); } (void)MemoryContextSwitchTo(old_context); estate->es_finished = true; } /* ---------------------------------------------------------------- * ExecutorEnd * * This routine must be called at the end of execution of any * query plan * * We provide a function hook variable that lets loadable plugins * get control when ExecutorEnd is called. Such a plugin would * normally call standard_ExecutorEnd(). * * ---------------------------------------------------------------- */ void ExecutorEnd(QueryDesc *queryDesc) { if (ExecutorEnd_hook) { (*ExecutorEnd_hook)(queryDesc); } else { standard_ExecutorEnd(queryDesc); } } /* * description: get the plan node id of stream thread * return value: 0: in openGauss thread * >=1: in stream thread */ int ExecGetPlanNodeid(void) { int key = 0; if (StreamThreadAmI()) { key = u_sess->stream_cxt.producer_obj->getKey().planNodeId; } return key; } void standard_ExecutorEnd(QueryDesc *queryDesc) { EState *estate = NULL; MemoryContext old_context; double totaltime = 0; #ifndef ENABLE_LITE_MODE instr_time starttime; (void)INSTR_TIME_SET_CURRENT(starttime); #endif /* sanity checks */ Assert(queryDesc != NULL); estate = queryDesc->estate; Assert(estate != NULL); #ifdef MEMORY_CONTEXT_CHECKING /* Check all memory contexts when executor starts */ MemoryContextCheck(t_thrd.top_mem_cxt, false); #endif /* * Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This * Assert is needed because ExecutorFinish is new as of 9.1, and callers * might forget to call it. */ Assert(estate->es_finished || (estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY)); /* * Switch into per-query memory context to run ExecEndPlan */ old_context = MemoryContextSwitchTo(estate->es_query_cxt); EARLY_FREE_LOG(elog(LOG, "Early Free: Start to end plan, memory used %d MB.", getSessionMemoryUsageMB())); ExecEndPlan(queryDesc->planstate, estate); /* do away with our snapshots */ UnregisterSnapshot(estate->es_snapshot); UnregisterSnapshot(estate->es_crosscheck_snapshot); #ifdef ENABLE_LLVM_COMPILE /* Do not release codegen in Fmgr and Procedure */ if (!t_thrd.codegen_cxt.g_runningInFmgr && u_sess->SPI_cxt._connected == -1) { CodeGenThreadTearDown(); } #endif /* * Must switch out of context before destroying it */ (void)MemoryContextSwitchTo(old_context); #ifdef MEMORY_CONTEXT_CHECKING /* Check per-query memory context before FreeExecutorState */ MemoryContextCheck(estate->es_query_cxt, (estate->es_query_cxt->session_id > 0)); #endif /* * Release EState and per-query memory context. This should release * everything the executor has allocated. */ FreeExecutorState(estate); /* Reset queryDesc fields that no longer point to anything */ queryDesc->tupDesc = NULL; queryDesc->estate = NULL; queryDesc->planstate = NULL; queryDesc->totaltime = NULL; /* output the memory tracking information into file */ MemoryTrackingOutputFile(); #ifndef ENABLE_LITE_MODE totaltime += elapsed_time(&starttime); #endif /* * if current plan is working for expression, no need to collect instrumentation. */ if (queryDesc->instrument_options != 0 && StreamTopConsumerAmI() && u_sess->instr_cxt.global_instr && u_sess->instr_cxt.thread_instr) { int node_id = queryDesc->plannedstmt->planTree->plan_node_id - 1; int *m_instrArrayMap = u_sess->instr_cxt.thread_instr->m_instrArrayMap; u_sess->instr_cxt.thread_instr->m_instrArray[m_instrArrayMap[node_id]].instr.instruPlanData.end_time = totaltime; } /* reset global values of perm space */ perm_space_value_reset(); } /* ---------------------------------------------------------------- * ExecutorRewind * * This routine may be called on an open queryDesc to rewind it * to the start. * ---------------------------------------------------------------- */ void ExecutorRewind(QueryDesc *queryDesc) { EState *estate = NULL; MemoryContext old_context; /* sanity checks */ Assert(queryDesc != NULL); estate = queryDesc->estate; Assert(estate != NULL); /* It's probably not sensible to rescan updating queries */ Assert(queryDesc->operation == CMD_SELECT); /* * Switch into per-query memory context */ old_context = MemoryContextSwitchTo(estate->es_query_cxt); /* * rescan plan */ ExecReScan(queryDesc->planstate); (void)MemoryContextSwitchTo(old_context); } /* * ExecCheckRTPerms * Check access permissions for all relations listed in a range table. * * Returns true if permissions are adequate. Otherwise, throws an appropriate * error if ereport_on_violation is true, or simply returns false otherwise. */ bool ExecCheckRTPerms(List *rangeTable, bool ereport_on_violation) { ListCell *l = NULL; bool result = true; gstrace_entry(GS_TRC_ID_ExecCheckRTPerms); #ifdef ENABLE_MULTIPLE_NODES bool with_ts_rel = false; char* ts_relname = NULL; #endif foreach (l, rangeTable) { RangeTblEntry *rte = (RangeTblEntry *)lfirst(l); #ifdef ENABLE_MULTIPLE_NODES /* As the inner table of timeseries table that the tag rel can be skipped */ if (with_ts_rel && rte->relname != NULL && strncmp(rte->relname, TsConf::TAG_TABLE_NAME_PREFIX, strlen(TsConf::TAG_TABLE_NAME_PREFIX)) == 0) { /* check from the next position after ts# */ if (strncmp(strchr(rte->relname + strlen(TsConf::TAG_TABLE_NAME_PREFIX), '#') + 1, ts_relname, strlen(ts_relname)) == 0) { with_ts_rel = false; continue; } } #endif result = ExecCheckRTEPerms(rte); if (!result) { Assert(rte->rtekind == RTE_RELATION); if (ereport_on_violation) { aclcheck_error(ACLCHECK_NO_PRIV, ACL_KIND_CLASS, get_rel_name(rte->relid)); } gstrace_exit(GS_TRC_ID_ExecCheckRTPerms); return false; #ifdef ENABLE_MULTIPLE_NODES } else { /* check whether the timeseries table */ if (rte->rtekind == RTE_RELATION && list_length(rangeTable) > 1 && with_ts_rel == false && rte->orientation == REL_TIMESERIES_ORIENTED) { with_ts_rel = true; ts_relname = rte->relname; continue; } #endif } } if (ExecutorCheckPerms_hook) { result = (*ExecutorCheckPerms_hook)(rangeTable, ereport_on_violation); } gstrace_exit(GS_TRC_ID_ExecCheckRTPerms); return result; } /* * ExecCheckRTEPerms * Check access permissions for a single RTE. */ static bool ExecCheckRTEPerms(RangeTblEntry *rte) { AclMode requiredPerms; AclMode relPerms; AclMode remainingPerms; Oid rel_oid; Oid userid; Bitmapset *tmpset = NULL; int col; gstrace_entry(GS_TRC_ID_ExecCheckRTEPerms); /* * Only plain-relation RTEs need to be checked here. Function RTEs are * checked by init_fcache when the function is prepared for execution. * Join, subquery, and special RTEs need no checks. */ if (rte->rtekind != RTE_RELATION) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return true; } /* * Deal with 'plan_table_data' permission checking here. * We do not allow ordinary user to select from 'plan_table_data'. */ if (rte->relname != NULL && strcasecmp(rte->relname, T_PLAN_TABLE_DATA) == 0) { if (checkPermsForPlanTable(rte) == 0) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } else if (checkPermsForPlanTable(rte) == 1) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return true; } } #ifndef ENABLE_LITE_MODE /* * If relation is in ledger schema, avoid procedure or function on it. */ if (u_sess->SPI_cxt._connected > -1 && is_ledger_usertable(rte->relid)) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } #endif /* * No work if requiredPerms is empty. */ requiredPerms = rte->requiredPerms; if (requiredPerms == 0) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return true; } /* * when a non-superuser is doing analyze, a select pg_statistic/pg_statistic_ext query will be * sent from the other CN to current CN to synchronize statistics collectted * from DNs. Unfortunately, non-superuser is not allowed to select pg_statistic/pg_statistic_ext, * so we should do special handling: for query involving pg_statistic/pg_statistic_ext from * other CNs, ignore the authorization check. */ if ((StatisticRelationId == rte->relid || StatisticExtRelationId == rte->relid) && IsConnFromCoord()) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return true; } rel_oid = rte->relid; /* * userid to check as: current user unless we have a setuid indication. * * Note: GetUserId() is presently fast enough that there's no harm in * calling it separately for each RTE. If that stops being true, we could * call it once in ExecCheckRTPerms and pass the userid down from there. * But for now, no need for the extra clutter. */ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); /* * We must have *all* the requiredPerms bits, but some of the bits can be * satisfied from column-level rather than relation-level permissions. * First, remove any bits that are satisfied by relation permissions. */ relPerms = pg_class_aclmask(rel_oid, userid, requiredPerms, ACLMASK_ALL); remainingPerms = requiredPerms & ~relPerms; if (remainingPerms != 0) { /* * If we lack any permissions that exist only as relation permissions, * we can fail straight away. */ if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE)) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } /* * Check to see if we have the needed privileges at column level. * * Note: failures just report a table-level error; it would be nicer * to report a column-level error if we have some but not all of the * column privileges. */ if (remainingPerms & ACL_SELECT) { /* * When the query doesn't explicitly reference any columns (for * example, SELECT COUNT(*) FROM table), allow the query if we * have SELECT on any column of the rel, as per SQL spec. */ if (bms_is_empty(rte->selectedCols)) { if (pg_attribute_aclcheck_all(rel_oid, userid, ACL_SELECT, ACLMASK_ANY) != ACLCHECK_OK) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } } tmpset = bms_copy(rte->selectedCols); while ((col = bms_first_member(tmpset)) >= 0) { /* remove the column number offset */ col += FirstLowInvalidHeapAttributeNumber; if (col == InvalidAttrNumber) { /* Whole-row reference, must have priv on all cols */ if (pg_attribute_aclcheck_all(rel_oid, userid, ACL_SELECT, ACLMASK_ALL) != ACLCHECK_OK) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } } else { if (pg_attribute_aclcheck(rel_oid, col, userid, ACL_SELECT) != ACLCHECK_OK) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } } } bms_free_ext(tmpset); } /* * Basically the same for the mod columns, with either INSERT or * UPDATE privilege as specified by remainingPerms. */ if ((remainingPerms & ACL_INSERT) && !ExecCheckRTEPermsModified(rel_oid, userid, rte->insertedCols, ACL_INSERT)) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } if ((remainingPerms & ACL_UPDATE) && !ExecCheckRTEPermsModified(rel_oid, userid, rte->updatedCols, ACL_UPDATE)) { gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return false; } } gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms); return true; } /* * ExecCheckRTEPermsModified * Check INSERT or UPDATE access permissions for a single RTE (these * are processed uniformly). */ static bool ExecCheckRTEPermsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols, AclMode requiredPerms) { int col = -1; /* * When the query doesn't explicitly update any columns, allow the query * if we have permission on any column of the rel. This is to handle * SELECT FOR UPDATE as well as possible corner cases in UPDATE. */ if (bms_is_empty(modifiedCols)) { if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms, ACLMASK_ANY) != ACLCHECK_OK) { return false; } } while ((col = bms_next_member(modifiedCols, col)) >= 0) { /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */ AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber; if (attno == InvalidAttrNumber) { /* whole-row reference can't happen here */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("whole-row update is not implemented"))); } else { if (pg_attribute_aclcheck(relOid, attno, userid, requiredPerms) != ACLCHECK_OK) return false; } } return true; } /* * Check that the query does not imply any writes to non-temp tables. * * Note: in a Hot Standby slave this would need to reject writes to temp * tables as well; but an HS slave can't have created any temp tables * in the first place, so no need to check that. */ void ExecCheckXactReadOnly(PlannedStmt *plannedstmt) { ListCell *l = NULL; /* Fail if write permissions are requested on any non-temp table */ foreach (l, plannedstmt->rtable) { RangeTblEntry *rte = (RangeTblEntry *)lfirst(l); if (rte->rtekind != RTE_RELATION) { continue; } if ((rte->requiredPerms & (~ACL_SELECT)) == 0) { continue; } if (isTempNamespace(get_rel_namespace(rte->relid))) { continue; } if (get_rel_persistence(rte->relid) == RELPERSISTENCE_GLOBAL_TEMP) { continue; } if (rte->relid == PgxcNodeRelationId && g_instance.attr.attr_storage.IsRoachStandbyCluster && u_sess->attr.attr_common.xc_maintenance_mode) { continue; } PreventCommandIfReadOnly(CreateCommandTag((Node *)plannedstmt)); } } /* ---------------------------------------------------------------- * InitPlan * * Initializes the query plan: open files, allocate storage * and start up the rule manager * ---------------------------------------------------------------- */ void InitPlan(QueryDesc *queryDesc, int eflags) { CmdType operation = queryDesc->operation; PlannedStmt *plannedstmt = queryDesc->plannedstmt; Plan *plan = plannedstmt->planTree; List *rangeTable = plannedstmt->rtable; EState *estate = queryDesc->estate; PlanState *planstate = NULL; TupleDesc tupType = NULL; ListCell *l = NULL; ListCell *lc = NULL; int i; bool check = false; gstrace_entry(GS_TRC_ID_InitPlan); /* We release the partition object lock in InitPlan, here the snapshow is already obtained, so instantaneous * inconsistency will never happend. See pg_partition_fn.h for more detail. Distribute mode doesn't support * partition DDL/DML parallel work, no need this action. */ #ifndef ENABLE_MULTIPLE_NODES ListCell *cell; foreach(cell, u_sess->storage_cxt.partition_dml_oids) { UnlockPartitionObject(lfirst_oid(cell), PARTITION_OBJECT_LOCK_SDEQUENCE, PARTITION_SHARE_LOCK); } list_free_ext(u_sess->storage_cxt.partition_dml_oids); u_sess->storage_cxt.partition_dml_oids = NIL; #endif /* * Do permissions checks */ if (!(IS_PGXC_DATANODE && (IsConnFromCoord() || IsConnFromDatanode()))) { check = true; } if (u_sess->exec_cxt.is_exec_trigger_func) { check = true; } if (plannedstmt->in_compute_pool) { check = true; } if (u_sess->pgxc_cxt.is_gc_fdw && u_sess->pgxc_cxt.is_gc_fdw_analyze) { check = true; } if (check) { (void)ExecCheckRTPerms(rangeTable, true); } /* * initialize the node's execution state */ estate->es_range_table = rangeTable; estate->es_plannedstmt = plannedstmt; #ifdef ENABLE_MOT estate->mot_jit_context = queryDesc->mot_jit_context; #endif /* * initialize result relation stuff, and open/lock the result rels. * * We must do this before initializing the plan tree, else we might try to * do a lock upgrade if a result rel is also a source rel. * * * nodegroup: * Node: We may skip a case where target table is not on this datanode, such * case happens on a target table's node group not matching the nodes that we * are shipping plan to. */ #ifdef ENABLE_MULTIPLE_NODES if (plannedstmt->resultRelations && (!IS_PGXC_DATANODE || NeedExecute(plan))) { #else if (plannedstmt->resultRelations && (!StreamThreadAmI() || NeedExecute(plan))) { #endif List *resultRelations = plannedstmt->resultRelations; int numResultRelations = 0; ResultRelInfo *resultRelInfos = NULL; ResultRelInfo *resultRelInfo = NULL; foreach (l, plannedstmt->resultRelations) { numResultRelations += list_length((List*)lfirst(l)); } resultRelInfos = (ResultRelInfo *)palloc(numResultRelations * sizeof(ResultRelInfo)); resultRelInfo = resultRelInfos; foreach (lc, resultRelations) { List* resultRels = (List*)lfirst(lc); foreach (l, resultRels) { Index resultRelationIndex = lfirst_int(l); Oid resultRelationOid; Relation resultRelation; resultRelationOid = getrelid(resultRelationIndex, rangeTable); resultRelation = heap_open(resultRelationOid, RowExclusiveLock); /* check if modifytable's related temp table is valid */ if (STMT_RETRY_ENABLED) { // do noting for now, if query retry is on, just to skip validateTempRelation here } else validateTempRelation(resultRelation); InitResultRelInfo(resultRelInfo, resultRelation, resultRelationIndex, estate->es_instrument); resultRelInfo++; } } estate->es_result_relations = resultRelInfos; estate->es_num_result_relations = numResultRelations; /* es_result_relation_info is NULL except when within ModifyTable */ estate->es_result_relation_info = NULL; #ifdef PGXC estate->es_result_remoterel = NULL; #endif } else { /* * if no result relation, then set state appropriately */ estate->es_result_relations = NULL; estate->es_num_result_relations = 0; estate->es_result_relation_info = NULL; #ifdef PGXC estate->es_result_remoterel = NULL; #endif } /* * Similarly, we have to lock relations selected FOR [KEY] UPDATE/SHARE * before we initialize the plan tree, else we'd be risking lock upgrades. * While we are at it, build the ExecRowMark list. */ estate->es_rowMarks = NIL; uint64 plan_start_time = time(NULL); foreach (l, plannedstmt->rowMarks) { PlanRowMark *rc = (PlanRowMark *)lfirst(l); Oid relid; Relation relation = NULL; ExecRowMark *erm = NULL; /* ignore "parent" rowmarks; they are irrelevant at runtime */ if (rc->isParent) { continue; } /* * If you change the conditions under which rel locks are acquired * here, be sure to adjust ExecOpenScanRelation to match. */ switch (rc->markType) { case ROW_MARK_EXCLUSIVE: case ROW_MARK_NOKEYEXCLUSIVE: case ROW_MARK_SHARE: case ROW_MARK_KEYSHARE: if (IS_PGXC_COORDINATOR || u_sess->pgxc_cxt.PGXCNodeId < 0 || bms_is_member(u_sess->pgxc_cxt.PGXCNodeId, rc->bms_nodeids)) { relid = getrelid(rc->rti, rangeTable); relation = heap_open(relid, RowShareLock); } break; case ROW_MARK_REFERENCE: if (IS_PGXC_COORDINATOR || u_sess->pgxc_cxt.PGXCNodeId < 0 || bms_is_member(u_sess->pgxc_cxt.PGXCNodeId, rc->bms_nodeids)) { relid = getrelid(rc->rti, rangeTable); relation = heap_open(relid, AccessShareLock); } break; case ROW_MARK_COPY: case ROW_MARK_COPY_DATUM: /* there's no real table here ... */ break; default: ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized markType: %d when initializing query plan.", rc->markType))); break; } /* Check that relation is a legal target for marking */ if (relation != NULL) { CheckValidRowMarkRel(relation, rc->markType); } erm = (ExecRowMark *)palloc(sizeof(ExecRowMark)); erm->relation = relation; erm->rti = rc->rti; erm->prti = rc->prti; erm->rowmarkId = rc->rowmarkId; erm->markType = rc->markType; erm->waitPolicy = rc->waitPolicy; erm->waitSec = rc->waitSec; erm->numAttrs = rc->numAttrs; ItemPointerSetInvalid(&(erm->curCtid)); estate->es_rowMarks = lappend(estate->es_rowMarks, erm); } uint64 plan_end_time = time(NULL); if ((plan_end_time - plan_start_time) > THREAD_INTSERVAL_60S) { ereport(WARNING, (errmsg("InitPlan foreach plannedstmt->rowMarks takes %lus, plan_start_time:%lus, plan_end_time:%lus.", plan_end_time - plan_start_time, plan_start_time, plan_end_time))); } /* * Initialize the executor's tuple table to empty. */ estate->es_tupleTable = NIL; estate->es_epqTupleSlot = NULL; estate->es_trig_tuple_slot = NULL; estate->es_trig_oldtup_slot = NULL; estate->es_trig_newtup_slot = NULL; /* mark EvalPlanQual not active */ estate->es_epqTuple = NULL; estate->es_epqTupleSet = NULL; estate->es_epqScanDone = NULL; /* data redistribution for DFS table. */ if (u_sess->attr.attr_sql.enable_cluster_resize) { estate->dataDestRelIndex = plannedstmt->dataDestRelIndex; } estate->es_can_realtime_statistics = false; estate->es_can_history_statistics = false; if (u_sess->attr.attr_resource.use_workload_manager && u_sess->attr.attr_resource.resource_track_level == RESOURCE_TRACK_OPERATOR && !IsInitdb) { int max_plan_id = plannedstmt->num_plannodes; int current_realtime_num = hash_get_num_entries(g_operator_table.explain_info_hashtbl); if (current_realtime_num + max_plan_id < g_operator_table.max_realtime_num) { /* too many collect info now, ignore this time. */ estate->es_can_realtime_statistics = true; } else { ereport(LOG, (errmsg("Too many realtime info in the memory, current realtime record num is %d.", current_realtime_num))); } int current_collectinfo_num = hash_get_num_entries(g_operator_table.collected_info_hashtbl); if (current_collectinfo_num + max_plan_id <= g_operator_table.max_collectinfo_num) { /* too many collect info now, ignore this time. */ estate->es_can_history_statistics = true; } else { ereport(LOG, (errmsg("Too many history info in the memory, current history record num is %d.", current_collectinfo_num))); } u_sess->instr_cxt.operator_plan_number = plannedstmt->num_plannodes; } /* * Initialize private state information for each SubPlan. We must do this * before running ExecInitNode on the main query tree, since * ExecInitSubPlan expects to be able to find these entries. */ Assert(estate->es_subplanstates == NIL); /* Only generate one time when u_sess->debug_query_id = 0 in CN */ if ((IS_SINGLE_NODE || IS_PGXC_COORDINATOR) && u_sess->debug_query_id == 0) { u_sess->debug_query_id = generate_unique_id64(>_queryId); pgstat_report_queryid(u_sess->debug_query_id); } #ifndef ENABLE_MULTIPLE_NODES plannedstmt->queryId = u_sess->debug_query_id; #endif if (StreamTopConsumerAmI()) { uint64 stream_start_time = time(NULL); BuildStreamFlow(plannedstmt); uint64 stream_end_time = time(NULL); if ((stream_end_time - stream_start_time) > THREAD_INTSERVAL_60S) { ereport(WARNING, (errmsg("BuildStreamFlow stream_start_time:%lu,stream_end_time:%lu, BuildStreamFlow takes %lus.", stream_start_time, stream_end_time, (stream_end_time - stream_start_time)))); } } if (IS_PGXC_DATANODE) { u_sess->instr_cxt.gs_query_id->queryId = u_sess->debug_query_id; } else { u_sess->instr_cxt.gs_query_id->procId = t_thrd.proc_cxt.MyProcPid; u_sess->instr_cxt.gs_query_id->queryId = u_sess->debug_query_id; } i = 1; /* subplan indices count from 1 */ foreach (l, plannedstmt->subplans) { Plan *subplan = (Plan *)lfirst(l); PlanState *subplanstate = NULL; int sp_eflags; /* * A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If * it is a parameterless subplan (not initplan), we suggest that it be * prepared to handle REWIND efficiently; otherwise there is no need. */ sp_eflags = eflags & EXEC_FLAG_EXPLAIN_ONLY; if (bms_is_member(i, plannedstmt->rewindPlanIDs)) { sp_eflags |= EXEC_FLAG_REWIND; } /* * We initialize non-cte subplan node on coordinator (for explain) or one dn thread * that executes the subplan */ if (subplan && (plannedstmt->subplan_ids == NIL || #ifdef ENABLE_MULTIPLE_NODES (IS_PGXC_COORDINATOR && list_nth_int(plannedstmt->subplan_ids, i - 1) != 0) || #else (StreamTopConsumerAmI() && list_nth_int(plannedstmt->subplan_ids, i - 1) != 0) || #endif plannedstmt->planTree->plan_node_id == list_nth_int(plannedstmt->subplan_ids, i - 1))) { estate->es_under_subplan = true; subplanstate = ExecInitNode(subplan, estate, sp_eflags); /* Report subplan or recursive union is init */ if (IS_PGXC_DATANODE && IsA(subplan, RecursiveUnion)) { elog(DEBUG1, "MPP with-recursive init subplan for RecursiveUnion[%d] under top_plannode:[%d]", subplan->plan_node_id, plannedstmt->planTree->plan_node_id); } estate->es_under_subplan = false; } estate->es_subplanstates = lappend(estate->es_subplanstates, subplanstate); i++; } /* * Initialize the private state information for all the nodes in the query * tree. This opens files, allocates storage and leaves us ready to start * processing tuples. */ #ifdef ENABLE_MULTIPLE_NODES if (!IS_PGXC_COORDINATOR && plannedstmt->initPlan != NIL) { #else if (!StreamTopConsumerAmI() && plannedstmt->initPlan != NIL) { #endif plan->initPlan = plannedstmt->initPlan; estate->es_subplan_ids = plannedstmt->subplan_ids; } planstate = ExecInitNode(plan, estate, eflags); if (estate->pruningResult) { destroyPruningResult(estate->pruningResult); estate->pruningResult = NULL; } if (planstate->ps_ProjInfo) { planstate->ps_ProjInfo->pi_topPlan = true; } /* * Get the tuple descriptor describing the type of tuples to return. */ tupType = ExecGetResultType(planstate); /* * Initialize the junk filter if needed. SELECT queries need a filter if * there are any junk attrs in the top-level tlist. */ if (operation == CMD_SELECT) { bool junk_filter_needed = false; ListCell *tlist = NULL; foreach (tlist, plan->targetlist) { TargetEntry *tle = (TargetEntry *)lfirst(tlist); if (tle->resjunk) { junk_filter_needed = true; break; } } #ifdef ENABLE_MULTIPLE_NODES if (StreamTopConsumerAmI() || StreamThreadAmI()) { #else if (StreamThreadAmI()) { #endif junk_filter_needed = false; } if (junk_filter_needed) { JunkFilter *j = NULL; j = ExecInitJunkFilter(planstate->plan->targetlist, tupType->tdhasoid, ExecInitExtraTupleSlot(estate), tupType->td_tam_ops); estate->es_junkFilter = j; /* Want to return the cleaned tuple type */ tupType = j->jf_cleanTupType; } } queryDesc->tupDesc = tupType; queryDesc->planstate = planstate; if (plannedstmt->num_streams > 0 && !StreamThreadAmI() && !(eflags & EXEC_FLAG_EXPLAIN_ONLY)) { /* init stream thread in parallel */ StartUpStreamInParallel(queryDesc->plannedstmt, queryDesc->estate); } gstrace_exit(GS_TRC_ID_InitPlan); } /* * Check that a proposed result relation is a legal target for the operation * * Generally the parser and/or planner should have noticed any such mistake * already, but let's make sure. * * Note: when changing this function, you probably also need to look at * CheckValidRowMarkRel. */ void CheckValidResultRel(Relation resultRel, CmdType operation) { TriggerDesc *trigDesc = resultRel->trigdesc; FdwRoutine *fdwroutine = NULL; switch (resultRel->rd_rel->relkind) { case RELKIND_RELATION: if (u_sess->exec_cxt.is_exec_trigger_func && is_ledger_related_rel(resultRel)) { ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot change ledger relation \"%s\"", RelationGetRelationName(resultRel)))); } CheckCmdReplicaIdentity(resultRel, operation); break; case RELKIND_SEQUENCE: case RELKIND_LARGE_SEQUENCE: ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot change (large) sequence \"%s\"", RelationGetRelationName(resultRel)))); break; case RELKIND_TOASTVALUE: ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot change TOAST relation \"%s\"", RelationGetRelationName(resultRel)))); break; case RELKIND_VIEW: case RELKIND_CONTQUERY: /* * Okay only if there's a suitable INSTEAD OF trigger. Messages * here should match rewriteHandler.c's rewriteTargetView and * RewriteQuery, except that we omit errdetail because we haven't * got the information handy (and given that we really shouldn't * get here anyway, it's not worth great exertion to get). */ switch (operation) { case CMD_INSERT: if (trigDesc == NULL || !trigDesc->trig_insert_instead_row) { ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("cannot insert into view \"%s\"", RelationGetRelationName(resultRel)), errhint("To enable inserting into the view, provide an INSTEAD OF INSERT trigger or " "an unconditional ON INSERT DO INSTEAD rule."))); } break; case CMD_UPDATE: if (trigDesc == NULL || !trigDesc->trig_update_instead_row) { ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("cannot update view \"%s\"", RelationGetRelationName(resultRel)), errhint("To enable updating the view, provide an INSTEAD OF UPDATE trigger or " "an unconditional ON UPDATE DO INSTEAD rule."))); } break; case CMD_DELETE: if (trigDesc == NULL || !trigDesc->trig_delete_instead_row) { ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("cannot delete from view \"%s\"", RelationGetRelationName(resultRel)), errhint("To enable deleting from the view, provide an INSTEAD OF DELETE trigger or " "an unconditional ON DELETE DO INSTEAD rule."))); } break; default: ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized CmdType: %d when perform operations on view.", (int)operation))); break; } break; case RELKIND_MATVIEW: break; case RELKIND_STREAM: case RELKIND_FOREIGN_TABLE: /* Okay only if the FDW supports it */ fdwroutine = GetFdwRoutineForRelation(resultRel, false); switch (operation) { case CMD_INSERT: if (fdwroutine->ExecForeignInsert == NULL) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot insert into foreign table \"%s\"", RelationGetRelationName(resultRel)))); } if (fdwroutine->IsForeignRelUpdatable != NULL && (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0) { ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("foreign table \"%s\" does not allow inserts", RelationGetRelationName(resultRel)))); } break; case CMD_UPDATE: if (fdwroutine->ExecForeignUpdate == NULL) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot update foreign table \"%s\"", RelationGetRelationName(resultRel)))); } if (fdwroutine->IsForeignRelUpdatable != NULL && (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0) { ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("foreign table \"%s\" does not allow updates", RelationGetRelationName(resultRel)))); } break; case CMD_DELETE: if (fdwroutine->ExecForeignDelete == NULL) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot delete from foreign table \"%s\"", RelationGetRelationName(resultRel)))); } if (fdwroutine->IsForeignRelUpdatable != NULL && (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0) { ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("foreign table \"%s\" does not allow deletes", RelationGetRelationName(resultRel)))); } break; default: ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized CmdType: %d when perform operation on foreign table.", (int)operation))); break; } break; default: ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot change relation \"%s\"", RelationGetRelationName(resultRel)))); break; } } /* * Check that a proposed rowmark target relation is a legal target * * In most cases parser and/or planner should have noticed this already, but * they don't cover all cases. */ static void CheckValidRowMarkRel(Relation rel, RowMarkType markType) { switch (rel->rd_rel->relkind) { case RELKIND_RELATION: /* OK */ break; case RELKIND_SEQUENCE: case RELKIND_LARGE_SEQUENCE: /* Must disallow this because we don't vacuum sequences */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in (large) sequence \"%s\"", RelationGetRelationName(rel)))); break; case RELKIND_TOASTVALUE: /* We could allow this, but there seems no good reason to */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in TOAST relation \"%s\"", RelationGetRelationName(rel)))); break; case RELKIND_VIEW: /* Should not get here; planner should have expanded the view */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in view \"%s\"", RelationGetRelationName(rel)))); break; case RELKIND_CONTQUERY: /* Should not get here */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in contview \"%s\"", RelationGetRelationName(rel)))); break; case RELKIND_MATVIEW: /* Should not get here */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in materialized view \"%s\"", RelationGetRelationName(rel)))); break; case RELKIND_FOREIGN_TABLE: /* Should not get here; planner should have used ROW_MARK_COPY */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in foreign table \"%s\"", RelationGetRelationName(rel)))); break; case RELKIND_STREAM: /* Should not get here; planner should have used ROW_MARK_COPY */ ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in stream \"%s\"", RelationGetRelationName(rel)))); break; default: ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("cannot lock rows in relation \"%s\"", RelationGetRelationName(rel)))); break; } } /* * Initialize ResultRelInfo data for one result relation * * Caution: before Postgres 9.1, this function included the relkind checking * that's now in CheckValidResultRel, and it also did ExecOpenIndices if * appropriate. Be sure callers cover those needs. */ void InitResultRelInfo(ResultRelInfo *resultRelInfo, Relation resultRelationDesc, Index resultRelationIndex, int instrument_options) { errno_t rc = memset_s(resultRelInfo, sizeof(ResultRelInfo), 0, sizeof(ResultRelInfo)); securec_check(rc, "\0", "\0"); resultRelInfo->type = T_ResultRelInfo; resultRelInfo->ri_RangeTableIndex = resultRelationIndex; resultRelInfo->ri_RelationDesc = resultRelationDesc; resultRelInfo->ri_NumIndices = 0; resultRelInfo->ri_ContainGPI = false; resultRelInfo->ri_IndexRelationDescs = NULL; resultRelInfo->ri_IndexRelationInfo = NULL; /* make a copy so as not to depend on relcache info not changing... */ resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc); if (resultRelInfo->ri_TrigDesc) { int n = resultRelInfo->ri_TrigDesc->numtriggers; resultRelInfo->ri_TrigFunctions = (FmgrInfo *)palloc0(n * sizeof(FmgrInfo)); resultRelInfo->ri_TrigWhenExprs = (List **)palloc0(n * sizeof(List *)); if (instrument_options) { resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options); } } else { resultRelInfo->ri_TrigFunctions = NULL; resultRelInfo->ri_TrigWhenExprs = NULL; resultRelInfo->ri_TrigInstrument = NULL; } if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE || resultRelationDesc->rd_rel->relkind == RELKIND_STREAM) { resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true); } else { resultRelInfo->ri_FdwRoutine = NULL; } resultRelInfo->ri_FdwState = NULL; resultRelInfo->ri_ConstraintExprs = NULL; resultRelInfo->ri_GeneratedExprs = NULL; resultRelInfo->ri_junkFilter = NULL; resultRelInfo->ri_projectReturning = NULL; resultRelInfo->ri_mergeTargetRTI = 0; resultRelInfo->ri_mergeState = (MergeState *)palloc0(sizeof(MergeState)); } /* * ExecGetTriggerResultRel * * Get a ResultRelInfo for a trigger target relation. Most of the time, * triggers are fired on one of the result relations of the query, and so * we can just return a member of the es_result_relations array. (Note: in * self-join situations there might be multiple members with the same OID; * if so it doesn't matter which one we pick.) However, it is sometimes * necessary to fire triggers on other relations; this happens mainly when an * RI update trigger queues additional triggers on other relations, which will * be processed in the context of the outer query. For efficiency's sake, * we want to have a ResultRelInfo for those triggers too; that can avoid * repeated re-opening of the relation. (It also provides a way for EXPLAIN * ANALYZE to report the runtimes of such triggers.) So we make additional * ResultRelInfo's as needed, and save them in es_trig_target_relations. */ ResultRelInfo *ExecGetTriggerResultRel(EState *estate, Oid relid) { ResultRelInfo *rInfo = NULL; int nr; ListCell *l = NULL; Relation rel; MemoryContext old_context; /* First, search through the query result relations */ rInfo = estate->es_result_relations; nr = estate->es_num_result_relations; while (nr > 0) { if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) { return rInfo; } rInfo++; nr--; } /* Nope, but maybe we already made an extra ResultRelInfo for it */ foreach (l, estate->es_trig_target_relations) { rInfo = (ResultRelInfo *)lfirst(l); if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) { return rInfo; } } /* Nope, so we need a new one */ /* * Open the target relation's relcache entry. We assume that an * appropriate lock is still held by the backend from whenever the trigger * event got queued, so we need take no new lock here. Also, we need not * recheck the relkind, so no need for CheckValidResultRel. */ rel = heap_open(relid, NoLock); /* * Make the new entry in the right context. */ old_context = MemoryContextSwitchTo(estate->es_query_cxt); rInfo = makeNode(ResultRelInfo); InitResultRelInfo(rInfo, rel, 0, /* dummy rangetable index */ estate->es_instrument); estate->es_trig_target_relations = lappend(estate->es_trig_target_relations, rInfo); (void)MemoryContextSwitchTo(old_context); /* * Currently, we don't need any index information in ResultRelInfos used * only for triggers, so no need to call ExecOpenIndices. */ return rInfo; } /* * ExecContextForcesOids * * This is pretty grotty: when doing INSERT, UPDATE, or CREATE TABLE AS, * we need to ensure that result tuples have space for an OID iff they are * going to be stored into a relation that has OIDs. In other contexts * we are free to choose whether to leave space for OIDs in result tuples * (we generally don't want to, but we do if a physical-tlist optimization * is possible). This routine checks the plan context and returns TRUE if the * choice is forced, FALSE if the choice is not forced. In the TRUE case, * *hasoids is set to the required value. * * One reason this is ugly is that all plan nodes in the plan tree will emit * tuples with space for an OID, though we really only need the topmost node * to do so. However, node types like Sort don't project new tuples but just * return their inputs, and in those cases the requirement propagates down * to the input node. Eventually we might make this code smart enough to * recognize how far down the requirement really goes, but for now we just * make all plan nodes do the same thing if the top level forces the choice. * * We assume that if we are generating tuples for INSERT or UPDATE, * estate->es_result_relation_info is already set up to describe the target * relation. Note that in an UPDATE that spans an inheritance tree, some of * the target relations may have OIDs and some not. We have to make the * decisions on a per-relation basis as we initialize each of the subplans of * the ModifyTable node, so ModifyTable has to set es_result_relation_info * while initializing each subplan. * * CREATE TABLE AS is even uglier, because we don't have the target relation's * descriptor available when this code runs; we have to look aside at the * flags passed to ExecutorStart(). */ bool ExecContextForcesOids(PlanState *planstate, bool *hasoids) { ResultRelInfo *ri = planstate->state->es_result_relation_info; if (ri != NULL) { Relation rel = ri->ri_RelationDesc; if (rel != NULL) { *hasoids = rel->rd_rel->relhasoids; return true; } } if (planstate->state->es_top_eflags & EXEC_FLAG_WITH_OIDS) { *hasoids = true; return true; } if (planstate->state->es_top_eflags & EXEC_FLAG_WITHOUT_OIDS) { *hasoids = false; return true; } return false; } /* ---------------------------------------------------------------- * ExecPostprocessPlan * * Give plan nodes a final chance to execute before shutdown * ---------------------------------------------------------------- */ static void ExecPostprocessPlan(EState *estate) { ListCell *lc = NULL; /* * Make sure nodes run forward. */ estate->es_direction = ForwardScanDirection; /* * Run any secondary ModifyTable nodes to completion, in case the main * query did not fetch all rows from them. (We do this to ensure that * such nodes have predictable results.) */ foreach (lc, estate->es_auxmodifytables) { PlanState *ps = (PlanState *)lfirst(lc); if (!ps->vectorized) { for (;;) { TupleTableSlot *slot = NULL; /* Reset the per-output-tuple exprcontext each time */ ResetPerTupleExprContext(estate); slot = ExecProcNode(ps); if (TupIsNull(slot)) { break; } } } else { for (;;) { VectorBatch *batch = NULL; /* Reset the per-output-tuple exprcontext */ ResetPerTupleExprContext(estate); /* * Execute the plan and obtain a batch */ batch = VectorEngine(ps); if (BatchIsNull(batch)) { break; } } } } } /* ---------------------------------------------------------------- * ExecEndPlan * * Cleans up the query plan -- closes files and frees up storage * * NOTE: we are no longer very worried about freeing storage per se * in this code; FreeExecutorState should be guaranteed to release all * memory that needs to be released. What we are worried about doing * is closing relations and dropping buffer pins. Thus, for example, * tuple tables must be cleared or dropped to ensure pins are released. * ---------------------------------------------------------------- */ static void ExecEndPlan(PlanState *planstate, EState *estate) { ResultRelInfo *resultRelInfo = NULL; int i; ListCell *l = NULL; /* * shut down the node-type-specific query processing */ ExecEndNode(planstate); /* * for subplans too */ foreach (l, estate->es_subplanstates) { PlanState *subplanstate = (PlanState *)lfirst(l); ExecEndNode(subplanstate); } /* * destroy the executor's tuple table. Actually we only care about * releasing buffer pins and tupdesc refcounts; there's no need to pfree * the TupleTableSlots, since the containing memory context is about to go * away anyway. */ ExecResetTupleTable(estate->es_tupleTable, false); /* * close the result relation(s) if any, but hold locks until xact commit. */ resultRelInfo = estate->es_result_relations; for (i = estate->es_num_result_relations; i > 0; i--) { /* Close indices and then the relation itself */ ExecCloseIndices(resultRelInfo); heap_close(resultRelInfo->ri_RelationDesc, NoLock); resultRelInfo++; } /* free the fakeRelationCache */ if (estate->esfRelations != NULL) { FakeRelationCacheDestroy(estate->esfRelations); } estate->esCurrentPartition = NULL; /* * likewise close any trigger target relations */ foreach (l, estate->es_trig_target_relations) { resultRelInfo = (ResultRelInfo *)lfirst(l); /* Close indices and then the relation itself */ ExecCloseIndices(resultRelInfo); heap_close(resultRelInfo->ri_RelationDesc, NoLock); } /* * close any relations selected FOR [KEY] UPDATE/SHARE, again keeping locks */ foreach (l, estate->es_rowMarks) { ExecRowMark *erm = (ExecRowMark *)lfirst(l); if (erm->relation) { heap_close(erm->relation, NoLock); } } } /* * @Description: Collect Material for Subplan before running the main plan * * @param[IN] estate: working state for an Executor invocation * @return: void */ static void ExecCollectMaterialForSubplan(EState *estate) { ListCell *lc = NULL; foreach (lc, estate->es_material_of_subplan) { PlanState *node = (PlanState *)lfirst(lc); /* * If the current materliaze node is recursive-union and the right tree has stream * node, we are skip the pre-materliaze the subplan as at current point the SyncPoint * on consumer side is not start yet in ExecRecursiveUnion() */ if (EXEC_IN_RECURSIVE_MODE(node->plan)) { continue; } if (IsA(node, MaterialState)) { for (;;) { TupleTableSlot *slot = NULL; /* Reset the per-output-tuple exprcontext each time */ ResetPerTupleExprContext(estate); slot = ExecProcNode(node); if (TupIsNull(slot)) { /* Reset Material so that its output can be re-scanned */ ExecReScan(node); break; } } } else if (IsA(node, VecMaterialState)) { for (;;) { VectorBatch *batch = NULL; /* * Execute the plan and obtain a batch */ batch = VectorEngine(node); if (BatchIsNull(batch)) { /* Reset Material so that its output can be re-scanned */ VecExecReScan(node); break; } } } } } /* ---------------------------------------------------------------- * ExecutePlan * * Processes the query plan until we have retrieved 'numberTuples' tuples, * moving in the specified direction. * * Runs to completion if numberTuples is 0 * * Note: the ctid attribute is a 'junk' attribute that is removed before the * user can see it * ---------------------------------------------------------------- */ #ifdef ENABLE_MOT static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples, ScanDirection direction, DestReceiver *dest, JitExec::MotJitContext* motJitContext) #else static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples, ScanDirection direction, DestReceiver *dest) #endif { TupleTableSlot *slot = NULL; long current_tuple_count = 0; bool stream_instrument = false; bool need_sync_step = false; bool recursive_early_stop = false; #ifdef ENABLE_MOT bool motFinishedExecution = false; #endif /* Mark sync-up step is required */ if (NeedSyncUpProducerStep(planstate->plan)) { need_sync_step = true; /* * (G)Distributed With-Recursive Support * * If current producer thread is under a recursive cte plan node, we need do * step sync-up across the whole cluster */ u_sess->exec_cxt.global_iteration = 0; ExecutePlanSyncProducer(planstate, WITH_RECURSIVE_SYNC_NONERQ, &recursive_early_stop, ¤t_tuple_count); u_sess->exec_cxt.global_iteration = 1; } /* * Set the direction. */ estate->es_direction = direction; if (IS_PGXC_DATANODE) { /* Collect Material for Subplan first */ ExecCollectMaterialForSubplan(estate); /* Collect Executor run time including sending data time */ if (estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr && u_sess->instr_cxt.thread_instr) { stream_instrument = true; int plan_id = planstate->plan->plan_node_id; u_sess->instr_cxt.global_instr->SetStreamSend(plan_id, true); } } /* Change DestReceiver's tmpContext to PerTupleMemoryContext to avoid memory leak. */ dest->tmpContext = GetPerTupleMemoryContext(estate); // planstate->plan will be release if rollback excuted bool is_saved_recursive_union_plan_nodeid = EXEC_IN_RECURSIVE_MODE(planstate->plan); /* * Loop until we've processed the proper number of tuples from the plan. */ for (;;) { /* Reset the per-output-tuple exprcontext */ ResetPerTupleExprContext(estate); /* * Execute the plan and obtain a tuple */ #ifdef ENABLE_MOT if (unlikely(recursive_early_stop)) { slot = NULL; } else if (motJitContext && JitExec::IsJitContextValid(motJitContext) && !IS_PGXC_COORDINATOR && JitExec::IsMotCodegenEnabled()) { // MOT LLVM int scanEnded = 0; if (!motFinishedExecution) { // previous iteration has not signaled end of scan slot = planstate->ps_ResultTupleSlot; uint64_t tuplesProcessed = 0; int rc = JitExec::JitExecQuery( motJitContext, estate->es_param_list_info, slot, &tuplesProcessed, &scanEnded); if (scanEnded || (tuplesProcessed == 0) || (rc != 0)) { // raise flag so that next round we will bail out (current tuple still must be reported to user) motFinishedExecution = true; } } else { (void)ExecClearTuple(slot); } } else { slot = ExecProcNode(planstate); } #else slot = unlikely(recursive_early_stop) ? NULL : ExecProcNode(planstate); #endif /* * ------------------------------------------------------------------------------ * (G)Distributed With-Recursive Support * * If under recursive cte, we need check sync step and do rescan properly */ if (unlikely(need_sync_step) && TupIsNull(slot)) { if (!ExecutePlanSyncProducer(planstate, WITH_RECURSIVE_SYNC_RQSTEP, &recursive_early_stop, ¤t_tuple_count)) { /* current iteration step is not finish, continue to the next iteration */ continue; } } /* * if the tuple is null, then we assume there is nothing more to * process so we just end the loop... */ if (TupIsNull(slot)) { if(!is_saved_recursive_union_plan_nodeid) { break; } ExecEarlyFreeBody(planstate); break; } /* * If we have a junk filter, then project a new tuple with the junk * removed. * * Store this new "clean" tuple in the junkfilter's resultSlot. * (Formerly, we stored it back over the "dirty" tuple, which is WRONG * because that tuple slot has the wrong descriptor.) */ #ifdef ENABLE_MULTIPLE_NDOES if (estate->es_junkFilter != NULL && !StreamTopConsumerAmI() && !StreamThreadAmI()) { #else if (estate->es_junkFilter != NULL && !StreamThreadAmI()) { #endif /* If junkfilter->jf_resultSlot->tts_tupleDescriptor is different from slot->tts_tupleDescriptor, * and the datatype is not Compatible, * we reset junkfilter->jf_resultSlot->tts_tupleDescriptor by slot->tts_tupleDescriptor. * This just do only once. */ if (current_tuple_count == 0) { ExecSetjunkFilteDescriptor(estate->es_junkFilter, slot->tts_tupleDescriptor); } slot = ExecFilterJunk(estate->es_junkFilter, slot); } #ifdef ENABLE_MULTIPLE_NDOES if (stream_instrument) { t_thrd.pgxc_cxt.GlobalNetInstr = planstate->instrument; } #endif /* * If we are supposed to send the tuple somewhere, do so. (In * practice, this is probably always the case at this point.) */ #ifdef ENABLE_MULTIPLE_NDOES if (sendTuples && !u_sess->exec_cxt.executorStopFlag) #else if (sendTuples) #endif { (*dest->receiveSlot)(slot, dest); } #ifdef ENABLE_MULTIPLE_NDOES t_thrd.pgxc_cxt.GlobalNetInstr = NULL; #endif /* * Count tuples processed, if this is a SELECT. (For other operation * types, the ModifyTable plan node must count the appropriate * events.) */ if (operation == CMD_SELECT) { (estate->es_processed)++; } /* * check our tuple count.. if we've processed the proper number then * quit, else loop again and process more tuples. Zero numberTuples * means no limit. */ current_tuple_count++; if (numberTuples == current_tuple_count) { break; } } /* * if current plan is working for expression, no need to collect instrumentation. */ if ( #ifndef ENABLE_MULTIPLE_NODES !u_sess->attr.attr_common.enable_seqscan_fusion && #endif estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr && StreamTopConsumerAmI() && u_sess->instr_cxt.thread_instr) { int64 peak_memory = (uint64)(t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->peakChunksQuery - t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->initMemInChunks) << (chunkSizeInBits - BITS_IN_MB); u_sess->instr_cxt.global_instr->SetPeakNodeMemory(planstate->plan->plan_node_id, peak_memory); } } /* ---------------------------------------------------------------- * ExecutePlan * * Processes the query plan until we have retrieved 'numberTuples' tuples, * moving in the specified direction. * * Runs to completion if numberTuples is 0 * * Note: the ctid attribute is a 'junk' attribute that is removed before the * user can see it * ---------------------------------------------------------------- */ static void ExecuteVectorizedPlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples, ScanDirection direction, DestReceiver *dest) { VectorBatch *batch = NULL; long current_tuple_count; bool stream_instrument = false; /* * initialize local variables */ current_tuple_count = 0; /* * Set the direction. */ estate->es_direction = direction; if (IS_PGXC_DATANODE) { /* Collect Executor run time including sending data time */ if (estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr) { stream_instrument = true; int plan_id = planstate->plan->plan_node_id; u_sess->instr_cxt.global_instr->SetStreamSend(plan_id, true); } /* Collect Material for Subplan first */ ExecCollectMaterialForSubplan(estate); } /* * Loop until we've processed the proper number of tuples from the plan. */ for (;;) { /* Reset the per-output-tuple exprcontext */ ResetPerTupleExprContext(estate); /* * Execute the plan and obtain a tuple */ batch = VectorEngine(planstate); /* * if the tuple is null, then we assume there is nothing more to * process so we just end the loop... */ if (BatchIsNull(batch)) { ExecEarlyFree(planstate); break; } /* * If we have a junk filter, then project a new tuple with the junk * removed. * * Store this new "clean" tuple in the junkfilter's resultSlot. * (Formerly, we stored it back over the "dirty" tuple, which is WRONG * because that tuple slot has the wrong descriptor.) */ #ifdef ENABLE_MULTIPLE_NDOES if (estate->es_junkFilter != NULL && !StreamTopConsumerAmI() && !StreamThreadAmI()) { #else if (estate->es_junkFilter != NULL && !StreamThreadAmI()) { #endif BatchExecFilterJunk(estate->es_junkFilter, batch); } if (stream_instrument) { t_thrd.pgxc_cxt.GlobalNetInstr = planstate->instrument; } /* * If we are supposed to send the tuple somewhere, do so. (In * practice, this is probably always the case at this point.) */ if (sendTuples && !u_sess->exec_cxt.executorStopFlag) { (*dest->sendBatch)(batch, dest); } t_thrd.pgxc_cxt.GlobalNetInstr = NULL; /* * Count tuples processed, if this is a SELECT. (For other operation * types, the ModifyTable plan node must count the appropriate * events.) */ if (operation == CMD_SELECT) { estate->es_processed += batch->m_rows; } /* * check our tuple count.. if we've processed the proper number then * quit, else loop again and process more tuples. Zero numberTuples * means no limit. */ current_tuple_count += batch->m_rows; if (numberTuples && numberTuples == current_tuple_count) { break; } } /* * if current plan is working for expression, no need to collect instrumentation. */ if (estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr && StreamTopConsumerAmI()) { int64 peak_memory = (uint64)(t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->peakChunksQuery - t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->initMemInChunks) << (chunkSizeInBits - BITS_IN_MB); u_sess->instr_cxt.global_instr->SetPeakNodeMemory(planstate->plan->plan_node_id, peak_memory); } } /* * ExecRelCheck --- check that tuple meets constraints for result relation */ static const char *ExecRelCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate) { Relation rel = resultRelInfo->ri_RelationDesc; int ncheck = rel->rd_att->constr->num_check; ConstrCheck *check = rel->rd_att->constr->check; ExprContext *econtext = NULL; MemoryContext oldContext; List *qual = NIL; int i; /* * If first time through for this result relation, build expression * nodetrees for rel's constraint expressions. Keep them in the per-query * memory context so they'll survive throughout the query. */ if (resultRelInfo->ri_ConstraintExprs == NULL) { oldContext = MemoryContextSwitchTo(estate->es_query_cxt); resultRelInfo->ri_ConstraintExprs = (List **)palloc(ncheck * sizeof(List *)); for (i = 0; i < ncheck; i++) { /* ExecQual wants implicit-AND form */ qual = make_ands_implicit((Expr *)stringToNode(check[i].ccbin)); resultRelInfo->ri_ConstraintExprs[i] = (List *)ExecPrepareExpr((Expr *)qual, estate); } (void)MemoryContextSwitchTo(oldContext); } /* * We will use the EState's per-tuple context for evaluating constraint * expressions (creating it if it's not already there). */ econtext = GetPerTupleExprContext(estate); /* Arrange for econtext's scan tuple to be the tuple under test */ econtext->ecxt_scantuple = slot; /* And evaluate the constraints */ for (i = 0; i < ncheck; i++) { qual = resultRelInfo->ri_ConstraintExprs[i]; /* * NOTE: SQL92 specifies that a NULL result from a constraint * expression is not to be treated as a failure. Therefore, tell * ExecQual to return TRUE for NULL. */ if (!ExecQual(qual, econtext, true)) { return check[i].ccname; } } /* NULL result means no error */ return NULL; } bool ExecConstraints(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate, bool skipAutoInc) { Relation rel = resultRelInfo->ri_RelationDesc; TupleDesc tupdesc = RelationGetDescr(rel); TupleConstr *constr = tupdesc->constr; Bitmapset *modifiedCols = NULL; Bitmapset *insertedCols = NULL; Bitmapset *updatedCols = NULL; int maxfieldlen = 64; Assert(constr); /* Get the Table Accessor Method*/ Assert(slot != NULL && slot->tts_tupleDescriptor != NULL); if (constr->has_not_null) { int natts = tupdesc->natts; int attrChk; for (attrChk = 1; attrChk <= natts; attrChk++) { if (tupdesc->attrs[attrChk - 1].attnotnull && tableam_tslot_attisnull(slot, attrChk)) { /* Skip auto_increment attribute not null check, ExecAutoIncrement will deal with it. */ if (skipAutoInc && constr->cons_autoinc && constr->cons_autoinc->attnum == attrChk) { continue; } char *val_desc = NULL; bool rel_masked = u_sess->attr.attr_security.Enable_Security_Policy && is_masked_relation_enabled(RelationGetRelid(rel)); insertedCols = GetInsertedColumns(resultRelInfo, estate); updatedCols = GetUpdatedColumns(resultRelInfo, estate); modifiedCols = bms_union(insertedCols, updatedCols); if (!rel_masked) { val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), slot, tupdesc, modifiedCols, maxfieldlen); } bool can_ignore = estate->es_plannedstmt && estate->es_plannedstmt->hasIgnore; ereport(can_ignore ? WARNING : ERROR, (errcode(ERRCODE_NOT_NULL_VIOLATION), errmsg("null value in column \"%s\" violates not-null constraint", NameStr(tupdesc->attrs[attrChk - 1].attname)), val_desc ? errdetail("Failing row contains %s.", val_desc) : 0)); return false; } } } if (constr->num_check == 0) { return true; } const char *failed = ExecRelCheck(resultRelInfo, slot, estate); if (failed == NULL) { return true; } char *val_desc = NULL; bool rel_masked = u_sess->attr.attr_security.Enable_Security_Policy && is_masked_relation_enabled(RelationGetRelid(rel)); insertedCols = GetInsertedColumns(resultRelInfo, estate); updatedCols = GetUpdatedColumns(resultRelInfo, estate); modifiedCols = bms_union(insertedCols, updatedCols); if (!rel_masked) { val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), slot, tupdesc, modifiedCols, maxfieldlen); } /* client_min_messages < NOTICE show error details. */ if (client_min_messages < NOTICE) { ereport(ERROR, (errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION), errmsg("new row for relation \"%s\" violates check constraint \"%s\"", RelationGetRelationName(rel), failed), val_desc ? errdetail("Failing row contains %s.", val_desc) : 0, errcause("some rows copy failed"), erraction("check table defination"))); } else { ereport(ERROR, (errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION), errmsg("new row for relation \"%s\" violates check constraint \"%s\"", RelationGetRelationName(rel), failed), errdetail("N/A"), errcause("some rows copy failed"), erraction("set client_min_messages = info for more details"))); } return true; } /* * ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs */ void ExecWithCheckOptions(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate) { Relation rel = resultRelInfo->ri_RelationDesc; TupleDesc tupdesc = RelationGetDescr(rel); ExprContext* econtext = NULL; ListCell *l1 = NULL, *l2 = NULL; /* * We will use the EState's per-tuple context for evaluating constraint * expressions (creating it if it's not already there). */ econtext = GetPerTupleExprContext(estate); /* Arrange for econtext's scan tuple to be the tuple under test */ econtext->ecxt_scantuple = slot; /* Check each of the constraints */ forboth (l1, resultRelInfo->ri_WithCheckOptions, l2, resultRelInfo->ri_WithCheckOptionExprs) { WithCheckOption* wco = (WithCheckOption*)lfirst(l1); ExprState* wcoExpr = (ExprState*)lfirst(l2); Bitmapset* modifiedCols = NULL; Bitmapset *insertedCols = NULL; Bitmapset *updatedCols = NULL; char* val_desc = NULL; insertedCols = GetInsertedColumns(resultRelInfo, estate); updatedCols = GetUpdatedColumns(resultRelInfo, estate); modifiedCols = bms_union(insertedCols, updatedCols); val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), slot, tupdesc, modifiedCols, 64); /* * WITH CHECK OPTION checks are intended to ensure that the new tuple * is visible in the view. If the view's qual evaluates to NULL, then * the new tuple won't be included in the view. Therefore we need to * tell ExecQual to return FALSE for NULL (the opposite of what we do * above for CHECK constraints). */ if (!ExecQual((List*)wcoExpr, econtext, false)) ereport(ERROR, (errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION), errmsg("new row violates WITH CHECK OPTION for view \"%s\"", wco->viewname), val_desc ? errdetail("Failing row contains %s.", val_desc) : 0)); } } /* * ExecBuildSlotValueDescription -- construct a string representing a tuple * * This is intentionally very similar to BuildIndexValueDescription, but * unlike that function, we truncate long field values (to at most maxfieldlen * bytes). That seems necessary here since heap field values could be very * long, whereas index entries typically aren't so wide. * * Also, unlike the case with index entries, we need to be prepared to ignore * dropped columns. We used to use the slot's tuple descriptor to decode the * data, but the slot's descriptor doesn't identify dropped columns, so we * now need to be passed the relation's descriptor. * * Note that, like BuildIndexValueDescription, if the user does not have * permission to view any of the columns involved, a NULL is returned. Unlike * BuildIndexValueDescription, if the user has access to view a subset of the * column involved, that subset will be returned with a key identifying which * columns they are. */ char *ExecBuildSlotValueDescription(Oid reloid, TupleTableSlot *slot, TupleDesc tupdesc, Bitmapset *modifiedCols, int maxfieldlen) { StringInfoData buf; StringInfoData collist; bool write_comma = false; bool write_comma_collist = false; int i; AclResult aclresult; bool table_perm = false; bool any_perm = false; initStringInfo(&buf); appendStringInfoChar(&buf, '('); /* * Check if the user has permissions to see the row. Table-level SELECT * allows access to all columns. If the user does not have table-level * SELECT then we check each column and include those the user has SELECT * rights on. Additionally, we always include columns the user provided * data for. */ aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT); if (aclresult != ACLCHECK_OK) { /* Set up the buffer for the column list */ initStringInfo(&collist); appendStringInfoChar(&collist, '('); } else { table_perm = any_perm = true; } /* Make sure the tuple is fully deconstructed */ /* Get the Table Accessor Method*/ Assert(slot != NULL && slot->tts_tupleDescriptor != NULL); tableam_tslot_getallattrs(slot); for (i = 0; i < tupdesc->natts; i++) { bool column_perm = false; char *val = NULL; int vallen; /* ignore dropped columns */ if (tupdesc->attrs[i].attisdropped) { continue; } if (!table_perm) { /* * No table-level SELECT, so need to make sure they either have * SELECT rights on the column or that they have provided the * data for the column. If not, omit this column from the error * message. */ aclresult = pg_attribute_aclcheck(reloid, tupdesc->attrs[i].attnum, GetUserId(), ACL_SELECT); if (bms_is_member(tupdesc->attrs[i].attnum - FirstLowInvalidHeapAttributeNumber, modifiedCols) || aclresult == ACLCHECK_OK) { column_perm = any_perm = true; if (write_comma_collist) { appendStringInfoString(&collist, ", "); } else { write_comma_collist = true; } appendStringInfoString(&collist, NameStr(tupdesc->attrs[i].attname)); } } if (table_perm || column_perm) { if (slot->tts_isnull[i]) { val = "null"; } else { Oid foutoid; bool typisvarlena = false; getTypeOutputInfo(tupdesc->attrs[i].atttypid, &foutoid, &typisvarlena); val = OidOutputFunctionCall(foutoid, slot->tts_values[i]); } if (write_comma) { appendStringInfoString(&buf, ", "); } else { write_comma = true; } /* truncate if needed */ vallen = strlen(val); if (vallen <= maxfieldlen) { appendStringInfoString(&buf, val); } else { vallen = pg_mbcliplen(val, vallen, maxfieldlen); appendBinaryStringInfo(&buf, val, vallen); appendStringInfoString(&buf, "..."); } } } /* If we end up with zero columns being returned, then return NULL. */ if (!any_perm) { return NULL; } appendStringInfoChar(&buf, ')'); if (!table_perm) { appendStringInfoString(&collist, ") = "); appendStringInfoString(&collist, buf.data); return collist.data; } return buf.data; } /* * ExecFindRowMark -- find the ExecRowMark struct for given rangetable index */ ExecRowMark *ExecFindRowMark(EState *estate, Index rti) { ListCell *lc = NULL; foreach (lc, estate->es_rowMarks) { ExecRowMark *erm = (ExecRowMark *)lfirst(lc); if (erm->rti == rti) { return erm; } } ereport(ERROR, (errcode(ERRCODE_FETCH_DATA_FAILED), errmsg("failed to find ExecRowMark for rangetable index %u", rti))); return NULL; /* keep compiler quiet */ } /* * ExecBuildAuxRowMark -- create an ExecAuxRowMark struct * * Inputs are the underlying ExecRowMark struct and the targetlist of the * input plan node (not planstate node!). We need the latter to find out * the column numbers of the resjunk columns. */ ExecAuxRowMark *ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist) { ExecAuxRowMark *aerm = (ExecAuxRowMark *)palloc0(sizeof(ExecAuxRowMark)); char resname[32]; errno_t rc = 0; aerm->rowmark = erm; /* Look up the resjunk columns associated with this rowmark */ if (erm->relation) { Assert(erm->markType != ROW_MARK_COPY); /* if child rel, need tableoid */ if (erm->rti != erm->prti || RelationIsPartitioned(erm->relation)) { rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "tableoid%u", erm->rowmarkId); securec_check_ss(rc, "\0", "\0"); aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist, resname); if (!AttributeNumberIsValid(aerm->toidAttNo)) { ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE), errmsg("could not find tableoid junk %s column when build RowMark", resname))); } } if (RELATION_OWN_BUCKET(erm->relation)) { rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "tablebucketid%u", erm->rowmarkId); securec_check_ss(rc, "\0", "\0"); aerm->tbidAttNo = ExecFindJunkAttributeInTlist(targetlist, resname); if (!AttributeNumberIsValid(aerm->tbidAttNo)) { ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE), errmsg("could not find bucketid junk %s column when build RowMark", resname))); } } /* always need ctid for real relations */ rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "ctid%u", erm->rowmarkId); securec_check_ss(rc, "\0", "\0"); aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist, resname); if (!AttributeNumberIsValid(aerm->ctidAttNo)) { ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE), errmsg("could not find ctid junk %s column when build RowMark", resname))); } } else { Assert(erm->markType == ROW_MARK_COPY || erm->markType == ROW_MARK_COPY_DATUM); rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "wholerow%u", erm->rowmarkId); securec_check_ss(rc, "\0", "\0"); aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist, resname); if (!AttributeNumberIsValid(aerm->wholeAttNo)) { ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE), errmsg("could not find whole-row junk %s column when build RowMark", resname))); } } return aerm; } TupleTableSlot *EvalPlanQualUHeap(EState *estate, EPQState *epqstate, Relation relation, Index rti, ItemPointer tid, TransactionId priorXmax) { TupleTableSlot *slot = NULL; UHeapTuple copyTuple = NULL; Assert(rti > 0); copyTuple = UHeapLockUpdated(estate->es_output_cid, relation, LockTupleExclusive, tid, priorXmax, estate->es_snapshot); if (copyTuple == NULL) { return NULL; } Assert(copyTuple->tupTableType = UHEAP_TUPLE); *tid = copyTuple->ctid; EvalPlanQualBegin(epqstate, estate); EvalPlanQualSetTuple(epqstate, rti, copyTuple); EvalPlanQualFetchRowMarks(epqstate); slot = EvalPlanQualNext(epqstate); // materialize the slot if (!TupIsNull(slot)) { ExecGetUHeapTupleFromSlot(slot); } EvalPlanQualSetTuple(epqstate, rti, NULL); return slot; } /* * EvalPlanQual logic --- recheck modified tuple(s) to see if we want to * process the updated version under READ COMMITTED rules. * * See gausskernel/runtime/executor/README for some info about how this works. * * Check a modified tuple to see if we want to process its updated version * under READ COMMITTED rules. * * estate - outer executor state data * epqstate - state for EvalPlanQual rechecking * relation - table containing tuple * rti - rangetable index of table containing tuple * lockmode - requested tuple lock mode * *tid - t_ctid from the outdated tuple (ie, next updated version) * priorXmax - t_xmax from the outdated tuple * * *tid is also an output parameter: it's modified to hold the TID of the * latest version of the tuple (note this may be changed even on failure) * * Returns a slot containing the new candidate update/delete tuple, or * NULL if we determine we shouldn't process the row. * * Note: properly, lockmode should be declared as enum LockTupleMode, * but we use "int" to avoid having to include heapam.h in executor.h. */ TupleTableSlot *EvalPlanQual(EState *estate, EPQState *epqstate, Relation relation, Index rti, int lockmode, ItemPointer tid, TransactionId priorXmax, bool partRowMoveUpdate) { TupleTableSlot *slot = NULL; Tuple copyTuple; Assert(rti > 0); /* * Get and lock the updated version of the row; if fail, return NULL. */ copyTuple = tableam_tuple_lock_updated(estate->es_output_cid, relation, lockmode, tid, priorXmax, estate->es_snapshot); if (copyTuple == NULL) { /* * The tuple has been deleted or update in row movement case. */ if (partRowMoveUpdate) { /* * the may be a row movement update action which delete tuple from original * partition and insert tuple to new partition or we can add lock on the tuple * to be delete or updated to avoid throw exception. */ ereport(ERROR, (errcode(ERRCODE_TRANSACTION_ROLLBACK), errmsg("partition table update conflict"), errdetail("disable row movement of table can avoid this conflict"))); } return NULL; } /* * For UPDATE/DELETE we have to return tid of actual row we're executing * PQ for. */ *tid = ((HeapTuple)copyTuple)->t_self; /* * Need to run a recheck subquery. Initialize or reinitialize EPQ state. */ EvalPlanQualBegin(epqstate, estate); /* * Free old test tuple, if any, and store new tuple where relation's scan * node will see it */ EvalPlanQualSetTuple(epqstate, rti, copyTuple); /* * Fetch any non-locked source rows */ EvalPlanQualFetchRowMarks(epqstate); /* * Run the EPQ query. We assume it will return at most one tuple. */ slot = EvalPlanQualNext(epqstate); /* * If we got a tuple, force the slot to materialize the tuple so that it * is not dependent on any local state in the EPQ query (in particular, * it's highly likely that the slot contains references to any pass-by-ref * datums that may be present in copyTuple). As with the next step, this * is to guard against early re-use of the EPQ query. */ if (!TupIsNull(slot)) { (void)tableam_tslot_get_tuple_from_slot(relation, slot); } /* * Clear out the test tuple. This is needed in case the EPQ query is * re-used to test a tuple for a different relation. (Not clear that can * really happen, but let's be safe.) */ EvalPlanQualSetTuple(epqstate, rti, NULL); return slot; } /* * Fetch a copy of the newest version of an outdated tuple * * cid - command ID * relation - table containing tuple * lockmode - requested tuple lock mode * *tid - t_ctid from the outdated tuple (ie, next updated version) * priorXmax - t_xmax from the outdated tuple * * Returns a palloc'd copy of the newest tuple version, or NULL if we find * that there is no newest version (ie, the row was deleted not updated). * If successful, we have locked the newest tuple version, so caller does not * need to worry about it changing anymore. * * Note: properly, lockmode should be declared as enum LockTupleMode, * but we use "int" to avoid having to include heapam.h in executor.h. */ HeapTuple heap_lock_updated(CommandId cid, Relation relation, int lockmode, ItemPointer tid, TransactionId priorXmax) { HeapTuple copyTuple = NULL; HeapTupleData tuple; SnapshotData SnapshotDirty; struct { HeapTupleHeaderData hdr; char data[MaxHeapTupleSize]; } tbuf; errno_t errorno = EOK; errorno = memset_s(&tbuf, sizeof(tbuf), 0, sizeof(tbuf)); securec_check(errorno, "\0", "\0"); /* * fetch target tuple * * Loop here to deal with updated or busy tuples */ InitDirtySnapshot(SnapshotDirty); tuple.t_self = *tid; tuple.t_data = &(tbuf.hdr); for (;;) { Buffer buffer; bool fetched = tableam_tuple_fetch(relation, &SnapshotDirty, &tuple, &buffer, true, NULL); if (fetched) { TM_Result test; TM_FailureData tmfd; HeapTupleCopyBaseFromPage(&tuple, BufferGetPage(buffer)); /* * If xmin isn't what we're expecting, the slot must have been * recycled and reused for an unrelated tuple. This implies that * the latest version of the row was deleted, so we need do * nothing. (Should be safe to examine xmin without getting * buffer's content lock, since xmin never changes in an existing * tuple.) */ if (!TransactionIdEquals(HeapTupleGetRawXmin(&tuple), priorXmax)) { ReleaseBuffer(buffer); return NULL; } /* otherwise xmin should not be dirty... */ if (TransactionIdIsValid(SnapshotDirty.xmin)) { /* * for transaction's commit, it is first set csnlog, and then * removed from procarray, once the csnlog is set, the parent xid * ismissing from the sub xid's csnlog, so you may not wait the top * parent xid until it is removed from procarray for this * condition. So we add a check here and retune the xmin to * invalid if it is already committed. */ if (TransactionIdDidCommit(SnapshotDirty.xmin)) { elog(DEBUG2, "t_xmin %lu is committed in clog, but still" " in procarray, so set it back to invalid.", SnapshotDirty.xmin); SnapshotDirty.xmin = InvalidTransactionId; } else { ereport(ERROR, (errcode(ERRCODE_INVALID_TRANSACTION_STATE), errmsg("t_xmin is uncommitted in tuple to be updated"))); } } /* * If tuple is being updated by other transaction then we have to * wait for its commit/abort. */ if (TransactionIdIsValid(SnapshotDirty.xmax)) { ReleaseBuffer(buffer); if (!u_sess->attr.attr_common.allow_concurrent_tuple_update) ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), errmsg("abort transaction due to concurrent update"), errhint("Try to turn on GUC allow_concurrent_tuple_update if concurrent update is expected."))); XactLockTableWait(SnapshotDirty.xmax); continue; /* loop back to repeat heap_fetch */ } /* * If tuple was inserted by our own transaction, we have to check * cmin against es_output_cid: cmin >= current CID means our * command cannot see the tuple, so we should ignore it. Without * this we are open to the "Halloween problem" of indefinitely * re-updating the same tuple. (We need not check cmax because * HeapTupleSatisfiesDirty will consider a tuple deleted by our * transaction dead, regardless of cmax.) We just checked that * priorXmax == xmin, so we can test that variable instead of * doing HeapTupleHeaderGetXmin again. */ if (TransactionIdIsCurrentTransactionId(priorXmax) && HeapTupleHeaderGetCmin(tuple.t_data, BufferGetPage(buffer)) >= cid) { ReleaseBuffer(buffer); return NULL; } /* * This is a live tuple, so now try to lock it. */ test = tableam_tuple_lock(relation, &tuple, &buffer, cid, (LockTupleMode)lockmode, LockWaitBlock, &tmfd, false, false, false,InvalidSnapshot, NULL, false); /* We now have two pins on the buffer, get rid of one */ ReleaseBuffer(buffer); switch (test) { case TM_SelfCreated: ReleaseBuffer(buffer); ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), errmsg("attempted to lock invisible tuple"))); break; case TM_SelfModified: /* treat it as deleted; do not process */ ReleaseBuffer(buffer); return NULL; case TM_Ok: /* successfully locked */ break; case TM_Updated: ReleaseBuffer(buffer); if (IsolationUsesXactSnapshot()) { ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), errmsg("could not serialize access due to concurrent update"))); } Assert(!ItemPointerEquals(&tmfd.ctid, &tuple.t_self)); /* it was updated, so look at the updated version */ tuple.t_self = tmfd.ctid; /* updated row should have xmin matching this xmax */ priorXmax = tmfd.xmax; continue; break; /* keep compiler quiet */ case TM_Deleted: ReleaseBuffer(buffer); if (IsolationUsesXactSnapshot()) { ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), errmsg("could not serialize access due to concurrent update"))); } Assert(ItemPointerEquals(&tmfd.ctid, &tuple.t_self)); /* tuple was deleted, so give up */ return NULL; default: ReleaseBuffer(buffer); ereport(ERROR, (errcode(ERRCODE_INVALID_TRANSACTION_STATE), errmsg("unrecognized heap_lock_tuple status: %u", test))); return NULL; /* keep compiler quiet */ } /* * We got tuple - now copy it for use by recheck query. */ copyTuple = (HeapTuple)tableam_tops_copy_tuple(&tuple); ReleaseBuffer(buffer); break; } /* * If the referenced slot was actually empty, the latest version of * the row must have been deleted, so we need do nothing. */ /* * As above, if xmin isn't what we're expecting, do nothing. */ /* * If we get here, the tuple was found but failed SnapshotDirty. * Assuming the xmin is either a committed xact or our own xact (as it * certainly should be if we're trying to modify the tuple), this must * mean that the row was updated or deleted by either a committed xact * or our own xact. If it was deleted, we can ignore it; if it was * updated then chain up to the next version and repeat the whole * process. * * As above, it should be safe to examine xmax and t_ctid without the * buffer content lock, because they can't be changing. */ bool is_null = tuple.t_data == NULL || !TransactionIdEquals(HeapTupleGetRawXmin(&tuple), priorXmax) || ItemPointerEquals(&tuple.t_self, &tuple.t_data->t_ctid); if (is_null) { /* deleted, so forget about it */ ReleaseBuffer(buffer); return NULL; } /* updated, so look at the updated row */ tuple.t_self = tuple.t_data->t_ctid; /* updated row should have xmin matching this xmax */ priorXmax = HeapTupleGetUpdateXid(&tuple); ReleaseBuffer(buffer); /* loop back to fetch next in chain */ } /* * Return the copied tuple */ return copyTuple; } /* * EvalPlanQualInit -- initialize during creation of a plan state node * that might need to invoke EPQ processing. * * Note: subplan/auxrowmarks can be NULL/NIL if they will be set later * with EvalPlanQualSetPlan. projInfos is used for Multiple-Modify to * fetch the slot corresponding to the target table. */ void EvalPlanQualInit(EPQState *epqstate, EState *estate, Plan *subplan, List *auxrowmarks, int epqParam, ProjectionInfo** projInfos) { /* Mark the EPQ state inactive */ epqstate->estate = NULL; epqstate->planstate = NULL; epqstate->origslot = NULL; /* ... and remember data that EvalPlanQualBegin will need */ epqstate->plan = subplan; epqstate->arowMarks = auxrowmarks; epqstate->epqParam = epqParam; epqstate->parentestate = estate; epqstate->projInfos = projInfos; } /* * EvalPlanQualSetPlan -- set or change subplan of an EPQState. * * We need this so that ModifyTuple can deal with multiple subplans. */ void EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks) { /* If we have a live EPQ query, shut it down */ EvalPlanQualEnd(epqstate); /* And set/change the plan pointer */ epqstate->plan = subplan; /* The rowmarks depend on the plan, too */ epqstate->arowMarks = auxrowmarks; } /* * Install one test tuple into EPQ state, or clear test tuple if tuple == NULL * * NB: passed tuple must be palloc'd; it may get freed later */ void EvalPlanQualSetTuple(EPQState *epqstate, Index rti, Tuple tuple) { EState *estate = epqstate->estate; Assert(rti > 0); /* * free old test tuple, if any, and store new tuple where relation's scan * node will see it */ if (estate->es_epqTuple[rti - 1] != NULL) { tableam_tops_free_tuple(estate->es_epqTuple[rti - 1]); } estate->es_epqTuple[rti - 1] = tuple; estate->es_epqTupleSet[rti - 1] = true; } /* * Fetch back the current test tuple (if any) for the specified RTI */ Tuple EvalPlanQualGetTuple(EPQState *epqstate, Index rti) { EState *estate = epqstate->estate; Assert(rti > 0); return estate->es_epqTuple[rti - 1]; } /* * Return, and create if necessary, a slot for an EPQ test tuple. */ TupleTableSlot *EvalPlanQualUSlot(EPQState *epqstate, Relation relation, Index rti) { TupleTableSlot **slot; // To adapt inplacetuple and tuple,we have to use slot instead of tuple here slot = &epqstate->estate->es_epqTupleSlot[rti - 1]; if (*slot == NULL) { MemoryContext oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt); *slot = ExecAllocTableSlot(&epqstate->estate->es_tupleTable, TableAmUstore); if (relation) ExecSetSlotDescriptor(*slot, RelationGetDescr(relation)); else ExecSetSlotDescriptor(*slot, epqstate->origslot->tts_tupleDescriptor); MemoryContextSwitchTo(oldcontext); } (*slot)->tts_tam_ops = TableAmUstore; return *slot; } void EvalPlanQualFetchRowMarksUHeap(EPQState *epqstate) { ListCell *l = NULL; UHeapTupleData utuple; union { UHeapDiskTupleData hdr; char data[MaxPossibleUHeapTupleSize]; } tbuf; errno_t errorno = EOK; errorno = memset_s(&tbuf, sizeof(tbuf), 0, sizeof(tbuf)); securec_check(errorno, "\0", "\0"); utuple.disk_tuple = &(tbuf.hdr); Assert(epqstate->origslot != NULL); foreach (l, epqstate->arowMarks) { ExecAuxRowMark *aerm = (ExecAuxRowMark *)lfirst(l); ExecRowMark *erm = aerm->rowmark; Datum datum; bool isNull; TupleTableSlot *slot = NULL; Oid tableoid = InvalidOid; if (RowMarkRequiresRowShareLock(erm->markType)) { elog(ERROR, "EvalPlanQual doesn't support locking rowmarks"); } if (epqstate->estate->es_result_relation_info != NULL && epqstate->estate->es_result_relation_info->ri_RangeTableIndex == erm->rti) { continue; } /* clear any leftover test tuple for this rel */ slot = EvalPlanQualUSlot(epqstate, erm->relation, erm->rti); ExecClearTuple(slot); if (erm->rti != erm->prti) { datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull); if (isNull) { continue; } tableoid = DatumGetObjectId(datum); if (tableoid != RelationGetRelid(erm->relation)) { continue; } } if (erm->markType == ROW_MARK_REFERENCE) { Assert(erm->relation != NULL); if (RELATION_IS_PARTITIONED(erm->relation)) { datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } tableoid = DatumGetObjectId(datum); } datum = ExecGetJunkAttribute(epqstate->origslot, aerm->ctidAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } /* fetch requests on foreign tables must be passed to their FDW */ if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE) { } else if (RELATION_IS_PARTITIONED(erm->relation)) { } else { if (!UHeapFetchRow(erm->relation, (ItemPointer)DatumGetPointer(datum), epqstate->estate->es_snapshot, slot, &utuple)) { elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck"); } } } else { if (erm->markType == ROW_MARK_COPY) { HeapTupleData tuple; HeapTupleHeader td; Assert(erm->markType == ROW_MARK_COPY); /* fetch the whole-row Var for the relation */ datum = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } td = DatumGetHeapTupleHeader(datum); tuple.t_len = HeapTupleHeaderGetDatumLength(td); tuple.t_self = td->t_ctid; tuple.t_data = td; ExecClearTuple(slot); tableam_tops_deform_tuple(&tuple, slot->tts_tupleDescriptor, slot->tts_values, slot->tts_isnull); ExecStoreVirtualTuple(slot); } else { Assert(erm->markType == ROW_MARK_COPY_DATUM); HeapTupleHeader td; HeapTupleData tuple; MemoryContext oldcxt; TupleDesc tupdesc; Form_pg_attribute attrs[erm->numAttrs]; Datum *data = (Datum *)palloc0(sizeof(Datum) * erm->numAttrs); bool *null = (bool *)palloc0(sizeof(bool) * erm->numAttrs); for (int i = 0; i < erm->numAttrs; i++) { data[i] = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo + i, &null[i]); attrs[i] = &epqstate->origslot->tts_tupleDescriptor->attrs[aerm->wholeAttNo - 1 + i]; } oldcxt = MemoryContextSwitchTo(u_sess->cache_mem_cxt); tupdesc = CreateTupleDesc(erm->numAttrs, false, attrs); MemoryContextSwitchTo(oldcxt); tupdesc->natts = erm->numAttrs; tupdesc->tdhasoid = false; ExecSetSlotDescriptor(slot, tupdesc); if (!slot->tts_per_tuple_mcxt) { slot->tts_per_tuple_mcxt = AllocSetContextCreate(slot->tts_mcxt, "SlotPerTupleMcxt", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); } /* * This memory is freed during ExecClearTuple(). * Note that we cannot free tmptuple right after deform_tuple because * values in slot->tts_values would be pointing to it. */ oldcxt = MemoryContextSwitchTo(slot->tts_per_tuple_mcxt); HeapTuple tmptuple = heap_form_tuple(tupdesc, data, null); MemoryContextSwitchTo(oldcxt); td = (HeapTupleHeader)((char *)tmptuple + HEAPTUPLESIZE); tuple.t_len = HeapTupleHeaderGetDatumLength(td); tuple.t_self = td->t_ctid; tuple.t_data = td; pfree_ext(data); pfree_ext(null); tableam_tops_deform_tuple(&tuple, slot->tts_tupleDescriptor, slot->tts_values, slot->tts_isnull); ExecStoreVirtualTuple(slot); } } } } /* * Fetch the current row values for any non-locked relations that need * to be scanned by an EvalPlanQual operation. origslot must have been set * to contain the current result row (top-level row) that we need to recheck. */ void EvalPlanQualFetchRowMarks(EPQState *epqstate) { ListCell *l = NULL; struct { HeapTupleHeaderData hdr; char data[MaxHeapTupleSize]; } tbuf; errno_t errorno = EOK; errorno = memset_s(&tbuf, sizeof(tbuf), 0, sizeof(tbuf)); securec_check(errorno, "\0", "\0"); Assert(epqstate->origslot != NULL); foreach (l, epqstate->arowMarks) { ExecAuxRowMark *aerm = (ExecAuxRowMark *)lfirst(l); ExecRowMark *erm = aerm->rowmark; Datum datum; bool isNull = false; HeapTupleData tuple; Oid tableoid = InvalidOid; int2 bucketid = InvalidBktId; if (RowMarkRequiresRowShareLock(erm->markType)) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("EvalPlanQual doesn't support locking rowmarks"))); } if (epqstate->estate->es_result_relation_info != NULL && epqstate->estate->es_result_relation_info->ri_RangeTableIndex == erm->rti) { continue; } /* clear any leftover test tuple for this rel */ EvalPlanQualSetTuple(epqstate, erm->rti, NULL); if (erm->relation) { Buffer buffer; Assert(erm->markType == ROW_MARK_REFERENCE); /* if child rel, must check whether it produced this row */ if (erm->rti != erm->prti) { Oid tmp_tableoid; datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } tmp_tableoid = DatumGetObjectId(datum); if (tmp_tableoid != RelationGetRelid(erm->relation)) { /* this child is inactive right now */ continue; } } if (RELATION_IS_PARTITIONED(erm->relation)) { datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } tableoid = DatumGetObjectId(datum); } if (RELATION_OWN_BUCKET(erm->relation)) { datum = ExecGetJunkAttribute(epqstate->origslot, aerm->tbidAttNo, &isNull); if (isNull) { continue; } bucketid = DatumGetObjectId(datum); } /* fetch the tuple's ctid */ datum = ExecGetJunkAttribute(epqstate->origslot, aerm->ctidAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } tuple.t_self = *((ItemPointer)DatumGetPointer(datum)); /* Must set a private data buffer for heap_fetch */ tuple.t_data = &tbuf.hdr; if (RELATION_IS_PARTITIONED(erm->relation)) { Partition p = partitionOpen(erm->relation, tableoid, NoLock, bucketid); Relation fakeRelation = partitionGetRelation(erm->relation, p); /* okay, fetch the tuple */ if (!tableam_tuple_fetch(fakeRelation, SnapshotAny, &tuple, &buffer, false, NULL)) { ereport(ERROR, (errcode(ERRCODE_FETCH_DATA_FAILED), errmsg("failed to fetch tuple for EvalPlanQual recheck from partition relation."))); } releaseDummyRelation(&fakeRelation); partitionClose(erm->relation, p, NoLock); } else { Relation fakeRelation = erm->relation; if (RELATION_OWN_BUCKET(erm->relation)) { Assert(bucketid != InvalidBktId); fakeRelation = bucketGetRelation(erm->relation, NULL, bucketid); } if (!tableam_tuple_fetch(fakeRelation, SnapshotAny, &tuple, &buffer, false, NULL)) { ereport(ERROR, (errcode(ERRCODE_FETCH_DATA_FAILED), errmsg("failed to fetch tuple for EvalPlanQual recheck"))); } if (RELATION_OWN_BUCKET(erm->relation)) { bucketCloseRelation(fakeRelation); } } /* successful, copy and store tuple */ EvalPlanQualSetTuple(epqstate, erm->rti, tableam_tops_copy_tuple(&tuple)); ReleaseBuffer(buffer); } else { HeapTupleHeader td; if (erm->markType == ROW_MARK_COPY) { /* fetch the whole-row Var for the relation */ datum = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo, &isNull); /* non-locked rels could be on the inside of outer joins */ if (isNull) { continue; } td = DatumGetHeapTupleHeader(datum); } else { Assert(erm->markType == ROW_MARK_COPY_DATUM); Datum *data = (Datum *)palloc0(sizeof(Datum) * erm->numAttrs); bool *null = (bool *)palloc0(sizeof(bool) * erm->numAttrs); Form_pg_attribute attrs[erm->numAttrs]; TupleDesc tupdesc = (TupleDesc)palloc0(sizeof(tupleDesc)); for (int i = 0; i < erm->numAttrs; i++) { data[i] = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo + i, &null[i]); attrs[i] = &epqstate->origslot->tts_tupleDescriptor->attrs[aerm->wholeAttNo - 1 + i]; } tupdesc = CreateTupleDesc(erm->numAttrs, false, attrs); tupdesc->natts = erm->numAttrs; tupdesc->tdhasoid = false; tupdesc->tdisredistable = false; td = (HeapTupleHeader)((char *)heap_form_tuple(tupdesc, data, null) + HEAPTUPLESIZE); pfree_ext(data); pfree_ext(null); pfree_ext(tupdesc); } /* build a temporary HeapTuple control structure */ tuple.t_len = HeapTupleHeaderGetDatumLength(td); ItemPointerSetInvalid(&(tuple.t_self)); /* relation might be a foreign table, if so provide tableoid */ tuple.t_tableOid = getrelid(erm->rti, epqstate->estate->es_range_table); tuple.t_bucketId = InvalidBktId; HeapTupleSetZeroBase(&tuple); #ifdef PGXC tuple.t_xc_node_id = 0; #endif tuple.t_data = td; /* copy and store tuple */ EvalPlanQualSetTuple(epqstate, erm->rti, tableam_tops_copy_tuple(&tuple)); } } } /* * Fetch the next row (if any) from EvalPlanQual testing * * (In practice, there should never be more than one row...) */ TupleTableSlot *EvalPlanQualNext(EPQState *epqstate) { MemoryContext old_context = MemoryContextSwitchTo(epqstate->estate->es_query_cxt); int resultRelation = epqstate->estate->result_rel_index; ExprContext* origExprContext = NULL; TupleTableSlot *slot = ExecProcNode(epqstate->planstate); /* for multiple modify, fetch the current read slot corresponding to the result relation. */ if (resultRelation > 0) { origExprContext = epqstate->projInfos[resultRelation]->pi_exprContext; epqstate->projInfos[resultRelation]->pi_exprContext = epqstate->planstate->ps_ExprContext; slot = ExecProject(epqstate->projInfos[resultRelation], NULL); epqstate->projInfos[resultRelation]->pi_exprContext = origExprContext; } (void)MemoryContextSwitchTo(old_context); return slot; } /* * Initialize or reset an EvalPlanQual state tree */ void EvalPlanQualBegin(EPQState *epqstate, EState *parentestate, bool isUHeap) { EState *estate = epqstate->estate; errno_t rc = 0; if (estate == NULL) { /* First time through, so create a child EState */ EvalPlanQualStart(epqstate, parentestate, epqstate->plan, isUHeap); } else { /* * We already have a suitable child EPQ tree, so just reset it. */ int rtsize = list_length(parentestate->es_range_table); PlanState *planstate = epqstate->planstate; rc = memset_s(estate->es_epqScanDone, rtsize * sizeof(bool), 0, rtsize * sizeof(bool)); securec_check(rc, "\0", "\0"); /* Recopy current values of parent parameters */ if (parentestate->es_plannedstmt->nParamExec > 0) { int i = parentestate->es_plannedstmt->nParamExec; while (--i >= 0) { /* copy value if any, but not execPlan link */ estate->es_param_exec_vals[i].value = parentestate->es_param_exec_vals[i].value; estate->es_param_exec_vals[i].isnull = parentestate->es_param_exec_vals[i].isnull; } } /* * Mark child plan tree as needing rescan at all scan nodes. The * first ExecProcNode will take care of actually doing the rescan. */ planstate->chgParam = bms_add_member(planstate->chgParam, epqstate->epqParam); estate->result_rel_index = parentestate->result_rel_index; estate->es_result_relation_info = parentestate->es_result_relation_info; } } /* * Start execution of an EvalPlanQual plan tree. * * This is a cut-down version of ExecutorStart(): we copy some state from * the top-level estate rather than initializing it fresh. */ void Setestate(EState *estate, EState *parentestate) { estate->es_direction = ForwardScanDirection; estate->es_snapshot = parentestate->es_snapshot; estate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot; estate->es_range_table = parentestate->es_range_table; estate->es_plannedstmt = parentestate->es_plannedstmt; estate->es_junkFilter = parentestate->es_junkFilter; estate->es_output_cid = parentestate->es_output_cid; estate->es_result_relations = parentestate->es_result_relations; estate->es_num_result_relations = parentestate->es_num_result_relations; estate->es_result_relation_info = parentestate->es_result_relation_info; estate->result_rel_index = parentestate->result_rel_index; if (estate->result_rel_index != 0) { estate->es_result_relation_info -= estate->result_rel_index; } estate->es_skip_early_free = parentestate->es_skip_early_free; estate->es_skip_early_deinit_consumer = parentestate->es_skip_early_deinit_consumer; #ifdef PGXC /* XXX Check if this is OK */ estate->es_result_remoterel = parentestate->es_result_remoterel; #endif /* es_trig_target_relations must NOT be copied * es_auxmodifytables must NOT be copied */ estate->es_rowMarks = parentestate->es_rowMarks; estate->es_top_eflags = parentestate->es_top_eflags; estate->es_instrument = parentestate->es_instrument; /* * The external param list is simply shared from parent. The internal * param workspace has to be local state, but we copy the initial values * from the parent, so as to have access to any param values that were * already set from other parts of the parent's plan tree. */ estate->es_param_list_info = parentestate->es_param_list_info; } static void EvalPlanQualStart(EPQState *epqstate, EState *parentestate, Plan *planTree, bool isUHeap) { EState *estate = NULL; int rtsize; MemoryContext old_context; ListCell *l = NULL; rtsize = list_length(parentestate->es_range_table); epqstate->estate = estate = CreateExecutorState(); old_context = MemoryContextSwitchTo(estate->es_query_cxt); Setestate(estate, parentestate); /* * Child EPQ EStates share the parent's copy of unchanging state such as * the snapshot, rangetable, result-rel info, and external Param info. * They need their own copies of local state, including a tuple table, * es_param_exec_vals, etc. */ if (parentestate->es_plannedstmt->nParamExec > 0) { int i = parentestate->es_plannedstmt->nParamExec; estate->es_param_exec_vals = (ParamExecData *)palloc0(i * sizeof(ParamExecData)); while (--i >= 0) { /* copy value if any, but not execPlan link */ estate->es_param_exec_vals[i].value = parentestate->es_param_exec_vals[i].value; estate->es_param_exec_vals[i].isnull = parentestate->es_param_exec_vals[i].isnull; } } /* * Each EState must have its own es_epqScanDone state, but if we have * nested EPQ checks they should share es_epqTuple arrays. This allows * sub-rechecks to inherit the values being examined by an outer recheck. */ estate->es_epqScanDone = (bool *)palloc0(rtsize * sizeof(bool)); if (parentestate->es_epqTuple != NULL) { estate->es_epqTuple = parentestate->es_epqTuple; estate->es_epqTupleSet = parentestate->es_epqTupleSet; } else { estate->es_epqTuple = (Tuple *)palloc0(rtsize * sizeof(HeapTuple)); estate->es_epqTupleSet = (bool *)palloc0(rtsize * sizeof(bool)); } /* * Each estate also has its own tuple table. */ estate->es_tupleTable = NIL; if (isUHeap) { if (estate->es_epqTupleSlot == NULL) { estate->es_epqTupleSlot = (TupleTableSlot **)MemoryContextAllocZero(CurrentMemoryContext, rtsize * sizeof(TupleTableSlot *)); } } /* * Initialize private state information for each SubPlan. We must do this * before running ExecInitNode on the main query tree, since * ExecInitSubPlan expects to be able to find these entries. Some of the * SubPlans might not be used in the part of the plan tree we intend to * run, but since it's not easy to tell which, we just initialize them * all. */ Assert(estate->es_subplanstates == NIL); foreach (l, parentestate->es_plannedstmt->subplans) { Plan *subplan = (Plan *)lfirst(l); PlanState *subplanstate = NULL; estate->es_under_subplan = true; subplanstate = ExecInitNode(subplan, estate, 0); estate->es_under_subplan = false; estate->es_subplanstates = lappend(estate->es_subplanstates, subplanstate); } /* * Initialize the private state information for all the nodes in the part * of the plan tree we need to run. This opens files, allocates storage * and leaves us ready to start processing tuples. */ epqstate->planstate = ExecInitNode(planTree, estate, 0); estate->es_result_relation_info = parentestate->es_result_relation_info; (void)MemoryContextSwitchTo(old_context); } /* * EvalPlanQualEnd -- shut down at termination of parent plan state node, * or if we are done with the current EPQ child. * * This is a cut-down version of ExecutorEnd(); basically we want to do most * of the normal cleanup, but *not* close result relations (which we are * just sharing from the outer query). We do, however, have to close any * trigger target relations that got opened, since those are not shared. * (There probably shouldn't be any of the latter, but just in case...) */ void EvalPlanQualEnd(EPQState *epqstate) { EState *estate = epqstate->estate; MemoryContext old_context; ListCell *l = NULL; if (estate == NULL) { return; /* idle, so nothing to do */ } old_context = MemoryContextSwitchTo(estate->es_query_cxt); ExecEndNode(epqstate->planstate); foreach (l, estate->es_subplanstates) { PlanState *subplanstate = (PlanState *)lfirst(l); ExecEndNode(subplanstate); } /* throw away the per-estate tuple table */ ExecResetTupleTable(estate->es_tupleTable, false); /* close any trigger target relations attached to this EState */ foreach (l, estate->es_trig_target_relations) { ResultRelInfo *resultRelInfo = (ResultRelInfo *)lfirst(l); /* Close indices and then the relation itself */ ExecCloseIndices(resultRelInfo); heap_close(resultRelInfo->ri_RelationDesc, NoLock); } (void)MemoryContextSwitchTo(old_context); FreeExecutorState(estate); /* Mark EPQState idle */ epqstate->estate = NULL; epqstate->planstate = NULL; epqstate->origslot = NULL; } TupleTableSlot* FetchPlanSlot(PlanState* subPlanState, ProjectionInfo** projInfos) { int result_rel_index = subPlanState->state->result_rel_index; if (result_rel_index > 0) { return ExecProject(projInfos[result_rel_index], NULL); } else { return ExecProcNode(subPlanState); } }