Files
openGauss-server/src/include/utils/catcache.h
2022-03-04 23:22:16 +08:00

213 lines
9.6 KiB
C

/* -------------------------------------------------------------------------
*
* catcache.h
* Low-level catalog cache definitions.
*
* NOTE: every catalog cache must have a corresponding unique index on
* the system table that it caches --- ie, the index must match the keys
* used to do lookups in this cache. All cache fetches are done with
* indexscans (under normal conditions). The index should be unique to
* guarantee that there can only be one matching row for a key combination.
*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/utils/catcache.h
*
* -------------------------------------------------------------------------
*/
#ifndef CATCACHE_H
#define CATCACHE_H
#include "access/htup.h"
#include "access/skey.h"
#include "lib/dllist.h"
#include "utils/relcache.h"
/*
* struct catctup: individual tuple in the cache.
* struct catclist: list of tuples matching a partial key.
* struct catcache: information for managing a cache.
* struct catcacheheader: information for managing all the caches.
*/
#define CATCACHE_MAXKEYS 4
/* function computing a datum's hash */
typedef uint32 (*CCHashFN)(Datum datum);
/* function computing equality of two datums */
typedef bool (*CCFastEqualFN)(Datum a, Datum b);
typedef struct CatCache {
int id; /* cache identifier --- see syscache.h */
int cc_nbuckets; /* # of hash buckets in this cache */
CatCache* cc_next; /* link to next catcache */
const char* cc_relname; /* name of relation the tuples come from */
TupleDesc cc_tupdesc; /* tuple descriptor (copied from reldesc) */
CCHashFN cc_hashfunc[CATCACHE_MAXKEYS]; /* hash function for each key */
CCFastEqualFN cc_fastequal[CATCACHE_MAXKEYS]; /* fast equal function for each key */
Oid cc_reloid; /* OID of relation the tuples come from */
Oid cc_indexoid; /* OID of index matching cache keys */
int cc_ntup; /* # of tuples currently in this cache */
int cc_nkeys; /* # of keys (1..CATCACHE_MAXKEYS) */
int cc_keyno[CATCACHE_MAXKEYS]; /* AttrNumber of each key */
bool cc_relisshared; /* is relation shared across databases? */
Dllist cc_lists; /* list of CatCList structs */
ScanKeyData cc_skey[CATCACHE_MAXKEYS]; /* precomputed key info for
* heap scans */
#ifdef CATCACHE_STATS
long cc_searches; /* total # searches against this cache */
long cc_hits; /* # of matches against existing entry */
long cc_neg_hits; /* # of matches against negative entry */
long cc_newloads; /* # of successful loads of new entry */
/*
* cc_searches - (cc_hits + cc_neg_hits + cc_newloads) is number of failed
* searches, each of which will result in loading a negative entry
*/
long cc_invals; /* # of entries invalidated from cache */
long cc_lsearches; /* total # list-searches */
long cc_lhits; /* # of matches against existing lists */
#endif
Dllist cc_bucket[FLEXIBLE_ARRAY_MEMBER]; /* hash buckets --- VARIABLE LENGTH ARRAY */
} CatCache; /* VARIABLE LENGTH STRUCT */
typedef struct catctup {
int ct_magic; /* for identifying CatCTup entries */
#define CT_MAGIC 0x57261502
uint32 hash_value; /* hash value for this tuple's keys */
/*
* Lookup keys for the entry. By-reference datums point into the tuple for
* positive cache entries, and are separately allocated for negative ones.
*/
Datum keys[CATCACHE_MAXKEYS];
/*
* Each tuple in a cache is a member of a Dllist that stores the elements
* of its hash bucket. We keep each Dllist in LRU order to speed repeated
* lookups.
*/
Dlelem cache_elem; /* list member of per-bucket list */
/*
* A tuple marked "dead" must not be returned by subsequent searches.
* However, it won't be physically deleted from the cache until its
* refcount goes to zero. (If it's a member of a CatCList, the list's
* refcount must go to zero, too; also, remember to mark the list dead at
* the same time the tuple is marked.)
*
* A negative cache entry is an assertion that there is no tuple matching
* a particular key. This is just as useful as a normal entry so far as
* avoiding catalog searches is concerned. Management of positive and
* negative entries is identical.
*/
int refcount; /* number of active references */
bool dead; /* dead but not yet removed? */
bool negative; /* negative cache entry? */
bool isnailed; /* indicate if we can reomve this cattup from syscache or not */
HeapTupleData tuple; /* tuple management header */
/*
* The tuple may also be a member of at most one CatCList. (If a single
* catcache is list-searched with varying numbers of keys, we may have to
* make multiple entries for the same tuple because of this restriction.
* Currently, that's not expected to be common, so we accept the potential
* inefficiency.)
*/
struct catclist* c_list; /* containing CatCList, or NULL if none */
CatCache* my_cache; /* link to owning catcache */
} CatCTup;
/*
* A CatCList describes the result of a partial search, ie, a search using
* only the first K key columns of an N-key cache. We form the keys used
* into a tuple (with other attributes NULL) to represent the stored key
* set. The CatCList object contains links to cache entries for all the
* table rows satisfying the partial key. (Note: none of these will be
* negative cache entries.)
*
* A CatCList is only a member of a per-cache list; we do not currently
* divide them into hash buckets.
*
* A list marked "dead" must not be returned by subsequent searches.
* However, it won't be physically deleted from the cache until its
* refcount goes to zero. (A list should be marked dead if any of its
* member entries are dead.)
*
* If "ordered" is true then the member tuples appear in the order of the
* cache's underlying index. This will be true in normal operation, but
* might not be true during bootstrap or recovery operations. (namespace.c
* is able to save some cycles when it is true.)
*/
typedef struct catclist {
int cl_magic; /* for identifying CatCList entries */
#define CL_MAGIC 0x52765103
uint32 hash_value; /* hash value for lookup keys */
Dlelem cache_elem; /* list member of per-catcache list */
/*
* Lookup keys for the entry, with the first nkeys elements being valid.
* All by-reference are separately allocated.
*/
Datum keys[CATCACHE_MAXKEYS];
int refcount; /* number of active references */
bool dead; /* dead but not yet removed? */
bool isnailed; /* indicate if we can reomve this catlist from syscache or not */
bool ordered; /* members listed in index order? */
short nkeys; /* number of lookup keys specified */
int n_members; /* number of member tuples */
CatCache* my_cache; /* link to owning catcache */
CatCTup** systups; /* systups, link to CatCTup for pg; link to GlobalCatCTup for lsc
dont access this variable directly,
fetch element by call t_thrd.lsc_cxt.FetchTupleFromCatCList(catlist, i) instead */
} CatCList; /* VARIABLE LENGTH STRUCT */
typedef struct CatCacheHeader {
CatCache* ch_caches; /* head of list of CatCache structs */
int ch_ntup; /* # of tuples in all caches */
} CatCacheHeader;
extern void AtEOXact_CatCache(bool isCommit);
extern CatCache* InitCatCache(int id, Oid reloid, Oid indexoid, int nkeys, const int* key, int nbuckets);
extern void InitCatCachePhase2(CatCache* cache, bool touch_index);
extern HeapTuple SearchCatCache(CatCache* cache, Datum v1, Datum v2, Datum v3, Datum v4, int level);
extern HeapTuple SearchCatCache1(CatCache* cache, Datum v1);
extern HeapTuple SearchCatCache2(CatCache* cache, Datum v1, Datum v2);
extern HeapTuple SearchCatCache3(CatCache* cache, Datum v1, Datum v2, Datum v3);
extern HeapTuple SearchCatCache4(CatCache* cache, Datum v1, Datum v2, Datum v3, Datum v4);
extern void ReleaseCatCache(HeapTuple tuple);
extern uint32 GetCatCacheHashValue(CatCache* cache, Datum v1, Datum v2, Datum v3, Datum v4);
extern CatCList* SearchCatCacheList(CatCache* cache, int nkeys, Datum v1, Datum v2, Datum v3, Datum v4);
extern void ReleaseCatCacheList(CatCList* list);
extern void ReleaseTempCatList(const List* volatile ctlist, CatCache* cache);
extern void ResetCatalogCaches(void);
extern void CatalogCacheFlushCatalog(Oid catId);
extern void CatalogCacheIdInvalidate(int cacheId, uint32 hashValue);
extern void PrepareToInvalidateCacheTuple(
Relation relation, HeapTuple tuple, HeapTuple newtuple, void (*function)(int, uint32, Oid));
extern void PrintCatCacheLeakWarning(HeapTuple tuple);
extern void PrintCatCacheListLeakWarning(CatCList* list);
extern void InsertBuiltinFuncDescInBootstrap();
extern void InsertBuiltinFuncInBootstrap();
#ifndef ENABLE_MULTIPLE_NODES
extern HeapTuple SearchSysCacheForProcAllArgs(Datum v1, Datum v2, Datum v3, Datum v4, Datum proArgModes);
#endif
#endif /* CATCACHE_H */