/* ------------------------------------------------------------------------- * * proxy_thread.c * * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * Portions Copyright (c) 2010-2012 Postgres-XC Development Group * * * IDENTIFICATION * $PostgreSQL$ * * ------------------------------------------------------------------------- */ #include #include "gtm/gtm_proxy.h" #include "gtm/memutils.h" #include "gtm/libpq.h" static void* GTMProxy_ThreadMainWrapper(void* argp); static void GTMProxy_ThreadCleanup(void* argp); GTMProxy_Threads GTMProxyThreadsData; GTMProxy_Threads* GTMProxyThreads = >MProxyThreadsData; #define GTM_PROXY_MIN_THREADS 32 /* Provision for minimum threads */ #define GTM_PROXY_MAX_THREADS 1024 /* Max threads allowed in the GTMProxy */ #define GTMProxyThreadsFull (GTMProxyThreads->gt_thread_count == GTMProxyThreads->gt_array_size) extern int GTMProxyWorkerThreads; extern GTMProxy_ThreadInfo** Proxy_ThreadInfo; /* * Add the given thrinfo structure to the global array, expanding it if * necessary */ int GTMProxy_ThreadAdd(GTMProxy_ThreadInfo* thrinfo) { int ii; errno_t rc = EOK; GTM_RWLockAcquire(>MProxyThreads->gt_lock, GTM_LOCKMODE_WRITE); if (GTMProxyThreadsFull) { GTMProxy_ThreadInfo** threads; uint32 newsize; /* * TODO Optimize lock management by not holding any locks during memory * allocation */ if (GTMProxyThreads->gt_array_size == GTM_PROXY_MAX_THREADS) elog(ERROR, "Too many threads active"); if (GTMProxyThreads->gt_array_size == 0) newsize = GTM_PROXY_MIN_THREADS; else { /* * We ran out of the array size. Just double the size, bound by the * upper limit */ newsize = GTMProxyThreads->gt_array_size * 2; } /* Can't have more than GTM_PROXY_MAX_THREADS */ if (newsize > GTM_PROXY_MAX_THREADS) newsize = GTM_PROXY_MAX_THREADS; if (GTMProxyThreads->gt_threads == NULL) threads = (GTMProxy_ThreadInfo**)palloc0(sizeof(GTMProxy_ThreadInfo*) * newsize); else { void* old_ptr = GTMProxyThreads->gt_threads; size_t sz = GTMProxyThreads->gt_array_size * sizeof(GTMProxy_ThreadInfo*); threads = (GTMProxy_ThreadInfo**)palloc0(sizeof(GTMProxy_ThreadInfo*) * newsize); rc = memcpy_s(threads, sz, old_ptr, sz); securec_check(rc, "\0", "\0"); pfree(old_ptr); } GTMProxyThreads->gt_threads = threads; GTMProxyThreads->gt_array_size = newsize; } /* * Now that we have free entries in the array, find a free slot and add the * thrinfo pointer to it. * * TODO Optimize this later by tracking few free slots and reusing them. * The free slots can be updated when a thread exits and reused when a new * thread is added to the pool. */ for (ii = 0; ii < GTMProxyThreads->gt_array_size; ii++) { if (GTMProxyThreads->gt_threads[ii] == NULL) { GTMProxyThreads->gt_threads[ii] = thrinfo; GTMProxyThreads->gt_thread_count++; break; } } GTM_RWLockRelease(>MProxyThreads->gt_lock); /* * Track the slot information in the thrinfo. This is useful to quickly * find the slot given the thrinfo structure. */ thrinfo->thr_localid = ii; return ii; } int GTMProxy_ThreadRemove(GTMProxy_ThreadInfo* thrinfo) { /* * XXX To be implemeneted */ return 0; } /* * Create a new thread and assign the given connection to it. * * This function is responsible for setting up the various memory contextes for * the thread as well as registering this thread with the Thread Manager. * * Upon successful creation, the thread will start running the given * "startroutine". The thread information is returned to the calling process. */ GTMProxy_ThreadInfo* GTMProxy_ThreadCreate(void* (*startroutine)(void*), int idx) { GTMProxy_ThreadInfo* thrinfo; int err; /* * We are still running in the context of the main thread. So the * allocation below would last as long as the main thread exists or the * memory is explicitely freed. */ thrinfo = (GTMProxy_ThreadInfo*)palloc0(sizeof(GTMProxy_ThreadInfo)); GTM_MutexLockInit(&thrinfo->thr_lock); GTM_CVInit(&thrinfo->thr_cv); /* * Initialize communication area with SIGUSR2 signal handler (reconnect) */ Proxy_ThreadInfo[idx] = thrinfo; /* * The thread status is set to GTM_PROXY_THREAD_STARTING and will be changed by * the thread itself when it actually starts executing */ thrinfo->thr_status = GTM_PROXY_THREAD_STARTING; /* * Install the ThreadInfo structure in the global array. We do this before * starting the thread */ if (GTMProxy_ThreadAdd(thrinfo) == -1) elog(ERROR, "Error starting a new thread"); /* * Set up memory contextes before actually starting the threads * * The TopThreadContext is a child of TopMemoryContext and it will last as * long as the main process or this thread lives * * Thread context is not shared between other threads */ thrinfo->thr_thread_context = AllocSetContextCreate(TopMemoryContext, "TopMemoryContext", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE, false); /* * Since the thread is not yes started, TopMemoryContext still points to * the context of the calling thread */ thrinfo->thr_parent_context = TopMemoryContext; /* * Each thread gets its own ErrorContext and its a child of ErrorContext of * the main process * * This is a thread-specific context and is not shared between other * threads */ thrinfo->thr_error_context = AllocSetContextCreate(ErrorContext, "ErrorContext", 8 * 1024, 8 * 1024, 8 * 1024, false); thrinfo->thr_startroutine = startroutine; /* * Now start the thread. The thread will start executing the given * "startroutine". The thrinfo structure is also passed to the thread. Any * additional parameters should be passed via the thrinfo strcuture. * * Return the thrinfo structure to the caller */ if ((err = pthread_create(&thrinfo->thr_id, NULL, GTMProxy_ThreadMainWrapper, thrinfo))) ereport(ERROR, (err, errmsg("Failed to create a new thread: error %d", err))); return thrinfo; } /* * Exit the current thread */ void GTMProxy_ThreadExit(void) { /* XXX To be implemented */ } int GTMProxy_ThreadJoin(GTMProxy_ThreadInfo* thrinfo) { int error; void* data; error = pthread_join(thrinfo->thr_id, &data); return error; } /* * Get thread information for the given thread, identified by the * thread_id */ GTMProxy_ThreadInfo* GTMProxy_GetThreadInfo(GTM_ThreadID thrid) { return NULL; } /* * Cleanup routine for the thread */ static void GTMProxy_ThreadCleanup(void* argp) { GTMProxy_ThreadInfo* thrinfo = (GTMProxy_ThreadInfo*)argp; elog(LOG, "Cleaning up thread state"); /* * TODO Close the open connection. */ StreamClose(thrinfo->thr_conn->con_port->sock); /* * Switch to the memory context of the main process so that we can free up * our memory contextes easily. * * XXX We don't setup cleanup handlers for the main process. So this * routine would never be called for the main process/thread */ MemoryContextSwitchTo(thrinfo->thr_parent_context); MemoryContextDelete(thrinfo->thr_message_context); thrinfo->thr_message_context = NULL; MemoryContextDelete(thrinfo->thr_error_context); thrinfo->thr_error_context = NULL; MemoryContextDelete(thrinfo->thr_thread_context); thrinfo->thr_thread_context = NULL; /* * TODO Now cleanup the thrinfo structure itself and remove it from the global * array. */ /* * Reset the thread-specific information. This should be done only after we * are sure that memory contextes are not required * * Note: elog calls need memory contextes, so no elog calls beyond this * point. */ SetMyThreadInfo(NULL); return; } /* * A wrapper around the start routine of the thread. This helps us doing any * initialization and setting up cleanup handlers before the main routine is * started */ void* GTMProxy_ThreadMainWrapper(void* argp) { GTMProxy_ThreadInfo* thrinfo = (GTMProxy_ThreadInfo*)argp; pthread_detach(thrinfo->thr_id); SetMyThreadInfo(thrinfo); MemoryContextSwitchTo(TopMemoryContext); pthread_cleanup_push(GTMProxy_ThreadCleanup, thrinfo); thrinfo->thr_startroutine(thrinfo); pthread_cleanup_pop(1); return thrinfo; } /* * Add the given connection info structure to a thread which is selected by a * round-robin manner. The caller is responsible for only accepting the * connection. Other things including the authentication is done by the worker * thread when it finds a new entry in the connection list. * * Return the reference to the GTMProxy_ThreadInfo structure of the thread * which will be serving this connection */ GTMProxy_ThreadInfo* GTMProxy_ThreadAddConnection(GTMProxy_ConnectionInfo* conninfo) { GTMProxy_ThreadInfo* thrinfo = NULL; /* * Get the next thread in the queue */ GTM_RWLockAcquire(>MProxyThreads->gt_lock, GTM_LOCKMODE_WRITE); /* * Always start with thread 1 because thread 0 is the main thread */ if (GTMProxyThreads->gt_next_worker == 0) GTMProxyThreads->gt_next_worker = 1; thrinfo = GTMProxyThreads->gt_threads[GTMProxyThreads->gt_next_worker]; /* * Set the next worker thread before releasing the lock */ GTMProxyThreads->gt_next_worker++; if (GTMProxyThreads->gt_next_worker == GTMProxyThreads->gt_thread_count) GTMProxyThreads->gt_next_worker = 1; GTM_RWLockRelease(>MProxyThreads->gt_lock); /* * Lock the threadninfo structure to safely add the new connection to the * thread structure. The thread will see the connection when it queries the * socket descriptor in the next cycle */ GTM_MutexLockAcquire(&thrinfo->thr_lock); if (thrinfo->thr_conn_count >= GTM_PROXY_MAX_CONNECTIONS) { GTM_MutexLockRelease(&thrinfo->thr_lock); elog(ERROR, "Too many connections"); } /* * Save the array slotid in the conninfo structure. We send this to the GTM * server as an identifier which the GTM server sends us back in the * response. We use that information to route the response back to the * approrpiate connection */ conninfo->con_id = thrinfo->thr_conn_count; thrinfo->thr_all_conns[thrinfo->thr_conn_count] = conninfo; thrinfo->thr_conn_count++; /* * Now increment the seqno since a new connection is added to the array. * Before we do the next poll(), the fd array will be forced to be * reconstructed. */ thrinfo->thr_seqno++; /* * Signal the worker thread if its waiting for connections to be added to * its Q * * XXX May be we can first check the condition that this is the first * connection in the array and also use signal instead of a bcast since * only one thread is waiting on the cv. */ GTM_CVBcast(&thrinfo->thr_cv); GTM_MutexLockRelease(&thrinfo->thr_lock); return thrinfo; } /* * Remove the connection from the array and compact the array */ int GTMProxy_ThreadRemoveConnection(GTMProxy_ThreadInfo* thrinfo, GTMProxy_ConnectionInfo* conninfo) { int ii; /* * Lock the threadninfo structure to safely remove the connection from the * thread structure. */ GTM_MutexLockAcquire(&thrinfo->thr_lock); for (ii = 0; ii < thrinfo->thr_conn_count; ii++) { if (thrinfo->thr_all_conns[ii] == conninfo) break; } if (ii >= thrinfo->thr_conn_count) { GTM_MutexLockRelease(&thrinfo->thr_lock); elog(ERROR, "No such connection"); } /* * Reset command backup info */ thrinfo->thr_any_backup[ii] = FALSE; thrinfo->thr_qtype[ii] = 0; resetStringInfo(&(thrinfo->thr_inBufData[ii])); /* * If this is the last entry in the array ? If not, then copy the last * entry in this slot and mark the last slot an empty */ if ((ii + 1) < thrinfo->thr_conn_count) { /* Copy the last entry in this slot */ thrinfo->thr_all_conns[ii] = thrinfo->thr_all_conns[thrinfo->thr_conn_count - 1]; /* Mark the last slot free */ thrinfo->thr_all_conns[thrinfo->thr_conn_count - 1] = NULL; /* Adjust the con_id to reflect the current slot in the array */ thrinfo->thr_all_conns[ii]->con_id = ii; } else { /* This is the last entry in the array. Just mark it free */ thrinfo->thr_all_conns[ii] = NULL; } thrinfo->thr_conn_count--; /* * Increment the seqno to ensure that the next time before we poll, the fd * array is reconstructed. */ thrinfo->thr_seqno++; GTM_MutexLockRelease(&thrinfo->thr_lock); return 0; }