3387 lines
125 KiB
C++
Executable File
3387 lines
125 KiB
C++
Executable File
/* -------------------------------------------------------------------------
|
|
*
|
|
* nodeHash.cpp
|
|
* Routines to hash relations for hashjoin
|
|
*
|
|
* Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd.
|
|
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/gausskernel/runtime/executor/nodeHash.cpp
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* INTERFACE ROUTINES
|
|
* MultiExecHash - generate an in-memory hash table of the relation
|
|
* ExecInitHash - initialize node and subnodes
|
|
* ExecEndHash - shutdown node and subnodes
|
|
*/
|
|
#include "postgres.h"
|
|
#include "knl/knl_variable.h"
|
|
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include "access/hash.h"
|
|
#include "access/parallel.h"
|
|
#include "catalog/pg_partition_fn.h"
|
|
#include "catalog/pg_statistic.h"
|
|
#include "commands/tablespace.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/hashjoin.h"
|
|
#include "utils/sharedtuplestore.h"
|
|
#include "executor/nodeHash.h"
|
|
#include "executor/nodeHashjoin.h"
|
|
#include "miscadmin.h"
|
|
#include "pgstat.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/streamplan.h"
|
|
#include "pgstat.h"
|
|
#include "pgxc/pgxc.h"
|
|
#include "instruments/instr_unique_sql.h"
|
|
#include "utils/anls_opt.h"
|
|
#include "utils/atomic.h"
|
|
#include "utils/dynahash.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memprot.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/selfuncs.h"
|
|
#include "utils/syscache.h"
|
|
#include "vecexecutor/vechashtable.h"
|
|
#include "vectorsonic/vsonicarray.h"
|
|
#include "vectorsonic/vsonichash.h"
|
|
#include "workload/workload.h"
|
|
|
|
static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
|
|
static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
|
|
static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
|
|
static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash* node, int mcvsToUse);
|
|
static void ExecHashSkewTableInsert(HashJoinTable hashtable, TupleTableSlot* slot, uint32 hashvalue, int bucketNumber);
|
|
static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
|
|
static void ExecHashIncreaseBuckets(HashJoinTable hashtable);
|
|
|
|
static void* dense_alloc(HashJoinTable hashtable, Size size);
|
|
static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size, HashJoinTuple* shared);
|
|
static void MultiExecPrivateHash(HashState* node);
|
|
static void MultiExecParallelHash(HashState* node);
|
|
static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable table, int bucketno);
|
|
static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable table, HashJoinTuple tuple);
|
|
static inline void ExecParallelHashPushTuple(HashJoinTuple* head, HashJoinTuple tuple, HashJoinTuple tuple_shared);
|
|
static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
|
|
static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
|
|
static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
|
|
static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
|
|
static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable table, HashMemoryChunk* shared);
|
|
static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size);
|
|
static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
|
|
static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHash
|
|
*
|
|
* stub for pro forma compliance
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot* ExecHash(void)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmodule(MOD_EXECUTOR),
|
|
errmsg("Hash node does not support ExecProcNode call convention")));
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* MultiExecHash
|
|
*
|
|
* build hash table for hashjoin, doing partitioning if more
|
|
* than one batch is required.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
Node* MultiExecHash(HashState* node)
|
|
{
|
|
TimestampTz start_time = 0;
|
|
|
|
/* must provide our own instrumentation support */
|
|
if (node->ps.instrument) {
|
|
InstrStartNode(node->ps.instrument);
|
|
node->hashtable->spill_size = &node->ps.instrument->sorthashinfo.spill_size;
|
|
} else {
|
|
node->hashtable->spill_size = &node->spill_size;
|
|
}
|
|
|
|
/* init unique sql hash state if needed*/
|
|
UpdateUniqueSQLHashStats(NULL, &start_time);
|
|
|
|
if (node->parallel_state != NULL) {
|
|
MultiExecParallelHash(node);
|
|
} else {
|
|
MultiExecPrivateHash(node);
|
|
}
|
|
|
|
/* analyze hash table information for unique sql hash state */
|
|
UpdateUniqueSQLHashStats(NULL, &start_time);
|
|
|
|
/* must provide our own instrumentation support */
|
|
if (node->ps.instrument) {
|
|
InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
|
|
}
|
|
|
|
/*
|
|
* We do not return the hash table directly because it's not a subtype of
|
|
* Node, and so would violate the MultiExecProcNode API. Instead, our
|
|
* parent Hashjoin node is expected to know how to fish it out of our node
|
|
* state. Ugly but not really worth cleaning up, since Hashjoin knows
|
|
* quite a bit more about Hash besides that.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* MultiExecPrivateHash
|
|
*
|
|
* parallel-oblivious version, building a backend-private
|
|
* hash table and (if necessary) batch files.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void MultiExecPrivateHash(HashState* node)
|
|
{
|
|
PlanState* outerNode = NULL;
|
|
List* hashkeys = NIL;
|
|
HashJoinTable hashtable = NULL;
|
|
TupleTableSlot* slot = NULL;
|
|
ExprContext* econtext = NULL;
|
|
uint32 hashvalue;
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
outerNode = outerPlanState(node);
|
|
hashtable = node->hashtable;
|
|
|
|
/*
|
|
* set expression context
|
|
*/
|
|
hashkeys = node->hashkeys;
|
|
econtext = node->ps.ps_ExprContext;
|
|
|
|
/*
|
|
* get all inner tuples and insert into the hash table (or temp files)
|
|
*/
|
|
WaitState oldStatus = pgstat_report_waitstatus(STATE_EXEC_HASHJOIN_BUILD_HASH);
|
|
for (;;) {
|
|
slot = ExecProcNode(outerNode);
|
|
if (TupIsNull(slot))
|
|
break;
|
|
/* We have to compute the hash value */
|
|
econtext->ecxt_innertuple = slot;
|
|
if (ExecHashGetHashValue(hashtable, econtext, hashkeys, false, hashtable->keepNulls, &hashvalue)) {
|
|
int bucketNumber;
|
|
|
|
bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
|
|
if (bucketNumber != INVALID_SKEW_BUCKET_NO) {
|
|
/* It's a skew tuple, so put it into that hash table */
|
|
ExecHashSkewTableInsert(hashtable, slot, hashvalue, bucketNumber);
|
|
} else {
|
|
/* Not subject to skew optimization, so insert normally */
|
|
ExecHashTableInsert(hashtable,
|
|
slot,
|
|
hashvalue,
|
|
node->ps.plan->plan_node_id,
|
|
SET_DOP(node->ps.plan->dop),
|
|
node->ps.instrument);
|
|
}
|
|
hashtable->totalTuples += 1;
|
|
}
|
|
}
|
|
(void)pgstat_report_waitstatus(oldStatus);
|
|
|
|
/* analysis hash table information created in memory */
|
|
if (anls_opt_is_on(ANLS_HASH_CONFLICT)) {
|
|
ExecHashTableStats(hashtable, node->ps.plan->plan_node_id);
|
|
}
|
|
hashtable->partialTuples = hashtable->totalTuples;
|
|
/*
|
|
* We do not return the hash table directly because it's not a subtype of
|
|
* Node, and so would violate the MultiExecProcNode API. Instead, our
|
|
* parent Hashjoin node is expected to know how to fish it out of our node
|
|
* state. Ugly but not really worth cleaning up, since Hashjoin knows
|
|
* quite a bit more about Hash besides that.
|
|
*/
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitHash
|
|
*
|
|
* Init routine for Hash node
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
HashState* ExecInitHash(Hash* node, EState* estate, int eflags)
|
|
{
|
|
HashState* hashstate = NULL;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
|
|
|
|
/*
|
|
* create state structure
|
|
*/
|
|
hashstate = makeNode(HashState);
|
|
hashstate->ps.plan = (Plan*)node;
|
|
hashstate->ps.state = estate;
|
|
hashstate->hashtable = NULL;
|
|
hashstate->hashkeys = NIL; /* will be set by parent HashJoin */
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &hashstate->ps);
|
|
|
|
/*
|
|
* initialize our result slot
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &hashstate->ps);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
hashstate->ps.targetlist = (List*)ExecInitExpr((Expr*)node->plan.targetlist, (PlanState*)hashstate);
|
|
hashstate->ps.qual = (List*)ExecInitExpr((Expr*)node->plan.qual, (PlanState*)hashstate);
|
|
|
|
/*
|
|
* initialize child nodes
|
|
*/
|
|
outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
|
|
|
|
/*
|
|
* initialize tuple type. no need to initialize projection info because
|
|
* this node doesn't do projections
|
|
*/
|
|
ExecAssignResultTypeFromTL(&hashstate->ps);
|
|
hashstate->ps.ps_ProjInfo = NULL;
|
|
|
|
return hashstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* MultiExecParallelHash
|
|
*
|
|
* parallel-aware version, building a shared hash table and
|
|
* (if necessary) batch files using the combined effort of
|
|
* a set of co-operating backends.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void MultiExecParallelHash(HashState* node)
|
|
{
|
|
ParallelHashJoinState* pstate = NULL;
|
|
PlanState* outerNode = NULL;
|
|
List* hashkeys = NIL;
|
|
HashJoinTable hashtable = NULL;
|
|
TupleTableSlot* slot = NULL;
|
|
ExprContext* econtext = NULL;
|
|
uint32 hashvalue;
|
|
Barrier* build_barrier = NULL;
|
|
int i;
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
outerNode = outerPlanState(node);
|
|
hashtable = node->hashtable;
|
|
|
|
/*
|
|
* set expression context
|
|
*/
|
|
hashkeys = node->hashkeys;
|
|
econtext = node->ps.ps_ExprContext;
|
|
|
|
/*
|
|
* Synchronize the parallel hash table build. At this stage we know that
|
|
* the shared hash table has been or is being set up by
|
|
* ExecHashTableCreate(), but we don't know if our peers have returned
|
|
* from there or are here in MultiExecParallelHash(), and if so how far
|
|
* through they are. To find out, we check the build_barrier phase then
|
|
* and jump to the right step in the build algorithm.
|
|
*/
|
|
pstate = hashtable->parallel_state;
|
|
build_barrier = &pstate->build_barrier;
|
|
Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATING);
|
|
switch (BarrierPhase(build_barrier)) {
|
|
case PHJ_BUILD_ALLOCATING:
|
|
|
|
/*
|
|
* Either I just allocated the initial hash table in
|
|
* ExecHashTableCreate(), or someone else is doing that. Either
|
|
* way, wait for everyone to arrive here so we can proceed.
|
|
*/
|
|
(void)BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATING);
|
|
/* Fall through. */
|
|
|
|
case PHJ_BUILD_HASHING_INNER:
|
|
|
|
/*
|
|
* It's time to begin hashing, or if we just arrived here then
|
|
* hashing is already underway, so join in that effort. While
|
|
* hashing we have to be prepared to help increase the number of
|
|
* batches or buckets at any time, and if we arrived here when
|
|
* that was already underway we'll have to help complete that work
|
|
* immediately so that it's safe to access batches and buckets
|
|
* below.
|
|
*/
|
|
if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) != PHJ_GROW_BATCHES_ELECTING) {
|
|
ExecParallelHashIncreaseNumBatches(hashtable);
|
|
}
|
|
if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) != PHJ_GROW_BUCKETS_ELECTING) {
|
|
ExecParallelHashIncreaseNumBuckets(hashtable);
|
|
}
|
|
ExecParallelHashEnsureBatchAccessors(hashtable);
|
|
ExecParallelHashTableSetCurrentBatch(hashtable, 0);
|
|
for (;;) {
|
|
slot = ExecProcNode(outerNode);
|
|
if (TupIsNull(slot)) {
|
|
break;
|
|
}
|
|
econtext->ecxt_innertuple = slot;
|
|
if (ExecHashGetHashValue(hashtable, econtext, hashkeys, false, hashtable->keepNulls, &hashvalue)) {
|
|
ExecParallelHashTableInsert(hashtable, slot, hashvalue);
|
|
}
|
|
hashtable->partialTuples++;
|
|
}
|
|
/*
|
|
* Make sure that any tuples we wrote to disk are visible to
|
|
* others before anyone tries to load them.
|
|
*/
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
sts_end_write(hashtable->batches[i].inner_tuples);
|
|
}
|
|
|
|
/*
|
|
* Update shared counters. We need an accurate total tuple count
|
|
* to control the empty table optimization.
|
|
*/
|
|
ExecParallelHashMergeCounters(hashtable);
|
|
|
|
(void)BarrierDetach(&pstate->grow_buckets_barrier);
|
|
(void)BarrierDetach(&pstate->grow_batches_barrier);
|
|
/*
|
|
* Wait for everyone to finish building and flushing files and
|
|
* counters.
|
|
*/
|
|
if (BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_HASHING_INNER)) {
|
|
/*
|
|
* Elect one backend to disable any further growth. Batches
|
|
* are now fixed. While building them we made sure they'd fit
|
|
* in our memory budget when we load them back in later (or we
|
|
* tried to do that and gave up because we detected extreme
|
|
* skew).
|
|
*/
|
|
pstate->growth = PHJ_GROWTH_DISABLED;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We're not yet attached to a batch. We all agree on the dimensions and
|
|
* number of inner tuples (for the empty table optimization).
|
|
*/
|
|
hashtable->curbatch = -1;
|
|
hashtable->nbuckets = pstate->nbuckets;
|
|
hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
|
|
hashtable->totalTuples = pstate->total_tuples;
|
|
ExecParallelHashEnsureBatchAccessors(hashtable);
|
|
|
|
/*
|
|
* The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
|
|
* case, which will bring the build phase to PHJ_BUILD_DONE (if it isn't
|
|
* there already).
|
|
*/
|
|
Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER || BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------
|
|
* ExecEndHash
|
|
*
|
|
* clean up routine for Hash node
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecEndHash(HashState* node)
|
|
{
|
|
PlanState* outerPlan = NULL;
|
|
|
|
/*
|
|
* free exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ps);
|
|
|
|
/*
|
|
* shut down the subplan
|
|
*/
|
|
outerPlan = outerPlanState(node);
|
|
ExecEndNode(outerPlan);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHashTableCreate
|
|
*
|
|
* create an empty hashtable data structure for hashjoin.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
HashJoinTable ExecHashTableCreate(HashState* state, List* hashOperators, bool keepNulls)
|
|
{
|
|
Hash* node = (Hash*)state->ps.plan;
|
|
HashJoinTable hashtable = NULL;
|
|
Plan* outerNode = NULL;
|
|
size_t space_allowed;
|
|
int nbuckets;
|
|
int nbatch;
|
|
double rows;
|
|
int num_skew_mcvs;
|
|
int log2_nbuckets;
|
|
int nkeys;
|
|
int i;
|
|
int64 local_work_mem = SET_NODEMEM(node->plan.operatorMemKB[0], node->plan.dop);
|
|
int64 max_mem = (node->plan.operatorMaxMem > 0) ? SET_NODEMEM(node->plan.operatorMaxMem, node->plan.dop) : 0;
|
|
ListCell* ho = NULL;
|
|
MemoryContext oldcxt;
|
|
|
|
/*
|
|
* Get information about the size of the relation to be hashed (it's the
|
|
* "outer" subtree of this node, but the inner relation of the hashjoin).
|
|
* Compute the appropriate size of the hash table.
|
|
*/
|
|
|
|
outerNode = outerPlan(node);
|
|
|
|
/*
|
|
* If this is shared hash table with a partial plan, then we can't use
|
|
* outerNode->plan_rows to estimate its size. We need an estimate of the
|
|
* total number of rows across all copies of the partial plan.
|
|
*/
|
|
rows = node->plan.parallel_aware ? node->rows_total : (PLAN_LOCAL_ROWS(outerNode) / SET_DOP(node->plan.dop));
|
|
ExecChooseHashTableSize(rows,
|
|
outerNode->plan_width,
|
|
OidIsValid(node->skewTable),
|
|
state->parallel_state != NULL,
|
|
(state->parallel_state != NULL) ? (state->parallel_state->nparticipants - 1) : 0,
|
|
&space_allowed,
|
|
&nbuckets,
|
|
&nbatch,
|
|
&num_skew_mcvs,
|
|
local_work_mem);
|
|
|
|
/*
|
|
* If we allows mem auto spread, we should set nbatch to 1 to avoid disk
|
|
* spill if estimation from optimizer differs from that from executor
|
|
*/
|
|
if (node->plan.operatorMaxMem > 0 && nbatch > 1 && nbuckets < INT_MAX / nbatch) {
|
|
if (nbuckets * nbatch < (int)(MaxAllocSize / sizeof(HashJoinTuple))) {
|
|
nbuckets *= nbatch;
|
|
nbatch = 1;
|
|
}
|
|
}
|
|
|
|
#ifdef HJDEBUG
|
|
printf("nbatch = %d, nbuckets = %d\n", nbatch, nbuckets);
|
|
#endif
|
|
|
|
/* nbuckets must be a power of 2 */
|
|
log2_nbuckets = my_log2(nbuckets);
|
|
Assert(nbuckets == (1 << log2_nbuckets));
|
|
|
|
/*
|
|
* Initialize the hash table control block.
|
|
*
|
|
* The hashtable control block is just palloc'd from the executor's
|
|
* per-query memory context.
|
|
*/
|
|
hashtable = (HashJoinTable)palloc(sizeof(HashJoinTableData));
|
|
hashtable->nbuckets = nbuckets;
|
|
hashtable->log2_nbuckets = log2_nbuckets;
|
|
hashtable->buckets.unshared = NULL;
|
|
hashtable->keepNulls = keepNulls;
|
|
hashtable->skewEnabled = false;
|
|
hashtable->skewBucket = NULL;
|
|
hashtable->skewBucketLen = 0;
|
|
hashtable->nSkewBuckets = 0;
|
|
hashtable->skewBucketNums = NULL;
|
|
hashtable->nbatch = nbatch;
|
|
hashtable->curbatch = 0;
|
|
hashtable->nbatch_original = nbatch;
|
|
hashtable->nbatch_outstart = nbatch;
|
|
hashtable->growEnabled = true;
|
|
hashtable->totalTuples = 0;
|
|
hashtable->partialTuples = 0;
|
|
hashtable->innerBatchFile = NULL;
|
|
hashtable->outerBatchFile = NULL;
|
|
hashtable->spaceUsed = 0;
|
|
hashtable->spacePeak = 0;
|
|
hashtable->spill_count = 0;
|
|
hashtable->spaceAllowed = (int64)space_allowed;
|
|
|
|
hashtable->spaceUsedSkew = 0;
|
|
hashtable->spaceAllowedSkew = hashtable->spaceAllowed * SKEW_WORK_MEM_PERCENT / 100;
|
|
hashtable->chunks = NULL;
|
|
hashtable->current_chunk = NULL;
|
|
hashtable->parallel_state = state->parallel_state;
|
|
hashtable->area = t_thrd.bgworker_cxt.memCxt;
|
|
hashtable->batches = NULL;
|
|
|
|
hashtable->width[0] = hashtable->width[1] = 0;
|
|
hashtable->causedBySysRes = false;
|
|
|
|
/* should we allow auto mem spread in query mem mode? */
|
|
hashtable->maxMem = max_mem * 1024L;
|
|
hashtable->spreadNum = 0;
|
|
|
|
/*
|
|
* Get info about the hash functions to be used for each hash key. Also
|
|
* remember whether the join operators are strict.
|
|
*/
|
|
nkeys = list_length(hashOperators);
|
|
hashtable->outer_hashfunctions = (FmgrInfo*)palloc(nkeys * sizeof(FmgrInfo));
|
|
hashtable->inner_hashfunctions = (FmgrInfo*)palloc(nkeys * sizeof(FmgrInfo));
|
|
hashtable->hashStrict = (bool*)palloc(nkeys * sizeof(bool));
|
|
i = 0;
|
|
foreach (ho, hashOperators) {
|
|
Oid hashop = lfirst_oid(ho);
|
|
Oid left_hashfn;
|
|
Oid right_hashfn;
|
|
|
|
if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmodule(MOD_EXECUTOR),
|
|
errmsg("could not find hash function for hash operator %u", hashop)));
|
|
fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
|
|
fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
|
|
hashtable->hashStrict[i] = op_strict(hashop);
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Create temporary memory contexts in which to keep the hashtable working
|
|
* storage. See notes in executor/hashjoin.h.
|
|
*/
|
|
hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
|
|
"HashTableContext",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE,
|
|
STANDARD_CONTEXT,
|
|
local_work_mem * 1024L);
|
|
|
|
hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
|
|
"HashBatchContext",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE,
|
|
STANDARD_CONTEXT,
|
|
local_work_mem * 1024L);
|
|
|
|
/* Allocate data that will live for the life of the hashjoin */
|
|
oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
|
|
|
|
if (nbatch > 1 && hashtable->parallel_state == NULL) {
|
|
/*
|
|
* allocate and initialize the file arrays in hashCxt (not needed for
|
|
* parallel case which uses shared tuplestores instead of raw files)
|
|
*/
|
|
hashtable->innerBatchFile = (BufFile**)palloc0(nbatch * sizeof(BufFile*));
|
|
hashtable->outerBatchFile = (BufFile**)palloc0(nbatch * sizeof(BufFile*));
|
|
/* The files will not be opened until needed... */
|
|
/* ... but make sure we have temp tablespaces established for them */
|
|
PrepareTempTablespaces();
|
|
}
|
|
(void)MemoryContextSwitchTo(oldcxt);
|
|
if (hashtable->parallel_state) {
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
Barrier* build_barrier = NULL;
|
|
|
|
/*
|
|
* Attach to the build barrier. The corresponding detach operation is
|
|
* in ExecHashTableDetach. Note that we won't attach to the
|
|
* batch_barrier for batch 0 yet. We'll attach later and start it out
|
|
* in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
|
|
* and then loaded while hashing (the standard hybrid hash join
|
|
* algorithm), and we'll coordinate that using build_barrier.
|
|
*/
|
|
build_barrier = &pstate->build_barrier;
|
|
BarrierAttach(build_barrier);
|
|
|
|
/*
|
|
* So far we have no idea whether there are any other participants,
|
|
* and if so, what phase they are working on. The only thing we care
|
|
* about at this point is whether someone has already created the
|
|
* SharedHashJoinBatch objects and the hash table for batch 0. One
|
|
* backend will be elected to do that now if necessary.
|
|
*/
|
|
if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
|
|
BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECTING)) {
|
|
pstate->nbatch = nbatch;
|
|
pstate->space_allowed = space_allowed;
|
|
pstate->growth = PHJ_GROWTH_OK;
|
|
|
|
/* Set up the shared state for coordinating batches. */
|
|
ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
|
|
|
|
/*
|
|
* Allocate batch 0's hash table up front so we can load it
|
|
* directly while hashing.
|
|
*/
|
|
pstate->nbuckets = nbuckets;
|
|
ExecParallelHashTableAlloc(hashtable, 0);
|
|
}
|
|
|
|
/*
|
|
* The next Parallel Hash synchronization point is in
|
|
* MultiExecParallelHash(), which will progress it all the way to
|
|
* PHJ_BUILD_DONE. The caller must not return control from this
|
|
* executor node between now and then.
|
|
*/
|
|
} else {
|
|
/*
|
|
* Prepare context for the first-scan space allocations; allocate the
|
|
* hashbucket array therein, and set each bucket "empty".
|
|
*/
|
|
(void)MemoryContextSwitchTo(hashtable->batchCxt);
|
|
|
|
hashtable->buckets.unshared = (HashJoinTuple*)palloc0(nbuckets * sizeof(HashJoinTuple));
|
|
|
|
/*
|
|
* Set up for skew optimization, if possible and there's a need for
|
|
* more than one batch. (In a one-batch join, there's no point in
|
|
* it.)
|
|
*/
|
|
if (nbatch > 1) {
|
|
ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
return hashtable;
|
|
}
|
|
|
|
/*
|
|
* Compute max tuples which fit into a given mem
|
|
*
|
|
* HashTable (total of nbuckets)
|
|
* [ ] <--hash_header
|
|
* [ ]
|
|
* [ ]->[ ]->[ ]->....
|
|
* [ ]
|
|
* [ ]
|
|
* [ ]
|
|
* ^^^ bucket_bytes
|
|
* ^^^^^^^^^^^^^^^inner_rel_bytes
|
|
*
|
|
* bucket_bytes = hash_header_size * nbuckets
|
|
* nbuckets = ntuples/ntuple_per_bucket
|
|
* inner_rel_bytes = ntuples * tupsize
|
|
* hash_table_bytes = bucket_bytes + inner_rel_bytes;
|
|
*
|
|
* for a given hash_table_bytes of memory we can most fit in
|
|
*
|
|
* hash_table_bytes - skew_table_bytes
|
|
* ntuples= ------------------------------------------------
|
|
* tuple_size + hash_header_size/NTUP_PER_BUCKET
|
|
*
|
|
* current we don't take max_pointers into account, that will
|
|
* give a lower bound of hash_table_max_tuples which is safe
|
|
* for us to use.
|
|
*
|
|
* This is exported so that the planner's costsize.c can use it.
|
|
* also refer to ExecChooseHashTableSize
|
|
*/
|
|
/* Target bucket loading (tuples per bucket) */
|
|
#define NTUP_PER_BUCKET 1
|
|
|
|
double ExecChooseHashTableMaxTuples(int tupwidth, bool useskew, bool vectorized, double hash_table_bytes)
|
|
{
|
|
int tupsize;
|
|
int hash_header_size;
|
|
double hash_table_max_tuples;
|
|
|
|
hash_header_size = vectorized ? sizeof(void*) : sizeof(HashJoinTuple);
|
|
|
|
if (vectorized) {
|
|
tupsize = sizeof(void*) + MAXALIGN(tupwidth);
|
|
} else {
|
|
tupsize = HJTUPLE_OVERHEAD + MAXALIGN(sizeof(MinimalTupleData)) + MAXALIGN(tupwidth);
|
|
}
|
|
|
|
if (useskew) {
|
|
double skew_table_bytes = hash_table_bytes * SKEW_WORK_MEM_PERCENT / 100;
|
|
|
|
/* ----------
|
|
* Divisor is:
|
|
* size of a hash tuple +
|
|
* worst-case size of skewBucket[] per MCV +
|
|
* size of skewBucketNums[] entry +
|
|
* size of skew bucket struct itself
|
|
* ----------
|
|
*/
|
|
int num_skew_mcvs =
|
|
(int)(skew_table_bytes / (tupsize + (8 * sizeof(HashSkewBucket*)) + sizeof(int) + SKEW_BUCKET_OVERHEAD));
|
|
if (num_skew_mcvs > 0) {
|
|
hash_table_bytes -= skew_table_bytes;
|
|
}
|
|
}
|
|
|
|
hash_table_max_tuples = hash_table_bytes / ((double)tupsize + (double)hash_header_size / NTUP_PER_BUCKET);
|
|
|
|
return hash_table_max_tuples;
|
|
}
|
|
|
|
/*
|
|
* Compute appropriate size for hashtable given the estimated size of the
|
|
* relation to be hashed (number of rows and average row width).
|
|
*
|
|
* This is exported so that the planner's costsize.c can use it.
|
|
*/
|
|
void ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, bool try_combined_work_mem,
|
|
int parallel_workers, size_t* space_allowed, int* numbuckets, int* numbatches, int* num_skew_mcvs,
|
|
int4 localWorkMem, bool vectorized, OpMemInfo* memInfo)
|
|
{
|
|
int tupsize;
|
|
double inner_rel_bytes;
|
|
int64 bucket_bytes;
|
|
int64 hash_table_bytes;
|
|
int64 skew_table_bytes;
|
|
int64 max_pointers;
|
|
int64 mppow2;
|
|
int nbatch = 1;
|
|
int nbuckets;
|
|
double dbuckets;
|
|
int hash_header_size = vectorized ? sizeof(void*) : sizeof(HashJoinTuple);
|
|
|
|
MEMCTL_LOG(DEBUG2,
|
|
"[ExecChooseHashTableSize] ntuples %lf, width %d, useskew: %s, workmem %d, vectorized %s",
|
|
ntuples,
|
|
tupwidth,
|
|
useskew ? "true" : "false",
|
|
localWorkMem,
|
|
vectorized ? "true" : "false");
|
|
|
|
/* Force a plausible relation size if no info */
|
|
if (ntuples <= 0.0) {
|
|
ntuples = 1000.0;
|
|
}
|
|
|
|
/*
|
|
* Estimate tupsize based on footprint of tuple in hashtable... note this
|
|
* does not allow for any palloc overhead. The manipulations of spaceUsed
|
|
* don't count palloc overhead either.
|
|
*/
|
|
if (vectorized) {
|
|
tupsize = sizeof(void*) + MAXALIGN(tupwidth);
|
|
} else {
|
|
tupsize = HJTUPLE_OVERHEAD + MAXALIGN(sizeof(MinimalTupleData)) + MAXALIGN(tupwidth);
|
|
}
|
|
inner_rel_bytes = ntuples * tupsize;
|
|
|
|
/*
|
|
* Target in-memory hashtable size is work_mem kilobytes.
|
|
*/
|
|
hash_table_bytes = localWorkMem * 1024L;
|
|
|
|
/*
|
|
* Parallel Hash tries to use the combined work_mem of all workers to
|
|
* avoid the need to batch. If that won't work, it falls back to work_mem
|
|
* per worker and tries to process batches in parallel.
|
|
*/
|
|
if (try_combined_work_mem) {
|
|
hash_table_bytes += hash_table_bytes * parallel_workers;
|
|
}
|
|
|
|
*space_allowed = (size_t)hash_table_bytes;
|
|
/*
|
|
* If skew optimization is possible, estimate the number of skew buckets
|
|
* that will fit in the memory allowed, and decrement the assumed space
|
|
* available for the main hash table accordingly.
|
|
*
|
|
* We make the optimistic assumption that each skew bucket will contain
|
|
* one inner-relation tuple. If that turns out to be low, we will recover
|
|
* at runtime by reducing the number of skew buckets.
|
|
*
|
|
* hashtable->skewBucket will have up to 8 times as many HashSkewBucket
|
|
* pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
|
|
* will round up to the next power of 2 and then multiply by 4 to reduce
|
|
* collisions.
|
|
*/
|
|
if (useskew) {
|
|
skew_table_bytes = hash_table_bytes * SKEW_WORK_MEM_PERCENT / 100;
|
|
|
|
/* ----------
|
|
* Divisor is:
|
|
* size of a hash tuple +
|
|
* worst-case size of skewBucket[] per MCV +
|
|
* size of skewBucketNums[] entry +
|
|
* size of skew bucket struct itself
|
|
* ----------
|
|
*/
|
|
*num_skew_mcvs =
|
|
skew_table_bytes / (tupsize + (8 * sizeof(HashSkewBucket*)) + sizeof(int) + SKEW_BUCKET_OVERHEAD);
|
|
if (*num_skew_mcvs > 0) {
|
|
hash_table_bytes -= skew_table_bytes;
|
|
}
|
|
} else {
|
|
*num_skew_mcvs = 0;
|
|
}
|
|
|
|
/*
|
|
* Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
|
|
* memory is filled, assuming a single batch; but limit the value so that
|
|
* the pointer arrays we'll try to allocate do not exceed work_mem nor
|
|
* MaxAllocSize.
|
|
*
|
|
* Note that both nbuckets and nbatch must be powers of 2 to make
|
|
* ExecHashGetBucketAndBatch fast.
|
|
*/
|
|
max_pointers = *space_allowed / (int64)hash_header_size;
|
|
max_pointers = Min(max_pointers, (long)(MaxAllocSize / hash_header_size));
|
|
/* If max_pointers isn't a power of 2, must round it down to one */
|
|
mppow2 = 1UL << my_log2(max_pointers);
|
|
if (max_pointers != mppow2) {
|
|
max_pointers = mppow2 / 2;
|
|
}
|
|
|
|
/* Also ensure we avoid integer overflow in nbatch and nbuckets */
|
|
/* (this step is redundant given the current value of MaxAllocSize) */
|
|
max_pointers = Min(max_pointers, INT_MAX / 2);
|
|
|
|
dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
|
|
dbuckets = Min(dbuckets, max_pointers);
|
|
nbuckets = (int)dbuckets;
|
|
/* don't let nbuckets be really small, though ... */
|
|
nbuckets = Max(nbuckets, MIN_HASH_BUCKET_SIZE);
|
|
/* ... and force it to be a power of 2. */
|
|
nbuckets = 1 << my_log2(nbuckets);
|
|
|
|
/*
|
|
* If there's not enough space to store the projected number of tuples and
|
|
* the required bucket headers, we will need multiple batches.
|
|
*/
|
|
bucket_bytes = ((int64)hash_header_size) * nbuckets;
|
|
|
|
if (memInfo != NULL) {
|
|
memInfo->maxMem = (inner_rel_bytes + bucket_bytes) / 1024L;
|
|
}
|
|
|
|
if (inner_rel_bytes + bucket_bytes > hash_table_bytes) {
|
|
/* We'll need multiple batches */
|
|
int64 lbuckets;
|
|
double dbatch;
|
|
int minbatch;
|
|
double max_batch;
|
|
int64 bucket_size;
|
|
|
|
/*
|
|
* If Parallel Hash with combined work_mem would still need multiple
|
|
* batches, we'll have to fall back to regular work_mem budget.
|
|
*/
|
|
if (try_combined_work_mem) {
|
|
ExecChooseHashTableSize(ntuples,
|
|
tupwidth,
|
|
useskew,
|
|
false,
|
|
parallel_workers,
|
|
space_allowed,
|
|
numbuckets,
|
|
numbatches,
|
|
num_skew_mcvs,
|
|
localWorkMem,
|
|
vectorized,
|
|
memInfo);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Estimate the number of buckets we'll want to have when work_mem is
|
|
* entirely full. Each bucket will contain a bucket pointer plus
|
|
* NTUP_PER_BUCKET tuples, whose projected size already includes
|
|
* overhead for the hash code, pointer to the next tuple, etc.
|
|
*/
|
|
bucket_size = ((int64)tupsize * NTUP_PER_BUCKET + hash_header_size);
|
|
lbuckets = 1UL << my_log2(hash_table_bytes / bucket_size);
|
|
lbuckets = Min(lbuckets, max_pointers);
|
|
nbuckets = (int)lbuckets;
|
|
nbuckets = 1 << my_log2(nbuckets);
|
|
bucket_bytes = (int64)nbuckets * hash_header_size;
|
|
|
|
/*
|
|
* Buckets are simple pointers to hashjoin tuples, while tupsize
|
|
* includes the pointer, hash code, and MinimalTupleData. So buckets
|
|
* should never really exceed 25% of work_mem (even for
|
|
* NTUP_PER_BUCKET=1); except maybe for work_mem values that are not
|
|
* 2^N bytes, where we might get more because of doubling. So let's
|
|
* look for 50% here.
|
|
*/
|
|
Assert(bucket_bytes <= hash_table_bytes / 2);
|
|
|
|
/* Calculate required number of batches. */
|
|
dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
|
|
dbatch = Min(dbatch, max_pointers);
|
|
minbatch = (int)dbatch;
|
|
nbatch = 2;
|
|
while (nbatch < minbatch) {
|
|
nbatch <<= 1;
|
|
}
|
|
|
|
/*
|
|
* This Min() steps limit the nbatch so that the pointer arrays
|
|
* we'll try to allocate do not exceed MaxAllocSize.
|
|
*/
|
|
max_batch = (MaxAllocSize + 1) / sizeof(BufFile*) / 2;
|
|
nbatch = (int)Min(nbatch, max_batch);
|
|
}
|
|
|
|
Assert(nbuckets > 0);
|
|
Assert(nbatch > 0);
|
|
|
|
*numbuckets = nbuckets;
|
|
*numbatches = nbatch;
|
|
MEMCTL_LOG(DEBUG2, "[ExecChooseHashTableSize] nbuckets: %d, nbatch: %d", nbuckets, nbatch);
|
|
}
|
|
|
|
/*
|
|
* Get typeSize of the input typeOid and typeMod.
|
|
* Some special adjustment for hashkey col.
|
|
*/
|
|
int ExecSonicHashGetAtomTypeSize(Oid typeOid, int typeMod, bool isHashKey)
|
|
{
|
|
int minlen;
|
|
int atomTypeSize;
|
|
|
|
minlen = getDataMinLen(typeOid, typeMod);
|
|
if (!COL_IS_ENCODE(typeOid)) {
|
|
atomTypeSize = minlen;
|
|
if (typeOid == TIDOID)
|
|
atomTypeSize = 8;
|
|
} else if (minlen == -1) {
|
|
atomTypeSize = sizeof(Datum);
|
|
} else {
|
|
atomTypeSize = minlen;
|
|
}
|
|
|
|
/*
|
|
* These hashKey cols are a little special, which is one of these typeOid:
|
|
* SONIC_CHAR_DIC_TYPE, SONIC_FIXLEN_TYPE, SONIC_NUMERIC_COMPRESS_TYPE.
|
|
* Because they store them as pointer. Thus, do some adjustment.
|
|
*/
|
|
if (isHashKey && ((minlen > 8 && minlen <= 16) || typeOid == BPCHAROID || typeOid == CHAROID)) {
|
|
atomTypeSize = sizeof(Datum);
|
|
}
|
|
|
|
return atomTypeSize;
|
|
}
|
|
|
|
/*
|
|
* Compute m_arr size according to atomTypeSize
|
|
*/
|
|
int64 ExecSonicHashGetAtomArrayBytes(
|
|
double ntuples, int m_arrSize, int m_atomSize, int64 atomTypeSize, bool hasNullFlag)
|
|
{
|
|
int64 atomItemNum;
|
|
int64 atomFlagSize;
|
|
int64 atom_array_bytes;
|
|
|
|
atomItemNum = m_atomSize * ((int64)ntuples / m_atomSize + 1);
|
|
atomFlagSize = hasNullFlag ? ((atomItemNum + 7) / 8) : 0;
|
|
atom_array_bytes = m_arrSize * sizeof(void*) + atomItemNum * atomTypeSize + atomFlagSize;
|
|
return atom_array_bytes;
|
|
}
|
|
|
|
/*
|
|
* Estimate hash bucket typeSize related to nbuckets
|
|
*/
|
|
uint8 EstimateBucketTypeSize(int nbuckets)
|
|
{
|
|
uint8 bucketTypeSize;
|
|
if ((((uint64)nbuckets) & 0xffff) == ((uint64)nbuckets)) {
|
|
bucketTypeSize = sizeof(uint16); // 2 bytes
|
|
} else if ((((uint64)nbuckets) & 0xffffffff) == ((uint64)nbuckets)) {
|
|
bucketTypeSize = sizeof(uint32); // 4 byttes
|
|
} else {
|
|
bucketTypeSize = sizeof(uint64); // 8 bytes
|
|
}
|
|
return bucketTypeSize;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHashTableDestroy
|
|
*
|
|
* destroy a hash table
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecHashTableDestroy(HashJoinTable hashtable)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Make sure all the temp files are closed. We skip batch 0, since it
|
|
* can't have any temp files (and the arrays might not even exist if
|
|
* nbatch is only 1). Parallel hash joins don't use these files.
|
|
*/
|
|
if (hashtable->innerBatchFile != NULL) {
|
|
for (i = 1; i < hashtable->nbatch; i++) {
|
|
if (hashtable->innerBatchFile[i]) {
|
|
BufFileClose(hashtable->innerBatchFile[i]);
|
|
}
|
|
if (hashtable->outerBatchFile[i]) {
|
|
BufFileClose(hashtable->outerBatchFile[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Free the unused buffers */
|
|
pfree_ext(hashtable->outer_hashfunctions);
|
|
pfree_ext(hashtable->inner_hashfunctions);
|
|
pfree_ext(hashtable->hashStrict);
|
|
|
|
/* Release working memory (batchCxt is a child, so it goes away too) */
|
|
MemoryContextDelete(hashtable->hashCxt);
|
|
|
|
/* And drop the control block */
|
|
pfree_ext(hashtable);
|
|
}
|
|
|
|
/*
|
|
* ExecHashIncreaseNumBatches
|
|
* increase the original number of batches in order to reduce
|
|
* current memory consumption
|
|
*/
|
|
static void ExecHashIncreaseNumBatches(HashJoinTable hashtable)
|
|
{
|
|
int oldnbatch = hashtable->nbatch;
|
|
int curbatch = hashtable->curbatch;
|
|
int nbatch;
|
|
MemoryContext oldcxt;
|
|
long ninmemory;
|
|
long nfreed;
|
|
HashMemoryChunk oldchunks;
|
|
errno_t rc;
|
|
|
|
/* do nothing if we've decided to shut off growth */
|
|
if (!hashtable->growEnabled)
|
|
return;
|
|
|
|
/* safety check to avoid overflow */
|
|
if ((uint32)oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void*) * 2)))
|
|
return;
|
|
|
|
nbatch = oldnbatch * 2;
|
|
Assert(nbatch > 1);
|
|
|
|
#ifdef HJDEBUG
|
|
printf("Increasing nbatch to %d because space = %lu\n", nbatch, (unsigned long)hashtable->spaceUsed);
|
|
#endif
|
|
|
|
oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
|
|
|
|
if (hashtable->innerBatchFile == NULL) {
|
|
/* we had no file arrays before */
|
|
hashtable->innerBatchFile = (BufFile**)palloc0(nbatch * sizeof(BufFile*));
|
|
hashtable->outerBatchFile = (BufFile**)palloc0(nbatch * sizeof(BufFile*));
|
|
/* time to establish the temp tablespaces, too */
|
|
PrepareTempTablespaces();
|
|
} else {
|
|
/* enlarge arrays and zero out added entries */
|
|
hashtable->innerBatchFile = (BufFile**)repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile*));
|
|
hashtable->outerBatchFile = (BufFile**)repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile*));
|
|
rc = memset_s(hashtable->innerBatchFile + oldnbatch,
|
|
(nbatch - oldnbatch) * sizeof(BufFile*),
|
|
0,
|
|
(nbatch - oldnbatch) * sizeof(BufFile*));
|
|
securec_check(rc, "\0", "\0");
|
|
rc = memset_s(hashtable->outerBatchFile + oldnbatch,
|
|
(nbatch - oldnbatch) * sizeof(BufFile*),
|
|
0,
|
|
(nbatch - oldnbatch) * sizeof(BufFile*));
|
|
securec_check(rc, "\0", "\0");
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(oldcxt);
|
|
|
|
hashtable->nbatch = nbatch;
|
|
|
|
/*
|
|
* Scan through the existing hash table entries and dump out any that are
|
|
* no longer of the current batch.
|
|
*/
|
|
ninmemory = nfreed = 0;
|
|
/*
|
|
* We will scan through the chunks directly, so that we can reset the
|
|
* buckets now and not have to keep track which tuples in the buckets have
|
|
* already been processed. We will free the old chunks as we go.
|
|
*/
|
|
rc = memset_s(hashtable->buckets.unshared,
|
|
sizeof(HashJoinTuple*) * hashtable->nbuckets,
|
|
0,
|
|
sizeof(HashJoinTuple*) * hashtable->nbuckets);
|
|
securec_check(rc, "\0", "\0");
|
|
oldchunks = hashtable->chunks;
|
|
hashtable->chunks = NULL;
|
|
|
|
/* so, let's scan through the old chunks, and all tuples in each chunk */
|
|
while (oldchunks != NULL) {
|
|
HashMemoryChunk nextchunk = oldchunks->next.unshared;
|
|
/* position within the buffer (up to oldchunks->used) */
|
|
size_t idx = 0;
|
|
|
|
/* process all tuples stored in this chunk (and then free it) */
|
|
while (idx < oldchunks->used) {
|
|
HashJoinTuple hashTuple = (HashJoinTuple)(HASH_CHUNK_DATA(oldchunks) + idx);
|
|
MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
|
|
int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
ninmemory++;
|
|
ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue, &bucketno, &batchno);
|
|
|
|
if (batchno == curbatch) {
|
|
/* keep tuple in memory - copy it into the new chunk */
|
|
HashJoinTuple copyTuple = (HashJoinTuple)dense_alloc(hashtable, hashTupleSize);
|
|
rc = memcpy_s(copyTuple, hashTupleSize, hashTuple, hashTupleSize);
|
|
securec_check(rc, "\0", "\0");
|
|
|
|
/* and add it back to the appropriate bucket */
|
|
copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
|
|
hashtable->buckets.unshared[bucketno] = copyTuple;
|
|
} else {
|
|
/* dump it out */
|
|
Assert(batchno > curbatch);
|
|
ExecHashJoinSaveTuple(
|
|
HJTUPLE_MINTUPLE(hashTuple), hashTuple->hashvalue, &hashtable->innerBatchFile[batchno]);
|
|
|
|
hashtable->spaceUsed -= hashTupleSize;
|
|
nfreed++;
|
|
}
|
|
|
|
/* next tuple in this chunk */
|
|
idx += MAXALIGN(hashTupleSize);
|
|
|
|
/* allow this loop to be cancellable */
|
|
CHECK_FOR_INTERRUPTS();
|
|
}
|
|
|
|
/* we're done with this chunk - free it and proceed to the next one */
|
|
pfree_ext(oldchunks);
|
|
oldchunks = nextchunk;
|
|
}
|
|
|
|
#ifdef HJDEBUG
|
|
printf("Freed %ld of %ld tuples, space now %lu\n", nfreed, ninmemory, (unsigned long)hashtable->spaceUsed);
|
|
#endif
|
|
|
|
/*
|
|
* If we dumped out either all or none of the tuples in the table, disable
|
|
* further expansion of nbatch. This situation implies that we have
|
|
* enough tuples of identical hashvalues to overflow spaceAllowed.
|
|
* Increasing nbatch will not fix it since there's no way to subdivide the
|
|
* group any more finely. We have to just gut it out and hope the server
|
|
* has enough RAM.
|
|
*/
|
|
if (nfreed == 0 || nfreed == ninmemory) {
|
|
hashtable->growEnabled = false;
|
|
#ifdef HJDEBUG
|
|
printf("Disabling further increase of nbatch\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecParallelHashIncreaseNumBatches
|
|
* Every participant attached to grow_barrier must run this function
|
|
* when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
|
|
*/
|
|
static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
int i;
|
|
|
|
Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
|
|
|
|
/*
|
|
* It's unlikely, but we need to be prepared for new participants to show
|
|
* up while we're in the middle of this operation so we need to switch on
|
|
* barrier phase here.
|
|
*/
|
|
switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier))) {
|
|
case PHJ_GROW_BATCHES_ELECTING:
|
|
|
|
/*
|
|
* Elect one participant to prepare to grow the number of batches.
|
|
* This involves reallocating or resetting the buckets of batch 0
|
|
* in preparation for all participants to begin repartitioning the
|
|
* tuples.
|
|
*/
|
|
if (BarrierArriveAndWait(&pstate->grow_batches_barrier, WAIT_EVENT_HASH_GROW_BATCHES_ELECTING)) {
|
|
dsa_pointer_atomic* buckets = NULL;
|
|
ParallelHashJoinBatch* old_batch0 = NULL;
|
|
int new_nbatch;
|
|
int i;
|
|
|
|
/* Move the old batch out of the way. */
|
|
old_batch0 = hashtable->batches[0].shared;
|
|
pstate->old_batches = pstate->batches;
|
|
pstate->old_nbatch = hashtable->nbatch;
|
|
pstate->batches = InvalidDsaPointer;
|
|
|
|
/* Free this backend's old accessors. */
|
|
ExecParallelHashCloseBatchAccessors(hashtable);
|
|
|
|
/* Figure out how many batches to use. */
|
|
if (hashtable->nbatch == 1) {
|
|
/*
|
|
* We are going from single-batch to multi-batch. We need
|
|
* to switch from one large combined memory budget to the
|
|
* regular work_mem budget.
|
|
*/
|
|
pstate->space_allowed = ((size_t)u_sess->attr.attr_memory.work_mem) * 1024L;
|
|
|
|
/*
|
|
* The combined work_mem of all participants wasn't
|
|
* enough. Therefore one batch per participant would be
|
|
* approximately equivalent and would probably also be
|
|
* insufficient. So try two batches per particiant,
|
|
* rounded up to a power of two.
|
|
*/
|
|
new_nbatch = 1 << my_log2(pstate->nparticipants * 2);
|
|
} else {
|
|
/*
|
|
* We were already multi-batched. Try doubling the number
|
|
* of batches.
|
|
*/
|
|
new_nbatch = hashtable->nbatch * 2;
|
|
}
|
|
|
|
/* Allocate new larger generation of batches. */
|
|
Assert(hashtable->nbatch == pstate->nbatch);
|
|
ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
|
|
Assert(hashtable->nbatch == pstate->nbatch);
|
|
|
|
/* Replace or recycle batch 0's bucket array. */
|
|
if (pstate->old_nbatch == 1) {
|
|
double dtuples;
|
|
double dbuckets;
|
|
int new_nbuckets;
|
|
|
|
/*
|
|
* We probably also need a smaller bucket array. How many
|
|
* tuples do we expect per batch, assuming we have only
|
|
* half of them so far? Normally we don't need to change
|
|
* the bucket array's size, because the size of each batch
|
|
* stays the same as we add more batches, but in this
|
|
* special case we move from a large batch to many smaller
|
|
* batches and it would be wasteful to keep the large
|
|
* array.
|
|
*/
|
|
dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
|
|
dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
|
|
dbuckets = Min(dbuckets, MaxAllocSize / sizeof(dsa_pointer_atomic));
|
|
new_nbuckets = (int)dbuckets;
|
|
new_nbuckets = Max(new_nbuckets, MIN_HASH_BUCKET_SIZE);
|
|
new_nbuckets = 1 << my_log2(new_nbuckets);
|
|
dsa_free(hashtable->area, old_batch0->buckets);
|
|
hashtable->batches[0].shared->buckets =
|
|
MemoryContextAlloc(hashtable->area, sizeof(dsa_pointer_atomic) * new_nbuckets);
|
|
buckets = (dsa_pointer_atomic*)hashtable->batches[0].shared->buckets;
|
|
for (i = 0; i < new_nbuckets; ++i) {
|
|
dsa_pointer_atomic_init(&buckets[i], 0);
|
|
}
|
|
pstate->nbuckets = new_nbuckets;
|
|
} else {
|
|
/* Recycle the existing bucket array. */
|
|
hashtable->batches[0].shared->buckets = old_batch0->buckets;
|
|
buckets = (dsa_pointer_atomic*)dsa_get_address(hashtable->area, old_batch0->buckets);
|
|
for (i = 0; i < hashtable->nbuckets; ++i) {
|
|
dsa_pointer_atomic_write(&buckets[i], 0);
|
|
}
|
|
}
|
|
|
|
/* Move all chunks to the work queue for parallel processing. */
|
|
pstate->chunk_work_queue = old_batch0->chunks;
|
|
|
|
/* Disable further growth temporarily while we're growing. */
|
|
pstate->growth = PHJ_GROWTH_DISABLED;
|
|
} else {
|
|
/* All other participants just flush their tuples to disk. */
|
|
ExecParallelHashCloseBatchAccessors(hashtable);
|
|
}
|
|
/* Fall through. */
|
|
|
|
case PHJ_GROW_BATCHES_ALLOCATING:
|
|
/* Wait for the above to be finished. */
|
|
(void)BarrierArriveAndWait(&pstate->grow_batches_barrier, WAIT_EVENT_HASH_GROW_BATCHES_ALLOCATING);
|
|
/* Fall through. */
|
|
|
|
case PHJ_GROW_BATCHES_REPARTITIONING:
|
|
/* Make sure that we have the current dimensions and buckets. */
|
|
ExecParallelHashEnsureBatchAccessors(hashtable);
|
|
ExecParallelHashTableSetCurrentBatch(hashtable, 0);
|
|
/* Then partition, flush counters. */
|
|
ExecParallelHashRepartitionFirst(hashtable);
|
|
ExecParallelHashRepartitionRest(hashtable);
|
|
ExecParallelHashMergeCounters(hashtable);
|
|
/* Wait for the above to be finished. */
|
|
(void)BarrierArriveAndWait(&pstate->grow_batches_barrier, WAIT_EVENT_HASH_GROW_BATCHES_REPARTITIONING);
|
|
/* Fall through. */
|
|
|
|
case PHJ_GROW_BATCHES_DECIDING:
|
|
|
|
/*
|
|
* Elect one participant to clean up and decide whether further
|
|
* repartitioning is needed, or should be disabled because it's
|
|
* not helping.
|
|
*/
|
|
if (BarrierArriveAndWait(&pstate->grow_batches_barrier, WAIT_EVENT_HASH_GROW_BATCHES_DECIDING)) {
|
|
bool space_exhausted = false;
|
|
bool extreme_skew_detected = false;
|
|
|
|
/* Make sure that we have the current dimensions and buckets. */
|
|
ExecParallelHashEnsureBatchAccessors(hashtable);
|
|
ExecParallelHashTableSetCurrentBatch(hashtable, 0);
|
|
|
|
/* Are any of the new generation of batches exhausted? */
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
ParallelHashJoinBatch* batch = hashtable->batches[i].shared;
|
|
|
|
if (batch->space_exhausted || batch->estimated_size > pstate->space_allowed) {
|
|
int parent;
|
|
|
|
space_exhausted = true;
|
|
|
|
/*
|
|
* Did this batch receive ALL of the tuples from its
|
|
* parent batch? That would indicate that further
|
|
* repartitioning isn't going to help (the hash values
|
|
* are probably all the same).
|
|
*/
|
|
parent = i % pstate->old_nbatch;
|
|
if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples) {
|
|
extreme_skew_detected = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Don't keep growing if it's not helping or we'd overflow. */
|
|
if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2) {
|
|
pstate->growth = PHJ_GROWTH_DISABLED;
|
|
} else if (space_exhausted) {
|
|
pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
|
|
} else {
|
|
pstate->growth = PHJ_GROWTH_OK;
|
|
}
|
|
|
|
/* Free the old batches in shared memory. */
|
|
dsa_free(hashtable->area, pstate->old_batches);
|
|
pstate->old_batches = InvalidDsaPointer;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case PHJ_GROW_BATCHES_FINISHING:
|
|
/* Wait for the above to complete. */
|
|
(void)BarrierArriveAndWait(&pstate->grow_batches_barrier, WAIT_EVENT_HASH_GROW_BATCHES_FINISHING);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Repartition the tuples currently loaded into memory for inner batch 0
|
|
* because the number of batches has been increased. Some tuples are retained
|
|
* in memory and some are written out to a later batch.
|
|
*/
|
|
static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
|
|
{
|
|
HashMemoryChunk chunk_shared;
|
|
HashMemoryChunk chunk;
|
|
|
|
Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
|
|
|
|
while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared))) {
|
|
size_t idx = 0;
|
|
|
|
/* Repartition all tuples in this chunk. */
|
|
while (idx < chunk->used) {
|
|
HashJoinTuple hashTuple = (HashJoinTuple)(HASH_CHUNK_DATA(chunk) + idx);
|
|
MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
|
|
HashJoinTuple copyTuple;
|
|
HashJoinTuple shared;
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue, &bucketno, &batchno);
|
|
|
|
Assert(batchno < hashtable->nbatch);
|
|
if (batchno == 0) {
|
|
/* It still belongs in batch 0. Copy to a new chunk. */
|
|
copyTuple = ExecParallelHashTupleAlloc(hashtable, HJTUPLE_OVERHEAD + tuple->t_len, &shared);
|
|
copyTuple->hashvalue = hashTuple->hashvalue;
|
|
errno_t rc = memcpy_s(HJTUPLE_MINTUPLE(copyTuple), tuple->t_len, tuple, tuple->t_len);
|
|
securec_check(rc, "\0", "\0");
|
|
ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno], copyTuple, shared);
|
|
} else {
|
|
size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
|
|
|
|
/* It belongs in a later batch. */
|
|
hashtable->batches[batchno].estimated_size += tuple_size;
|
|
sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashTuple->hashvalue, tuple);
|
|
}
|
|
|
|
/* Count this tuple. */
|
|
++hashtable->batches[0].old_ntuples;
|
|
++hashtable->batches[batchno].ntuples;
|
|
|
|
idx += MAXALIGN(HJTUPLE_OVERHEAD + HJTUPLE_MINTUPLE(hashTuple)->t_len);
|
|
}
|
|
|
|
/* Free this chunk. */
|
|
dsa_free(hashtable->area, chunk_shared);
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Help repartition inner batches 1..n.
|
|
*/
|
|
static void ExecParallelHashRepartitionRest(HashJoinTable hashtable)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
int old_nbatch = pstate->old_nbatch;
|
|
SharedTuplestoreAccessor** old_inner_tuples = NULL;
|
|
ParallelHashJoinBatch* old_batches = NULL;
|
|
int i;
|
|
|
|
/* Get our hands on the previous generation of batches. */
|
|
old_batches = (ParallelHashJoinBatch*)dsa_get_address(hashtable->area, pstate->old_batches);
|
|
old_inner_tuples = (SharedTuplestoreAccessor**)palloc0(sizeof(SharedTuplestoreAccessor*) * old_nbatch);
|
|
for (i = 1; i < old_nbatch; ++i) {
|
|
ParallelHashJoinBatch* shared = NthParallelHashJoinBatch(old_batches, i);
|
|
|
|
old_inner_tuples[i] = sts_attach(
|
|
ParallelHashJoinBatchInner(shared), t_thrd.bgworker_cxt.ParallelWorkerNumber + 1, &pstate->fileset);
|
|
}
|
|
|
|
/* Join in the effort to repartition them. */
|
|
for (i = 1; i < old_nbatch; ++i) {
|
|
MinimalTuple tuple = NULL;
|
|
uint32 hashvalue;
|
|
|
|
/* Scan one partition from the previous generation. */
|
|
sts_begin_parallel_scan(old_inner_tuples[i]);
|
|
while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue))) {
|
|
size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
/* Decide which partition it goes to in the new generation. */
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
|
|
|
|
hashtable->batches[batchno].estimated_size += tuple_size;
|
|
++hashtable->batches[batchno].ntuples;
|
|
++hashtable->batches[i].old_ntuples;
|
|
|
|
/* Store the tuple its new batch. */
|
|
sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue, tuple);
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
}
|
|
sts_end_parallel_scan(old_inner_tuples[i]);
|
|
pfree(old_inner_tuples[i]);
|
|
}
|
|
|
|
pfree(old_inner_tuples);
|
|
}
|
|
|
|
/*
|
|
* Transfer the backend-local per-batch counters to the shared totals.
|
|
*/
|
|
static void ExecParallelHashMergeCounters(HashJoinTable hashtable)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
int i;
|
|
|
|
(void)LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
|
|
pstate->total_tuples = 0;
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
ParallelHashJoinBatchAccessor* batch = &hashtable->batches[i];
|
|
|
|
batch->shared->size += batch->size;
|
|
batch->shared->estimated_size += batch->estimated_size;
|
|
batch->shared->ntuples += batch->ntuples;
|
|
batch->shared->old_ntuples += batch->old_ntuples;
|
|
batch->size = 0;
|
|
batch->estimated_size = 0;
|
|
batch->ntuples = 0;
|
|
batch->old_ntuples = 0;
|
|
pstate->total_tuples += batch->shared->ntuples;
|
|
}
|
|
LWLockRelease(&pstate->lock);
|
|
}
|
|
|
|
static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
int i;
|
|
HashMemoryChunk chunk;
|
|
HashMemoryChunk chunk_s;
|
|
|
|
Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
|
|
|
|
/*
|
|
* It's unlikely, but we need to be prepared for new participants to show
|
|
* up while we're in the middle of this operation so we need to switch on
|
|
* barrier phase here.
|
|
*/
|
|
switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier))) {
|
|
case PHJ_GROW_BUCKETS_ELECTING:
|
|
/* Elect one participant to prepare to increase nbuckets. */
|
|
if (BarrierArriveAndWait(&pstate->grow_buckets_barrier, WAIT_EVENT_HASH_GROW_BUCKETS_ELECTING)) {
|
|
size_t size;
|
|
dsa_pointer_atomic* buckets = NULL;
|
|
|
|
/* Double the size of the bucket array. */
|
|
pstate->nbuckets *= 2;
|
|
size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
|
|
hashtable->batches[0].shared->size += size / 2;
|
|
dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
|
|
hashtable->batches[0].shared->buckets = dsa_allocate(hashtable->area, size);
|
|
buckets = (dsa_pointer_atomic*)dsa_get_address(hashtable->area, hashtable->batches[0].shared->buckets);
|
|
for (i = 0; i < pstate->nbuckets; ++i) {
|
|
dsa_pointer_atomic_init(&buckets[i], 0);
|
|
}
|
|
|
|
/* Put the chunk list onto the work queue. */
|
|
pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
|
|
|
|
/* Clear the flag. */
|
|
pstate->growth = PHJ_GROWTH_OK;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case PHJ_GROW_BUCKETS_ALLOCATING:
|
|
/* Wait for the above to complete. */
|
|
(void)BarrierArriveAndWait(&pstate->grow_buckets_barrier, WAIT_EVENT_HASH_GROW_BUCKETS_ALLOCATING);
|
|
/* Fall through. */
|
|
|
|
case PHJ_GROW_BUCKETS_REINSERTING:
|
|
/* Reinsert all tuples into the hash table. */
|
|
ExecParallelHashEnsureBatchAccessors(hashtable);
|
|
ExecParallelHashTableSetCurrentBatch(hashtable, 0);
|
|
while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s))) {
|
|
size_t idx = 0;
|
|
while (idx < chunk->used) {
|
|
HashJoinTuple hashTuple = (HashJoinTuple)(HASH_CHUNK_DATA(chunk) + idx);
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue, &bucketno, &batchno);
|
|
Assert(batchno == 0);
|
|
|
|
/* add the tuple to the proper bucket */
|
|
ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno], hashTuple, hashTuple);
|
|
|
|
/* advance index past the tuple */
|
|
idx += MAXALIGN(HJTUPLE_OVERHEAD + HJTUPLE_MINTUPLE(hashTuple)->t_len);
|
|
}
|
|
|
|
/* allow this loop to be cancellable */
|
|
CHECK_FOR_INTERRUPTS();
|
|
}
|
|
(void)BarrierArriveAndWait(&pstate->grow_buckets_barrier, WAIT_EVENT_HASH_GROW_BUCKETS_REINSERTING);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecHashTableInsert
|
|
* insert a tuple into the hash table depending on the hash value
|
|
* it may just go to a temp file for later batches
|
|
*
|
|
* Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
|
|
* tuple; the minimal case in particular is certain to happen while reloading
|
|
* tuples from batch files. We could save some cycles in the regular-tuple
|
|
* case by not forcing the slot contents into minimal form; not clear if it's
|
|
* worth the messiness required.
|
|
*/
|
|
void ExecHashTableInsert(
|
|
HashJoinTable hashtable, TupleTableSlot* slot, uint32 hashvalue, int planid, int dop, Instrumentation* instrument)
|
|
{
|
|
MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);
|
|
int bucketno;
|
|
int batchno;
|
|
errno_t errorno = EOK;
|
|
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
|
|
|
|
/*
|
|
* decide whether to put the tuple in the hash table or a temp file
|
|
*/
|
|
if (batchno == hashtable->curbatch) {
|
|
/*
|
|
* put the tuple in hash table
|
|
*/
|
|
HashJoinTuple hashTuple = NULL;
|
|
int hashTupleSize;
|
|
|
|
/* Create the HashJoinTuple */
|
|
hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
|
|
hashTuple = (HashJoinTuple)dense_alloc(hashtable, hashTupleSize);
|
|
hashTuple->hashvalue = hashvalue;
|
|
errorno = memcpy_s(HJTUPLE_MINTUPLE(hashTuple), tuple->t_len, tuple, tuple->t_len);
|
|
securec_check(errorno, "\0", "\0");
|
|
|
|
/*
|
|
* We always reset the tuple-matched flag on insertion. This is okay
|
|
* even when reloading a tuple from a batch file, since the tuple
|
|
* could not possibly have been matched to an outer tuple before it
|
|
* went into the batch file.
|
|
*/
|
|
HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
|
|
|
|
/* Push it onto the front of the bucket's list */
|
|
hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
|
|
hashtable->buckets.unshared[bucketno] = hashTuple;
|
|
|
|
/* Record the total width and total tuples for first batch until spill */
|
|
if (hashtable->width[0] >= 0) {
|
|
hashtable->width[0]++;
|
|
hashtable->width[1] += tuple->t_len;
|
|
}
|
|
|
|
/* Account for space used, and back off if we've used too much */
|
|
hashtable->spaceUsed += hashTupleSize;
|
|
if (hashtable->spaceUsed > hashtable->spacePeak) {
|
|
hashtable->spacePeak = hashtable->spaceUsed;
|
|
}
|
|
bool sysBusy = gs_sysmemory_busy(hashtable->spaceUsed * dop, false);
|
|
if (hashtable->spaceUsed > hashtable->spaceAllowed || sysBusy) {
|
|
AllocSetContext* set = (AllocSetContext*)(hashtable->hashCxt);
|
|
if (sysBusy) {
|
|
hashtable->causedBySysRes = true;
|
|
hashtable->spaceAllowed = hashtable->spaceUsed;
|
|
set->maxSpaceSize = hashtable->spaceUsed;
|
|
/* if hashtable failed to grow, this branch can be kicked many times */
|
|
if (hashtable->growEnabled) {
|
|
MEMCTL_LOG(LOG,
|
|
"HashJoin(%d) early spilled, workmem: %ldKB, usedmem: %ldKB",
|
|
planid,
|
|
hashtable->spaceAllowed / 1024L,
|
|
hashtable->spaceUsed / 1024L);
|
|
pgstat_add_warning_early_spill();
|
|
}
|
|
/* try to auto spread memory if possible */
|
|
} else if (hashtable->curbatch == 0 && hashtable->maxMem > hashtable->spaceAllowed) {
|
|
hashtable->spaceAllowed = hashtable->spaceUsed;
|
|
int64 spreadMem = Min(Min(dywlm_client_get_memory() * 1024L, hashtable->spaceAllowed),
|
|
hashtable->maxMem - hashtable->spaceAllowed);
|
|
if (spreadMem > hashtable->spaceAllowed * MEM_AUTO_SPREAD_MIN_RATIO) {
|
|
hashtable->spaceAllowed += spreadMem;
|
|
hashtable->spreadNum++;
|
|
ExecHashIncreaseBuckets(hashtable);
|
|
set->maxSpaceSize += spreadMem;
|
|
MEMCTL_LOG(DEBUG2,
|
|
"HashJoin(%d) auto mem spread %ldKB succeed, and work mem is %ldKB.",
|
|
planid,
|
|
spreadMem / 1024L,
|
|
hashtable->spaceAllowed / 1024L);
|
|
return;
|
|
}
|
|
/* if hashtable failed to grow, this branch can be kicked many times */
|
|
if (hashtable->growEnabled) {
|
|
MEMCTL_LOG(LOG,
|
|
"HashJoin(%d) auto mem spread %ldKB failed, and work mem is %ldKB.",
|
|
planid,
|
|
spreadMem / 1024L,
|
|
hashtable->spaceAllowed / 1024L);
|
|
if (hashtable->spreadNum) {
|
|
pgstat_add_warning_spill_on_memory_spread();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* cache the memory size into instrument for explain performance */
|
|
if (instrument != NULL) {
|
|
instrument->memoryinfo.peakOpMemory = hashtable->spaceUsed;
|
|
}
|
|
|
|
if (hashtable->width[0] > 0) {
|
|
hashtable->width[1] = hashtable->width[1] / hashtable->width[0];
|
|
}
|
|
hashtable->width[0] = -1;
|
|
ExecHashIncreaseNumBatches(hashtable);
|
|
}
|
|
} else {
|
|
/*
|
|
* put the tuple into a temp file for later batches
|
|
*/
|
|
Assert(batchno > hashtable->curbatch);
|
|
ExecHashJoinSaveTuple(tuple, hashvalue, &hashtable->innerBatchFile[batchno]);
|
|
|
|
hashtable->spill_count += 1;
|
|
*hashtable->spill_size += sizeof(uint32) + tuple->t_len;
|
|
pgstat_increase_session_spill_size(sizeof(uint32) + tuple->t_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecHashTableParallelInsert
|
|
* insert a tuple into a shared hash table or shared batch tuplestore
|
|
*/
|
|
void ExecParallelHashTableInsert(HashJoinTable hashtable, TupleTableSlot* slot, uint32 hashvalue)
|
|
{
|
|
MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);
|
|
HashJoinTuple shared = NULL;
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
retry:
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
|
|
|
|
if (batchno == 0) {
|
|
HashJoinTuple hashTuple;
|
|
|
|
/* Try to load it into memory. */
|
|
Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) == PHJ_BUILD_HASHING_INNER);
|
|
hashTuple = ExecParallelHashTupleAlloc(hashtable, HJTUPLE_OVERHEAD + tuple->t_len, &shared);
|
|
if (hashTuple == NULL) {
|
|
goto retry;
|
|
}
|
|
|
|
/* Store the hash value in the HashJoinTuple header. */
|
|
hashTuple->hashvalue = hashvalue;
|
|
error_t rc = memcpy_s(HJTUPLE_MINTUPLE(hashTuple), tuple->t_len, tuple, tuple->t_len);
|
|
securec_check(rc, "\0", "\0");
|
|
|
|
/* Push it onto the front of the bucket's list */
|
|
|
|
ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno], hashTuple, shared);
|
|
} else {
|
|
size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
|
|
|
|
Assert(batchno > 0);
|
|
|
|
/* Try to preallocate space in the batch if necessary. */
|
|
if (hashtable->batches[batchno].preallocated < tuple_size) {
|
|
if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size)) {
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
Assert(hashtable->batches[batchno].preallocated >= tuple_size);
|
|
hashtable->batches[batchno].preallocated -= tuple_size;
|
|
sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue, tuple);
|
|
hashtable->spill_count += 1;
|
|
*hashtable->spill_size += get_header_size(hashtable->batches[batchno].inner_tuples) + tuple->t_len;
|
|
}
|
|
++hashtable->batches[batchno].ntuples;
|
|
}
|
|
|
|
/*
|
|
* Insert a tuple into the current hash table. Unlike
|
|
* ExecParallelHashTableInsert, this version is not prepared to send the tuple
|
|
* to other batches or to run out of memory, and should only be called with
|
|
* tuples that belong in the current batch once growth has been disabled.
|
|
*/
|
|
void ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable, TupleTableSlot* slot, uint32 hashvalue)
|
|
{
|
|
MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);
|
|
HashJoinTuple hashTuple;
|
|
HashJoinTuple shared = NULL;
|
|
int batchno;
|
|
int bucketno;
|
|
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
|
|
Assert(batchno == hashtable->curbatch);
|
|
hashTuple = ExecParallelHashTupleAlloc(hashtable, HJTUPLE_OVERHEAD + tuple->t_len, &shared);
|
|
hashTuple->hashvalue = hashvalue;
|
|
error_t rc = memcpy_s(HJTUPLE_MINTUPLE(hashTuple), tuple->t_len, tuple, tuple->t_len);
|
|
securec_check(rc, "\0", "\0");
|
|
HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
|
|
ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno], hashTuple, shared);
|
|
}
|
|
|
|
/*
|
|
* ExecHashGetHashValue
|
|
* Compute the hash value for a tuple
|
|
*
|
|
* The tuple to be tested must be in either econtext->ecxt_outertuple or
|
|
* econtext->ecxt_innertuple. Vars in the hashkeys expressions should have
|
|
* varno either OUTER_VAR or INNER_VAR.
|
|
*
|
|
* A TRUE result means the tuple's hash value has been successfully computed
|
|
* and stored at *hashvalue. A FALSE result means the tuple cannot match
|
|
* because it contains a null attribute, and hence it should be discarded
|
|
* immediately. (If keep_nulls is true then FALSE is never returned.)
|
|
*/
|
|
bool ExecHashGetHashValue(HashJoinTable hashtable, ExprContext* econtext, List* hashkeys, bool outer_tuple,
|
|
bool keep_nulls, uint32* hashvalue)
|
|
{
|
|
uint32 hashkey = 0;
|
|
FmgrInfo* hashfunctions = NULL;
|
|
ListCell* hk = NULL;
|
|
int i = 0;
|
|
MemoryContext oldContext;
|
|
|
|
/*
|
|
* We reset the eval context each time to reclaim any memory leaked in the
|
|
* hashkey expressions.
|
|
*/
|
|
ResetExprContext(econtext);
|
|
|
|
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
|
|
|
|
if (outer_tuple) {
|
|
hashfunctions = hashtable->outer_hashfunctions;
|
|
} else {
|
|
hashfunctions = hashtable->inner_hashfunctions;
|
|
}
|
|
|
|
foreach (hk, hashkeys) {
|
|
ExprState* keyexpr = (ExprState*)lfirst(hk);
|
|
Datum keyval;
|
|
bool isNull = false;
|
|
|
|
/* rotate hashkey left 1 bit at each step */
|
|
hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
|
|
|
|
/*
|
|
* Get the join attribute value of the tuple
|
|
*/
|
|
keyval = ExecEvalExpr(keyexpr, econtext, &isNull, NULL);
|
|
|
|
/*
|
|
* If the attribute is NULL, and the join operator is strict, then
|
|
* this tuple cannot pass the join qual so we can reject it
|
|
* immediately (unless we're scanning the outside of an outer join, in
|
|
* which case we must not reject it). Otherwise we act like the
|
|
* hashcode of NULL is zero (this will support operators that act like
|
|
* IS NOT DISTINCT, though not any more-random behavior). We treat
|
|
* the hash support function as strict even if the operator is not.
|
|
*
|
|
* Note: currently, all hashjoinable operators must be strict since
|
|
* the hash index AM assumes that. However, it takes so little extra
|
|
* code here to allow non-strict that we may as well do it.
|
|
*/
|
|
if (isNull) {
|
|
if (hashtable->hashStrict[i] && !keep_nulls) {
|
|
(void)MemoryContextSwitchTo(oldContext);
|
|
return false; /* cannot match */
|
|
}
|
|
/* else, leave hashkey unmodified, equivalent to hashcode 0 */
|
|
} else {
|
|
/* Compute the hash function */
|
|
uint32 hkey;
|
|
|
|
hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i], keyval));
|
|
hashkey ^= hkey;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(oldContext);
|
|
hashkey = DatumGetUInt32(hash_uint32(hashkey));
|
|
*hashvalue = hashkey;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ExecHashGetBucketAndBatch
|
|
* Determine the bucket number and batch number for a hash value
|
|
*
|
|
* Note: on-the-fly increases of nbatch must not change the bucket number
|
|
* for a given hash code (since we don't move tuples to different hash
|
|
* chains), and must only cause the batch number to remain the same or
|
|
* increase. Our algorithm is
|
|
* bucketno = hashvalue MOD nbuckets
|
|
* batchno = (hashvalue DIV nbuckets) MOD nbatch
|
|
* where nbuckets and nbatch are both expected to be powers of 2, so we can
|
|
* do the computations by shifting and masking. (This assumes that all hash
|
|
* functions are good about randomizing all their output bits, else we are
|
|
* likely to have very skewed bucket or batch occupancy.)
|
|
*
|
|
* nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
|
|
* bucket count growth. Once we start batching, the value is fixed and does
|
|
* not change over the course of the join (making it possible to compute batch
|
|
* number the way we do here).
|
|
*
|
|
* nbatch is always a power of 2; we increase it only by doubling it. This
|
|
* effectively adds one more bit to the top of the batchno.
|
|
*/
|
|
void ExecHashGetBucketAndBatch(HashJoinTable hashtable, uint32 hashvalue, int* bucketno, int* batchno)
|
|
{
|
|
uint32 nbuckets = (uint32)hashtable->nbuckets;
|
|
uint32 nbatch = (uint32)hashtable->nbatch;
|
|
|
|
if (nbatch > 1) {
|
|
/* we can do MOD by masking, DIV by shifting */
|
|
*bucketno = hashvalue & (nbuckets - 1);
|
|
*batchno = (hashvalue >> hashtable->log2_nbuckets) & (nbatch - 1);
|
|
} else {
|
|
*bucketno = hashvalue & (nbuckets - 1);
|
|
*batchno = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecScanHashBucket
|
|
* scan a hash bucket for matches to the current outer tuple
|
|
*
|
|
* The current outer tuple must be stored in econtext->ecxt_outertuple.
|
|
*
|
|
* On success, the inner tuple is stored into hjstate->hj_CurTuple and
|
|
* econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
|
|
* for the latter.
|
|
*/
|
|
bool ExecScanHashBucket(HashJoinState* hjstate, ExprContext* econtext)
|
|
{
|
|
List* hjclauses = hjstate->hashclauses;
|
|
HashJoinTable hashtable = hjstate->hj_HashTable;
|
|
HashJoinTuple hashTuple = hjstate->hj_CurTuple;
|
|
uint32 hashvalue = hjstate->hj_CurHashValue;
|
|
|
|
/*
|
|
* hj_CurTuple is the address of the tuple last returned from the current
|
|
* bucket, or NULL if it's time to start scanning a new bucket.
|
|
*
|
|
* If the tuple hashed to a skew bucket then scan the skew bucket
|
|
* otherwise scan the standard hashtable bucket.
|
|
*/
|
|
if (hashTuple != NULL) {
|
|
hashTuple = hashTuple->next.unshared;
|
|
} else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO) {
|
|
hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
|
|
} else {
|
|
hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
|
|
}
|
|
|
|
while (hashTuple != NULL) {
|
|
if (hashTuple->hashvalue == hashvalue) {
|
|
TupleTableSlot* inntuple = NULL;
|
|
|
|
/* insert hashtable's tuple into exec slot so ExecQual sees it */
|
|
inntuple =
|
|
ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple), hjstate->hj_HashTupleSlot, false); /* do not pfree */
|
|
econtext->ecxt_innertuple = inntuple;
|
|
|
|
/* reset temp memory each time to avoid leaks from qual expr */
|
|
ResetExprContext(econtext);
|
|
|
|
/* we allow null = null in special case, so an additional judgement is needed*/
|
|
if (ExecQual(hjclauses, econtext, false) ||
|
|
(hjstate->js.nulleqqual != NIL && ExecQual(hjstate->js.nulleqqual, econtext, false))) {
|
|
hjstate->hj_CurTuple = hashTuple;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For right Semi/Anti join, we delete mathced tuples in HashTable to make next matching faster,
|
|
* so pointer hj_PreTuple is designed to follow the hj_CurTuple and to help us to clear the HashTable.
|
|
*/
|
|
if (hjstate->js.jointype == JOIN_RIGHT_SEMI || hjstate->js.jointype == JOIN_RIGHT_ANTI) {
|
|
hjstate->hj_PreTuple = hashTuple;
|
|
}
|
|
|
|
hashTuple = hashTuple->next.unshared;
|
|
}
|
|
|
|
/*
|
|
* no match
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ExecParallelScanHashBucket
|
|
* scan a hash bucket for matches to the current outer tuple
|
|
*
|
|
* The current outer tuple must be stored in econtext->ecxt_outertuple.
|
|
*
|
|
* On success, the inner tuple is stored into hjstate->hj_CurTuple and
|
|
* econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
|
|
* for the latter.
|
|
*/
|
|
bool ExecParallelScanHashBucket(HashJoinState* hjstate, ExprContext* econtext)
|
|
{
|
|
List* hjclauses = hjstate->hashclauses;
|
|
HashJoinTable hashtable = hjstate->hj_HashTable;
|
|
HashJoinTuple hashTuple = hjstate->hj_CurTuple;
|
|
uint32 hashvalue = hjstate->hj_CurHashValue;
|
|
|
|
/*
|
|
* hj_CurTuple is the address of the tuple last returned from the current
|
|
* bucket, or NULL if it's time to start scanning a new bucket.
|
|
*/
|
|
if (hashTuple != NULL) {
|
|
hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
|
|
} else {
|
|
hashTuple = ExecParallelHashFirstTuple(hashtable, hjstate->hj_CurBucketNo);
|
|
}
|
|
|
|
while (hashTuple != NULL) {
|
|
if (hashTuple->hashvalue == hashvalue) {
|
|
TupleTableSlot* inntuple = NULL;
|
|
|
|
/* insert hashtable's tuple into exec slot so ExecQual sees it */
|
|
inntuple =
|
|
ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple), hjstate->hj_HashTupleSlot, false); /* do not pfree */
|
|
econtext->ecxt_innertuple = inntuple;
|
|
|
|
/* reset temp memory each time to avoid leaks from qual expr */
|
|
ResetExprContext(econtext);
|
|
|
|
if (ExecQual(hjclauses, econtext, false) ||
|
|
(hjstate->js.nulleqqual != NIL && ExecQual(hjstate->js.nulleqqual, econtext, false))) {
|
|
hjstate->hj_CurTuple = hashTuple;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We don't support parallel right Semi/Anti join, so we don't set hj_PreTuple like ExecScanHashBucket
|
|
* did. Check ExecScanHashBucket and hash_inner_and_outer.
|
|
*/
|
|
Assert(hjstate->js.jointype != JOIN_RIGHT_SEMI);
|
|
Assert(hjstate->js.jointype != JOIN_RIGHT_ANTI);
|
|
hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
|
|
}
|
|
|
|
/*
|
|
* no match
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ExecPrepHashTableForUnmatched
|
|
* set up for a series of ExecScanHashTableForUnmatched calls
|
|
*/
|
|
void ExecPrepHashTableForUnmatched(HashJoinState* hjstate)
|
|
{
|
|
/*
|
|
* ---------- During this scan we use the HashJoinState fields as follows:
|
|
*
|
|
* hj_CurBucketNo: next regular bucket to scan hj_CurSkewBucketNo: next
|
|
* skew bucket (an index into skewBucketNums) hj_CurTuple: last tuple
|
|
* returned, or NULL to start next bucket ----------
|
|
*/
|
|
hjstate->hj_CurBucketNo = 0;
|
|
hjstate->hj_CurSkewBucketNo = 0;
|
|
hjstate->hj_CurTuple = NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecScanHashTableForUnmatched
|
|
* scan the hash table for unmatched inner tuples
|
|
*
|
|
* On success, the inner tuple is stored into hjstate->hj_CurTuple and
|
|
* econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
|
|
* for the latter.
|
|
*/
|
|
bool ExecScanHashTableForUnmatched(HashJoinState* hjstate, ExprContext* econtext)
|
|
{
|
|
HashJoinTable hashtable = hjstate->hj_HashTable;
|
|
HashJoinTuple hashTuple = hjstate->hj_CurTuple;
|
|
|
|
for (;;) {
|
|
/*
|
|
* hj_CurTuple is the address of the tuple last returned from the
|
|
* current bucket, or NULL if it's time to start scanning a new
|
|
* bucket.
|
|
*/
|
|
if (hashTuple != NULL) {
|
|
hashTuple = hashTuple->next.unshared;
|
|
} else if (hjstate->hj_CurBucketNo < hashtable->nbuckets) {
|
|
hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
|
|
hjstate->hj_CurBucketNo++;
|
|
} else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets) {
|
|
int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
|
|
|
|
hashTuple = hashtable->skewBucket[j]->tuples;
|
|
hjstate->hj_CurSkewBucketNo++;
|
|
} else
|
|
break; /* finished all buckets */
|
|
|
|
while (hashTuple != NULL) {
|
|
if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple))) {
|
|
TupleTableSlot* inntuple = NULL;
|
|
|
|
/* insert hashtable's tuple into exec slot */
|
|
inntuple = ExecStoreMinimalTuple(
|
|
HJTUPLE_MINTUPLE(hashTuple), hjstate->hj_HashTupleSlot, false); /* do not pfree */
|
|
econtext->ecxt_innertuple = inntuple;
|
|
|
|
/*
|
|
* Reset temp memory each time; although this function doesn't
|
|
* do any qual eval, the caller will, so let's keep it
|
|
* parallel to ExecScanHashBucket.
|
|
*/
|
|
ResetExprContext(econtext);
|
|
|
|
hjstate->hj_CurTuple = hashTuple;
|
|
return true;
|
|
}
|
|
|
|
hashTuple = hashTuple->next.unshared;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* no more unmatched tuples
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ExecHashTableReset
|
|
*
|
|
* reset hash table header for new batch
|
|
*/
|
|
void ExecHashTableReset(HashJoinTable hashtable)
|
|
{
|
|
MemoryContext oldcxt;
|
|
int nbuckets = hashtable->nbuckets;
|
|
|
|
/*
|
|
* Release all the hash buckets and tuples acquired in the prior pass, and
|
|
* reinitialize the context for a new pass.
|
|
*/
|
|
MemoryContextReset(hashtable->batchCxt);
|
|
oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
|
|
|
|
/* Reallocate and reinitialize the hash bucket headers. */
|
|
hashtable->buckets.unshared = (HashJoinTuple*)palloc0(nbuckets * sizeof(HashJoinTuple));
|
|
|
|
hashtable->spaceUsed = 0;
|
|
|
|
(void)MemoryContextSwitchTo(oldcxt);
|
|
|
|
/* Forget the chunks (the memory was freed by the context reset above). */
|
|
hashtable->chunks = NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecHashTableResetMatchFlags
|
|
* Clear all the HeapTupleHeaderHasMatch flags in the table
|
|
*/
|
|
void ExecHashTableResetMatchFlags(HashJoinTable hashtable)
|
|
{
|
|
HashJoinTuple tuple;
|
|
int i;
|
|
|
|
/* Reset all flags in the main table ... */
|
|
for (i = 0; i < hashtable->nbuckets; i++) {
|
|
for (tuple = hashtable->buckets.unshared[i]; tuple != NULL; tuple = tuple->next.unshared) {
|
|
HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
|
|
}
|
|
}
|
|
|
|
/* ... and the same for the skew buckets, if any */
|
|
for (i = 0; i < hashtable->nSkewBuckets; i++) {
|
|
int j = hashtable->skewBucketNums[i];
|
|
HashSkewBucket* skewBucket = hashtable->skewBucket[j];
|
|
|
|
for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared) {
|
|
HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExecReScanHash(HashState* node)
|
|
{
|
|
/*
|
|
* if chgParam of subnode is not null then plan will be re-scanned by
|
|
* first ExecProcNode.
|
|
*/
|
|
if (node->ps.lefttree->chgParam == NULL)
|
|
ExecReScan(node->ps.lefttree);
|
|
}
|
|
|
|
/*
|
|
* ExecHashBuildSkewHash
|
|
*
|
|
* Set up for skew optimization if we can identify the most common values
|
|
* (MCVs) of the outer relation's join key. We make a skew hash bucket
|
|
* for the hash value of each MCV, up to the number of slots allowed
|
|
* based on available memory.
|
|
*/
|
|
static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash* node, int mcvsToUse)
|
|
{
|
|
HeapTupleData* statsTuple = NULL;
|
|
Datum* values = NULL;
|
|
int nvalues;
|
|
float4* numbers = NULL;
|
|
int nnumbers;
|
|
char stakind = STARELKIND_CLASS;
|
|
|
|
/* do nothing if we don't have room for at least one skew bucket */
|
|
/* Also, Do nothing if planner didn't identify the outer relation's join key */
|
|
if (u_sess->attr.attr_common.upgrade_mode != 0 || mcvsToUse <= 0 || !OidIsValid(node->skewTable)) {
|
|
return;
|
|
}
|
|
|
|
if (isPartitionObject(node->skewTable, PART_OBJ_TYPE_TABLE_PARTITION, true)) {
|
|
stakind = STARELKIND_PARTITION;
|
|
}
|
|
|
|
/*
|
|
* Try to find the MCV statistics for the outer relation's join key.
|
|
*
|
|
* Note: We don't consider multi-column skew-optimization values here(improve later)
|
|
*/
|
|
statsTuple = SearchSysCache4(STATRELKINDATTINH,
|
|
ObjectIdGetDatum(node->skewTable),
|
|
CharGetDatum(stakind),
|
|
Int16GetDatum(node->skewColumn),
|
|
BoolGetDatum(node->skewInherit));
|
|
if (!HeapTupleIsValid(statsTuple)) {
|
|
return;
|
|
}
|
|
|
|
if (get_attstatsslot(statsTuple,
|
|
node->skewColType,
|
|
node->skewColTypmod,
|
|
STATISTIC_KIND_MCV,
|
|
InvalidOid,
|
|
NULL,
|
|
&values,
|
|
&nvalues,
|
|
&numbers,
|
|
&nnumbers)) {
|
|
double frac;
|
|
int nbuckets;
|
|
FmgrInfo* hashfunctions = NULL;
|
|
int i;
|
|
|
|
if (mcvsToUse > nvalues) {
|
|
mcvsToUse = nvalues;
|
|
}
|
|
|
|
/*
|
|
* Calculate the expected fraction of outer relation that will
|
|
* participate in the skew optimization. If this isn't at least
|
|
* SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
|
|
*/
|
|
frac = 0;
|
|
for (i = 0; i < mcvsToUse; i++) {
|
|
frac += numbers[i];
|
|
}
|
|
if (frac < SKEW_MIN_OUTER_FRACTION) {
|
|
free_attstatsslot(node->skewColType, values, nvalues, numbers, nnumbers);
|
|
ReleaseSysCache(statsTuple);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Okay, set up the skew hashtable.
|
|
*
|
|
* skewBucket[] is an open addressing hashtable with a power of 2 size
|
|
* that is greater than the number of MCV values. (This ensures there
|
|
* will be at least one null entry, so searches will always
|
|
* terminate.)
|
|
*
|
|
* Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
|
|
* MaxAllocSize/sizeof(void *)/8, but that is not currently possible
|
|
* since we limit pg_statistic entries to much less than that.
|
|
*/
|
|
nbuckets = 2;
|
|
while (nbuckets <= mcvsToUse) {
|
|
nbuckets <<= 1;
|
|
}
|
|
/* use two more bits just to help avoid collisions */
|
|
nbuckets <<= 2;
|
|
|
|
hashtable->skewEnabled = true;
|
|
hashtable->skewBucketLen = nbuckets;
|
|
|
|
/*
|
|
* We allocate the bucket memory in the hashtable's batch context. It
|
|
* is only needed during the first batch, and this ensures it will be
|
|
* automatically removed once the first batch is done.
|
|
*/
|
|
hashtable->skewBucket =
|
|
(HashSkewBucket**)MemoryContextAllocZero(hashtable->batchCxt, nbuckets * sizeof(HashSkewBucket*));
|
|
hashtable->skewBucketNums = (int*)MemoryContextAllocZero(hashtable->batchCxt, mcvsToUse * sizeof(int));
|
|
|
|
hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket*) + mcvsToUse * sizeof(int);
|
|
hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket*) + mcvsToUse * sizeof(int);
|
|
if (hashtable->spaceUsed > hashtable->spacePeak) {
|
|
hashtable->spacePeak = hashtable->spaceUsed;
|
|
}
|
|
|
|
/*
|
|
* Create a skew bucket for each MCV hash value.
|
|
*
|
|
* Note: it is very important that we create the buckets in order of
|
|
* decreasing MCV frequency. If we have to remove some buckets, they
|
|
* must be removed in reverse order of creation (see notes in
|
|
* ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
|
|
* be removed first.
|
|
*/
|
|
hashfunctions = hashtable->outer_hashfunctions;
|
|
|
|
for (i = 0; i < mcvsToUse; i++) {
|
|
uint32 hashvalue;
|
|
int bucket;
|
|
|
|
hashvalue = DatumGetUInt32(FunctionCall1(&hashfunctions[0], values[i]));
|
|
|
|
/*
|
|
* While we have not hit a hole in the hashtable and have not hit
|
|
* the desired bucket, we have collided with some previous hash
|
|
* value, so try the next bucket location. NB: this code must
|
|
* match ExecHashGetSkewBucket.
|
|
*/
|
|
bucket = hashvalue & (nbuckets - 1);
|
|
while (hashtable->skewBucket[bucket] != NULL && hashtable->skewBucket[bucket]->hashvalue != hashvalue) {
|
|
bucket = (bucket + 1) & (nbuckets - 1);
|
|
}
|
|
|
|
/*
|
|
* If we found an existing bucket with the same hashvalue, leave
|
|
* it alone. It's okay for two MCVs to share a hashvalue.
|
|
*/
|
|
if (hashtable->skewBucket[bucket] != NULL) {
|
|
continue;
|
|
}
|
|
|
|
/* Okay, create a new skew bucket for this hashvalue. */
|
|
hashtable->skewBucket[bucket] =
|
|
(HashSkewBucket*)MemoryContextAlloc(hashtable->batchCxt, sizeof(HashSkewBucket));
|
|
hashtable->skewBucket[bucket]->hashvalue = hashvalue;
|
|
hashtable->skewBucket[bucket]->tuples = NULL;
|
|
hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
|
|
hashtable->nSkewBuckets++;
|
|
hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
|
|
hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
|
|
if (hashtable->spaceUsed > hashtable->spacePeak) {
|
|
hashtable->spacePeak = hashtable->spaceUsed;
|
|
}
|
|
}
|
|
|
|
free_attstatsslot(node->skewColType, values, nvalues, numbers, nnumbers);
|
|
}
|
|
|
|
ReleaseSysCache(statsTuple);
|
|
}
|
|
|
|
/*
|
|
* ExecHashGetSkewBucket
|
|
*
|
|
* Returns the index of the skew bucket for this hashvalue,
|
|
* or INVALID_SKEW_BUCKET_NO if the hashvalue is not
|
|
* associated with any active skew bucket.
|
|
*/
|
|
int ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
|
|
{
|
|
int bucket;
|
|
|
|
/*
|
|
* Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
|
|
* particular, this happens after the initial batch is done).
|
|
*/
|
|
if (!hashtable->skewEnabled)
|
|
return INVALID_SKEW_BUCKET_NO;
|
|
|
|
/*
|
|
* Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
|
|
*/
|
|
bucket = hashvalue & (hashtable->skewBucketLen - 1);
|
|
|
|
/*
|
|
* While we have not hit a hole in the hashtable and have not hit the
|
|
* desired bucket, we have collided with some other hash value, so try the
|
|
* next bucket location.
|
|
*/
|
|
while (hashtable->skewBucket[bucket] != NULL && hashtable->skewBucket[bucket]->hashvalue != hashvalue)
|
|
bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
|
|
|
|
/*
|
|
* Found the desired bucket?
|
|
*/
|
|
if (hashtable->skewBucket[bucket] != NULL)
|
|
return bucket;
|
|
|
|
/*
|
|
* There must not be any hashtable entry for this hash value.
|
|
*/
|
|
return INVALID_SKEW_BUCKET_NO;
|
|
}
|
|
|
|
/*
|
|
* ExecHashSkewTableInsert
|
|
*
|
|
* Insert a tuple into the skew hashtable.
|
|
*
|
|
* This should generally match up with the current-batch case in
|
|
* ExecHashTableInsert.
|
|
*/
|
|
static void ExecHashSkewTableInsert(HashJoinTable hashtable, TupleTableSlot* slot, uint32 hashvalue, int bucketNumber)
|
|
{
|
|
MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);
|
|
HashJoinTuple hashTuple;
|
|
int hashTupleSize;
|
|
errno_t rc = EOK;
|
|
|
|
/* Create the HashJoinTuple */
|
|
hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
|
|
hashTuple = (HashJoinTuple)MemoryContextAlloc(hashtable->batchCxt, hashTupleSize);
|
|
hashTuple->hashvalue = hashvalue;
|
|
rc = memcpy_s(HJTUPLE_MINTUPLE(hashTuple), tuple->t_len, tuple, tuple->t_len);
|
|
securec_check(rc, "\0", "\0");
|
|
HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
|
|
|
|
/* Push it onto the front of the skew bucket's list */
|
|
hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
|
|
hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
|
|
Assert(hashTuple != hashTuple->next.unshared);
|
|
|
|
/* Account for space used, and back off if we've used too much */
|
|
hashtable->spaceUsed += hashTupleSize;
|
|
hashtable->spaceUsedSkew += hashTupleSize;
|
|
if (hashtable->spaceUsed > hashtable->spacePeak)
|
|
hashtable->spacePeak = hashtable->spaceUsed;
|
|
while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
|
|
ExecHashRemoveNextSkewBucket(hashtable);
|
|
|
|
/* Check we are not over the total spaceAllowed, either */
|
|
if (hashtable->spaceUsed > hashtable->spaceAllowed)
|
|
ExecHashIncreaseNumBatches(hashtable);
|
|
}
|
|
|
|
/*
|
|
* ExecHashRemoveNextSkewBucket
|
|
*
|
|
* Remove the least valuable skew bucket by pushing its tuples into
|
|
* the main hash table.
|
|
*/
|
|
static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
|
|
{
|
|
int bucketToRemove;
|
|
HashSkewBucket* bucket = NULL;
|
|
uint32 hashvalue;
|
|
int bucketno;
|
|
int batchno;
|
|
HashJoinTuple hashTuple;
|
|
|
|
/* Locate the bucket to remove */
|
|
bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
|
|
bucket = hashtable->skewBucket[bucketToRemove];
|
|
|
|
/*
|
|
* Calculate which bucket and batch the tuples belong to in the main
|
|
* hashtable. They all have the same hash value, so it's the same for all
|
|
* of them. Also note that it's not possible for nbatch to increase while
|
|
* we are processing the tuples.
|
|
*/
|
|
hashvalue = bucket->hashvalue;
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
|
|
|
|
/* Process all tuples in the bucket */
|
|
hashTuple = bucket->tuples;
|
|
while (hashTuple != NULL) {
|
|
HashJoinTuple nextHashTuple = hashTuple->next.unshared;
|
|
MinimalTuple tuple = NULL;
|
|
Size tupleSize;
|
|
|
|
/*
|
|
* This code must agree with ExecHashTableInsert. We do not use
|
|
* ExecHashTableInsert directly as ExecHashTableInsert expects a
|
|
* TupleTableSlot while we already have HashJoinTuples.
|
|
*/
|
|
tuple = HJTUPLE_MINTUPLE(hashTuple);
|
|
tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
|
|
|
|
/* Decide whether to put the tuple in the hash table or a temp file */
|
|
if (batchno == hashtable->curbatch) {
|
|
/* Move the tuple to the main hash table */
|
|
hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
|
|
hashtable->buckets.unshared[bucketno] = hashTuple;
|
|
/* We have reduced skew space, but overall space doesn't change */
|
|
hashtable->spaceUsedSkew -= tupleSize;
|
|
} else {
|
|
/* Put the tuple into a temp file for later batches */
|
|
Assert(batchno > hashtable->curbatch);
|
|
ExecHashJoinSaveTuple(tuple, hashvalue, &hashtable->innerBatchFile[batchno]);
|
|
pfree_ext(hashTuple);
|
|
hashtable->spaceUsed -= tupleSize;
|
|
hashtable->spaceUsedSkew -= tupleSize;
|
|
}
|
|
|
|
hashTuple = nextHashTuple;
|
|
|
|
/* allow this loop to be cancellable */
|
|
CHECK_FOR_INTERRUPTS();
|
|
}
|
|
|
|
/*
|
|
* Free the bucket struct itself and reset the hashtable entry to NULL.
|
|
*
|
|
* NOTE: this is not nearly as simple as it looks on the surface, because
|
|
* of the possibility of collisions in the hashtable. Suppose that hash
|
|
* values A and B collide at a particular hashtable entry, and that A was
|
|
* entered first so B gets shifted to a different table entry. If we were
|
|
* to remove A first then ExecHashGetSkewBucket would mistakenly start
|
|
* reporting that B is not in the hashtable, because it would hit the NULL
|
|
* before finding B. However, we always remove entries in the reverse
|
|
* order of creation, so this failure cannot happen.
|
|
*/
|
|
hashtable->skewBucket[bucketToRemove] = NULL;
|
|
hashtable->nSkewBuckets--;
|
|
pfree_ext(bucket);
|
|
hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
|
|
hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
|
|
|
|
/*
|
|
* If we have removed all skew buckets then give up on skew optimization.
|
|
* Release the arrays since they aren't useful any more.
|
|
*/
|
|
if (hashtable->nSkewBuckets == 0) {
|
|
hashtable->skewEnabled = false;
|
|
pfree_ext(hashtable->skewBucket);
|
|
pfree_ext(hashtable->skewBucketNums);
|
|
hashtable->skewBucket = NULL;
|
|
hashtable->skewBucketNums = NULL;
|
|
hashtable->spaceUsed -= hashtable->spaceUsedSkew;
|
|
hashtable->spaceUsedSkew = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecHashIncreaseBuckets
|
|
*
|
|
* Increase the original number of buckets during memory
|
|
* auto spread to avoid hash bucket conflict
|
|
*/
|
|
static void ExecHashIncreaseBuckets(HashJoinTable hashtable)
|
|
{
|
|
int64 ntotal = 0;
|
|
int64 nmove = 0;
|
|
errno_t rc;
|
|
|
|
/* do nothing if we've decided to shut off growth */
|
|
if (!hashtable->growEnabled) {
|
|
return;
|
|
}
|
|
|
|
/* do nothing if disk spill is already happened */
|
|
if (hashtable->nbatch > 1) {
|
|
return;
|
|
}
|
|
|
|
/* do nothing if there's still enough space */
|
|
if (hashtable->totalTuples * 2 <= hashtable->nbuckets) {
|
|
return;
|
|
}
|
|
|
|
/* safety check to avoid overflow */
|
|
if ((uint32)hashtable->nbuckets > Min(INT_MAX, MaxAllocSize / (sizeof(HashJoinTuple))) / 2) {
|
|
return;
|
|
}
|
|
|
|
hashtable->buckets.unshared =
|
|
(HashJoinTuple*)repalloc(hashtable->buckets.unshared, hashtable->nbuckets * 2 * sizeof(HashJoinTuple));
|
|
rc = memset_s(hashtable->buckets.unshared + hashtable->nbuckets,
|
|
hashtable->nbuckets * sizeof(HashJoinTuple),
|
|
0,
|
|
hashtable->nbuckets * sizeof(HashJoinTuple));
|
|
securec_check(rc, "\0", "\0");
|
|
|
|
/*
|
|
* Scan through the existing hash table entries and dump out any that are
|
|
* no longer of the current batch.
|
|
*/
|
|
for (int i = 0; i < hashtable->nbuckets; i++) {
|
|
HashJoinTuple htuple = hashtable->buckets.unshared[i];
|
|
HashJoinTuple prev = NULL;
|
|
HashJoinTuple next = NULL;
|
|
while (htuple != NULL) {
|
|
int offset = (htuple->hashvalue >> hashtable->log2_nbuckets) & 1;
|
|
|
|
ntotal++;
|
|
next = htuple->next.unshared;
|
|
if (offset == 1) {
|
|
if (prev == NULL) {
|
|
hashtable->buckets.unshared[i] = htuple->next.unshared;
|
|
} else {
|
|
prev->next = htuple->next;
|
|
}
|
|
htuple->next.unshared = hashtable->buckets.unshared[i + hashtable->nbuckets];
|
|
hashtable->buckets.unshared[i + hashtable->nbuckets] = htuple;
|
|
Assert((int32)(htuple->hashvalue % (hashtable->nbuckets * 2)) == i + hashtable->nbuckets);
|
|
nmove++;
|
|
} else {
|
|
prev = htuple;
|
|
Assert((int32)(htuple->hashvalue % (hashtable->nbuckets * 2)) == i);
|
|
}
|
|
htuple = next;
|
|
}
|
|
|
|
/* allow this loop to be cancellable */
|
|
CHECK_FOR_INTERRUPTS();
|
|
}
|
|
|
|
/*
|
|
* If we dumped out either all or none of the tuples in the table, disable
|
|
* further expansion of nbatch. This situation implies that we have
|
|
* enough tuples of identical hashvalues to overflow spaceAllowed.
|
|
* Increasing nbatch will not fix it since there's no way to subdivide the
|
|
* group any more finely. We have to just gut it out and hope the server
|
|
* has enough RAM.
|
|
*/
|
|
if (nmove == 0 || nmove == ntotal) {
|
|
hashtable->growEnabled = false;
|
|
#ifdef HJDEBUG
|
|
printf("Disabling further increase of nbatch or nbucket\n");
|
|
#endif
|
|
}
|
|
|
|
hashtable->nbuckets = hashtable->nbuckets * 2;
|
|
hashtable->log2_nbuckets++;
|
|
}
|
|
|
|
void ExecHashTableStats(HashJoinTable hashtable, int planid)
|
|
{
|
|
int fillRows = 0;
|
|
int singleNum = 0;
|
|
int doubleNum = 0;
|
|
int conflictNum = 0;
|
|
int chainLen = 0;
|
|
int maxChainLen = 0;
|
|
|
|
for (int i = 0; i < hashtable->nbuckets; i++) {
|
|
HashJoinTuple htuple = hashtable->buckets.unshared[i];
|
|
|
|
/* record each hash chain's length and accumulate hash element */
|
|
chainLen = 0;
|
|
|
|
while (htuple != NULL) {
|
|
fillRows++;
|
|
chainLen++;
|
|
htuple = htuple->next.unshared;
|
|
}
|
|
|
|
/* record the number of hash chains with length equal to 1 */
|
|
if (chainLen == 1)
|
|
singleNum++;
|
|
|
|
/* record the number of hash chains with length equal to 2 */
|
|
if (chainLen == 2)
|
|
doubleNum++;
|
|
|
|
/* mark if the length of hash chain is greater than 3, we meet hash confilct */
|
|
if (chainLen >= 3)
|
|
conflictNum++;
|
|
|
|
/* record the length of the max hash chain */
|
|
if (chainLen > maxChainLen)
|
|
maxChainLen = chainLen;
|
|
}
|
|
|
|
/* print the information */
|
|
ereport(LOG,
|
|
(errmodule(MOD_VEC_EXECUTOR),
|
|
errmsg("[HashJoin(%d) batch %d] Hash Table Profiling: table size: %d,"
|
|
" hash elements: %d, table fill ratio %.2f, max hash chain len: %d,"
|
|
" %d chains have length 1, %d chains have length 2, %d chains have conficts "
|
|
"with length >= 3.",
|
|
planid,
|
|
hashtable->curbatch,
|
|
hashtable->nbuckets,
|
|
fillRows,
|
|
(double)fillRows / hashtable->nbuckets,
|
|
maxChainLen,
|
|
singleNum,
|
|
doubleNum,
|
|
conflictNum)));
|
|
}
|
|
|
|
/*
|
|
* Allocate 'size' bytes from the currently active HashMemoryChunk
|
|
*/
|
|
static void* dense_alloc(HashJoinTable hashtable, Size size)
|
|
{
|
|
HashMemoryChunk newChunk;
|
|
char* ptr = NULL;
|
|
|
|
/* just in case the size is not already aligned properly */
|
|
size = MAXALIGN(size);
|
|
/*
|
|
* If tuple size is larger than of 1/4 of chunk size, allocate a separate
|
|
* chunk.
|
|
*/
|
|
if (size > HASH_CHUNK_THRESHOLD) {
|
|
/* allocate new chunk and put it at the beginning of the list */
|
|
newChunk = (HashMemoryChunk)MemoryContextAlloc(hashtable->batchCxt, HASH_CHUNK_HEADER_SIZE + size);
|
|
newChunk->maxlen = size;
|
|
newChunk->used = size;
|
|
newChunk->ntuples = 1;
|
|
|
|
/*
|
|
* Add this chunk to the list after the first existing chunk, so that
|
|
* we don't lose the remaining space in the "current" chunk.
|
|
*/
|
|
if (hashtable->chunks != NULL) {
|
|
newChunk->next = hashtable->chunks->next;
|
|
hashtable->chunks->next.unshared = newChunk;
|
|
} else {
|
|
newChunk->next.unshared = hashtable->chunks;
|
|
hashtable->chunks = newChunk;
|
|
}
|
|
|
|
return HASH_CHUNK_DATA(newChunk);
|
|
}
|
|
|
|
/*
|
|
* See if we have enough space for it in the current chunk (if any).
|
|
* If not, allocate a fresh chunk.
|
|
*/
|
|
if ((hashtable->chunks == NULL) || (hashtable->chunks->maxlen - hashtable->chunks->used) < size) {
|
|
/* allocate new chunk and put it at the beginning of the list */
|
|
newChunk = (HashMemoryChunk)MemoryContextAlloc(hashtable->batchCxt, HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
|
|
|
|
newChunk->maxlen = HASH_CHUNK_SIZE;
|
|
newChunk->used = size;
|
|
newChunk->ntuples = 1;
|
|
|
|
newChunk->next.unshared = hashtable->chunks;
|
|
hashtable->chunks = newChunk;
|
|
|
|
return HASH_CHUNK_DATA(newChunk);
|
|
}
|
|
|
|
/* There is enough space in the current chunk, let's add the tuple */
|
|
ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
|
|
hashtable->chunks->used += size;
|
|
hashtable->chunks->ntuples += 1;
|
|
|
|
/* return pointer to the start of the tuple memory */
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Allocate space for a tuple in shared dense storage. This is equivalent to
|
|
* dense_alloc but for Parallel Hash using shared memory.
|
|
*
|
|
* While loading a tuple into shared memory, we might run out of memory and
|
|
* decide to repartition, or determine that the load factor is too high and
|
|
* decide to expand the bucket array, or discover that another participant has
|
|
* commanded us to help do that. Return NULL if number of buckets or batches
|
|
* has changed, indicating that the caller must retry (considering the
|
|
* possibility that the tuple no longer belongs in the same batch).
|
|
*/
|
|
static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size, HashJoinTuple* shared)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
HashMemoryChunk chunk_shared = NULL;
|
|
HashMemoryChunk chunk = NULL;
|
|
Size chunk_size;
|
|
int curbatch = hashtable->curbatch;
|
|
|
|
size = MAXALIGN(size);
|
|
|
|
/*
|
|
* Fast path: if there is enough space in this backend's current chunk,
|
|
* then we can allocate without any locking.
|
|
*/
|
|
chunk = hashtable->current_chunk;
|
|
if (chunk != NULL && size < HASH_CHUNK_THRESHOLD && chunk->maxlen - chunk->used >= size) {
|
|
chunk_shared = (HashMemoryChunk)hashtable->current_chunk_shared;
|
|
Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
|
|
HashJoinTuple result = (HashJoinTuple)(HASH_CHUNK_DATA(chunk) + chunk->used);
|
|
*shared = result;
|
|
chunk->used += size;
|
|
Assert(chunk->used <= chunk->maxlen);
|
|
return result;
|
|
}
|
|
|
|
/* Slow path: try to allocate a new chunk. */
|
|
(void)LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
|
|
|
|
/*
|
|
* Check if we need to help increase the number of buckets or batches.
|
|
*/
|
|
if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES || pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS) {
|
|
ParallelHashGrowth growth = pstate->growth;
|
|
|
|
hashtable->current_chunk = NULL;
|
|
LWLockRelease(&pstate->lock);
|
|
|
|
/* Another participant has commanded us to help grow. */
|
|
if (growth == PHJ_GROWTH_NEED_MORE_BATCHES) {
|
|
ExecParallelHashIncreaseNumBatches(hashtable);
|
|
} else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS) {
|
|
ExecParallelHashIncreaseNumBuckets(hashtable);
|
|
}
|
|
|
|
/* The caller must retry. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Oversized tuples get their own chunk. */
|
|
if (size > HASH_CHUNK_THRESHOLD) {
|
|
chunk_size = size + HASH_CHUNK_HEADER_SIZE;
|
|
} else {
|
|
chunk_size = HASH_CHUNK_SIZE;
|
|
}
|
|
|
|
/* Check if it's time to grow batches or buckets. */
|
|
if (pstate->growth != PHJ_GROWTH_DISABLED) {
|
|
Assert(curbatch == 0);
|
|
Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
|
|
|
|
/*
|
|
* Check if our space limit would be exceeded. To avoid choking on
|
|
* very large tuples or very low work_mem setting, we'll always allow
|
|
* each backend to allocate at least one chunk.
|
|
*/
|
|
if (hashtable->batches[0].at_least_one_chunk &&
|
|
hashtable->batches[0].shared->size + chunk_size > pstate->space_allowed) {
|
|
pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
|
|
hashtable->batches[0].shared->space_exhausted = true;
|
|
LWLockRelease(&pstate->lock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Check if our load factor limit would be exceeded. */
|
|
if (hashtable->nbatch == 1) {
|
|
hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
|
|
hashtable->batches[0].ntuples = 0;
|
|
if (hashtable->batches[0].shared->ntuples + 1 > (size_t)(hashtable->nbuckets * NTUP_PER_BUCKET) &&
|
|
hashtable->nbuckets < (INT_MAX / 2)) {
|
|
pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
|
|
LWLockRelease(&pstate->lock);
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We are cleared to allocate a new chunk. */
|
|
chunk_shared = (HashMemoryChunk)dsa_allocate0(hashtable->area, chunk_size);
|
|
hashtable->batches[curbatch].shared->size += chunk_size;
|
|
hashtable->batches[curbatch].at_least_one_chunk = true;
|
|
|
|
/* Set up the chunk. */
|
|
chunk_shared = chunk_shared;
|
|
chunk_shared->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
|
|
chunk_shared->used = size;
|
|
*shared = (HashJoinTuple)HASH_CHUNK_DATA(chunk_shared);
|
|
|
|
/*
|
|
* Push it onto the list of chunks, so that it can be found if we need to
|
|
* increase the number of buckets or batches (batch 0 only) and later for
|
|
* freeing the memory (all batches).
|
|
*/
|
|
chunk_shared->next.shared = hashtable->batches[curbatch].shared->chunks;
|
|
hashtable->batches[curbatch].shared->chunks = chunk_shared;
|
|
|
|
if (size <= HASH_CHUNK_THRESHOLD) {
|
|
/*
|
|
* Make this the current chunk so that we can use the fast path to
|
|
* fill the rest of it up in future calls.
|
|
*/
|
|
hashtable->current_chunk = chunk_shared;
|
|
hashtable->current_chunk_shared = chunk_shared;
|
|
}
|
|
LWLockRelease(&pstate->lock);
|
|
Assert(HASH_CHUNK_DATA(chunk_shared) == (void*)dsa_get_address(hashtable->area, *shared));
|
|
return (HashJoinTuple)HASH_CHUNK_DATA(chunk_shared);
|
|
}
|
|
|
|
/*
|
|
* One backend needs to set up the shared batch state including tuplestores.
|
|
* Other backends will ensure they have correctly configured accessors by
|
|
* called ExecParallelHashEnsureBatchAccessors().
|
|
*/
|
|
static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
ParallelHashJoinBatch* batches = NULL;
|
|
MemoryContext oldcxt;
|
|
int i;
|
|
|
|
Assert(hashtable->batches == NULL);
|
|
|
|
/* Allocate space. */
|
|
pstate->batches = (ParallelHashJoinBatch*)MemoryContextAllocZero(
|
|
hashtable->area, EstimateParallelHashJoinBatch(hashtable) * nbatch);
|
|
pstate->nbatch = nbatch;
|
|
batches = (ParallelHashJoinBatch*)dsa_get_address(hashtable->area, pstate->batches);
|
|
|
|
/* Use hash join memory context. */
|
|
oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
|
|
|
|
/* Allocate this backend's accessor array. */
|
|
hashtable->nbatch = nbatch;
|
|
hashtable->batches =
|
|
(ParallelHashJoinBatchAccessor*)palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
|
|
|
|
/* Set up the shared state, tuplestores and backend-local accessors. */
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
ParallelHashJoinBatchAccessor* accessor = &hashtable->batches[i];
|
|
ParallelHashJoinBatch* shared = NthParallelHashJoinBatch(batches, i);
|
|
char name[MAXPGPATH];
|
|
|
|
/*
|
|
* All members of shared were zero-initialized. We just need to set
|
|
* up the Barrier.
|
|
*/
|
|
BarrierInit(&shared->batch_barrier, 0);
|
|
if (i == 0) {
|
|
/* Batch 0 doesn't need to be loaded. */
|
|
(void)BarrierAttach(&shared->batch_barrier);
|
|
while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBING) {
|
|
(void)BarrierArriveAndWait(&shared->batch_barrier, 0);
|
|
}
|
|
(void)BarrierDetach(&shared->batch_barrier);
|
|
}
|
|
|
|
/* Initialize accessor state. All members were zero-initialized. */
|
|
accessor->shared = shared;
|
|
|
|
/* Initialize the shared tuplestores. */
|
|
error_t errorno = snprintf_s(name, sizeof(name), sizeof(name) - 1, "i%dof%d", i, hashtable->nbatch);
|
|
securec_check_ss_c(errorno, "", "");
|
|
accessor->inner_tuples = sts_initialize(ParallelHashJoinBatchInner(shared),
|
|
pstate->nparticipants,
|
|
t_thrd.bgworker_cxt.ParallelWorkerNumber + 1,
|
|
sizeof(uint32),
|
|
SHARED_TUPLESTORE_SINGLE_PASS,
|
|
&pstate->fileset,
|
|
name);
|
|
errorno = snprintf_s(name, sizeof(name), sizeof(name) - 1, "o%dof%d", i, hashtable->nbatch);
|
|
securec_check_ss_c(errorno, "", "");
|
|
accessor->outer_tuples = sts_initialize(ParallelHashJoinBatchOuter(shared, pstate->nparticipants),
|
|
pstate->nparticipants,
|
|
t_thrd.bgworker_cxt.ParallelWorkerNumber + 1,
|
|
sizeof(uint32),
|
|
SHARED_TUPLESTORE_SINGLE_PASS,
|
|
&pstate->fileset,
|
|
name);
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* Free the current set of ParallelHashJoinBatchAccessor objects.
|
|
*/
|
|
static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
/* Make sure no files are left open. */
|
|
sts_end_write(hashtable->batches[i].inner_tuples);
|
|
sts_end_write(hashtable->batches[i].outer_tuples);
|
|
sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
|
|
sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
|
|
}
|
|
pfree(hashtable->batches);
|
|
hashtable->batches = NULL;
|
|
}
|
|
|
|
/*
|
|
* Make sure this backend has up-to-date accessors for the current set of
|
|
* batches.
|
|
*/
|
|
static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
ParallelHashJoinBatch* batches = NULL;
|
|
MemoryContext oldcxt;
|
|
int i;
|
|
|
|
if (hashtable->batches != NULL) {
|
|
if (hashtable->nbatch == pstate->nbatch) {
|
|
return;
|
|
}
|
|
ExecParallelHashCloseBatchAccessors(hashtable);
|
|
}
|
|
|
|
/*
|
|
* It's possible for a backend to start up very late so that the whole
|
|
* join is finished and the shm state for tracking batches has already
|
|
* been freed by ExecHashTableDetach(). In that case we'll just leave
|
|
* hashtable->batches as NULL so that ExecParallelHashJoinNewBatch() gives
|
|
* up early.
|
|
*/
|
|
if (!DsaPointerIsValid(pstate->batches)) {
|
|
return;
|
|
}
|
|
|
|
/* Use hash join memory context. */
|
|
oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
|
|
|
|
/* Allocate this backend's accessor array. */
|
|
hashtable->nbatch = pstate->nbatch;
|
|
hashtable->batches =
|
|
(ParallelHashJoinBatchAccessor*)palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
|
|
|
|
/* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
|
|
batches = (ParallelHashJoinBatch*)dsa_get_address(hashtable->area, pstate->batches);
|
|
|
|
/* Set up the accessor array and attach to the tuplestores. */
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
ParallelHashJoinBatchAccessor* accessor = &hashtable->batches[i];
|
|
ParallelHashJoinBatch* shared = NthParallelHashJoinBatch(batches, i);
|
|
|
|
accessor->shared = shared;
|
|
accessor->preallocated = 0;
|
|
accessor->done = false;
|
|
accessor->inner_tuples = sts_attach(
|
|
ParallelHashJoinBatchInner(shared), t_thrd.bgworker_cxt.ParallelWorkerNumber + 1, &pstate->fileset);
|
|
accessor->outer_tuples = sts_attach(ParallelHashJoinBatchOuter(shared, pstate->nparticipants),
|
|
t_thrd.bgworker_cxt.ParallelWorkerNumber + 1,
|
|
&pstate->fileset);
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* Allocate an empty shared memory hash table for a given batch.
|
|
*/
|
|
void ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
|
|
{
|
|
ParallelHashJoinBatch* batch = hashtable->batches[batchno].shared;
|
|
dsa_pointer_atomic* buckets = NULL;
|
|
int nbuckets = hashtable->parallel_state->nbuckets;
|
|
int i;
|
|
|
|
batch->buckets = dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
|
|
buckets = (dsa_pointer_atomic*)dsa_get_address(hashtable->area, batch->buckets);
|
|
for (i = 0; i < nbuckets; ++i) {
|
|
buckets[i] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are currently attached to a shared hash join batch, detach. If we
|
|
* are last to detach, clean up.
|
|
*/
|
|
void ExecHashTableDetachBatch(HashJoinTable hashtable)
|
|
{
|
|
if (hashtable->parallel_state != NULL && hashtable->curbatch >= 0) {
|
|
int curbatch = hashtable->curbatch;
|
|
ParallelHashJoinBatch* batch = hashtable->batches[curbatch].shared;
|
|
|
|
/* Make sure any temporary files are closed. */
|
|
sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
|
|
sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
|
|
|
|
/* Detach from the batch we were last working on. */
|
|
if (BarrierArriveAndDetach(&batch->batch_barrier)) {
|
|
/*
|
|
* Technically we shouldn't access the barrier because we're no
|
|
* longer attached, but since there is no way it's moving after
|
|
* this point it seems safe to make the following assertion.
|
|
*/
|
|
Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_DONE);
|
|
|
|
/* Free shared chunks and buckets. */
|
|
while (DsaPointerIsValid(batch->chunks)) {
|
|
HashMemoryChunk next = batch->chunks->next.shared;
|
|
dsa_free(hashtable->area, batch->chunks);
|
|
batch->chunks = next;
|
|
}
|
|
if (DsaPointerIsValid(batch->buckets)) {
|
|
dsa_free(hashtable->area, batch->buckets);
|
|
batch->buckets = InvalidDsaPointer;
|
|
}
|
|
}
|
|
ExecParallelHashUpdateSpacePeak(hashtable, curbatch);
|
|
/* Remember that we are not attached to a batch. */
|
|
hashtable->curbatch = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Detach from all shared resources. If we are last to detach, clean up.
|
|
*/
|
|
void ExecHashTableDetach(HashJoinTable hashtable)
|
|
{
|
|
if (hashtable->parallel_state) {
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
int i;
|
|
|
|
/* Make sure any temporary files are closed. */
|
|
if (hashtable->batches) {
|
|
for (i = 0; i < hashtable->nbatch; ++i) {
|
|
sts_end_write(hashtable->batches[i].inner_tuples);
|
|
sts_end_write(hashtable->batches[i].outer_tuples);
|
|
sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
|
|
sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
|
|
}
|
|
}
|
|
|
|
/* If we're last to detach, clean up shared memory. */
|
|
if (BarrierDetach(&pstate->build_barrier)) {
|
|
if (DsaPointerIsValid(pstate->batches)) {
|
|
dsa_free(hashtable->area, pstate->batches);
|
|
pstate->batches = InvalidDsaPointer;
|
|
}
|
|
}
|
|
|
|
hashtable->parallel_state = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the first tuple in a given bucket identified by number.
|
|
*/
|
|
static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
|
|
{
|
|
Assert(hashtable->parallel_state);
|
|
return (HashJoinTuple)dsa_get_address(hashtable->area, hashtable->buckets.shared[bucketno]);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple in the same bucket as 'tuple'.
|
|
*/
|
|
static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
|
|
{
|
|
Assert(hashtable->parallel_state);
|
|
return tuple->next.shared;
|
|
}
|
|
|
|
/*
|
|
* Insert a tuple at the front of a chain of tuples in DSA memory atomically.
|
|
*/
|
|
static inline void ExecParallelHashPushTuple(HashJoinTuple* head, HashJoinTuple tuple, HashJoinTuple tuple_shared)
|
|
{
|
|
for (;;) {
|
|
tuple->next.shared = *head;
|
|
if (pg_atomic_compare_exchange_uintptr(
|
|
(uintptr_t*)head, (uintptr_t*)&(tuple->next.shared), (uintptr_t)tuple_shared)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare to work on a given batch.
|
|
*/
|
|
void ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
|
|
{
|
|
Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
|
|
|
|
hashtable->curbatch = batchno;
|
|
hashtable->buckets.shared =
|
|
(HashJoinTuple*)dsa_get_address(hashtable->area, hashtable->batches[batchno].shared->buckets);
|
|
hashtable->nbuckets = hashtable->parallel_state->nbuckets;
|
|
hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
|
|
hashtable->current_chunk = NULL;
|
|
hashtable->current_chunk_shared = InvalidDsaPointer;
|
|
hashtable->batches[batchno].at_least_one_chunk = false;
|
|
}
|
|
|
|
/*
|
|
* Take the next available chunk from the queue of chunks being worked on in
|
|
* parallel. Return NULL if there are none left. Otherwise return a pointer
|
|
* to the chunk, and set *shared to the DSA pointer to the chunk.
|
|
*/
|
|
static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable hashtable, HashMemoryChunk* shared)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
HashMemoryChunk chunk;
|
|
|
|
(void)LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
|
|
if (DsaPointerIsValid(pstate->chunk_work_queue)) {
|
|
*shared = pstate->chunk_work_queue;
|
|
chunk = *shared;
|
|
pstate->chunk_work_queue = chunk->next.shared;
|
|
} else {
|
|
chunk = NULL;
|
|
}
|
|
LWLockRelease(&pstate->lock);
|
|
|
|
return chunk;
|
|
}
|
|
|
|
/*
|
|
* Increase the space preallocated in this backend for a given inner batch by
|
|
* at least a given amount. This allows us to track whether a given batch
|
|
* would fit in memory when loaded back in. Also increase the number of
|
|
* batches or buckets if required.
|
|
*
|
|
* This maintains a running estimation of how much space will be taken when we
|
|
* load the batch back into memory by simulating the way chunks will be handed
|
|
* out to workers. It's not perfectly accurate because the tuples will be
|
|
* packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
|
|
* it should be pretty close. It tends to overestimate by a fraction of a
|
|
* chunk per worker since all workers gang up to preallocate during hashing,
|
|
* but workers tend to reload batches alone if there are enough to go around,
|
|
* leaving fewer partially filled chunks. This effect is bounded by
|
|
* nparticipants.
|
|
*
|
|
* Return false if the number of batches or buckets has changed, and the
|
|
* caller should reconsider which batch a given tuple now belongs in and call
|
|
* again.
|
|
*/
|
|
static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
|
|
{
|
|
ParallelHashJoinState* pstate = hashtable->parallel_state;
|
|
ParallelHashJoinBatchAccessor* batch = &hashtable->batches[batchno];
|
|
size_t want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
|
|
|
|
Assert(batchno > 0);
|
|
Assert(batchno < hashtable->nbatch);
|
|
|
|
(void)LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
|
|
|
|
/* Has another participant commanded us to help grow? */
|
|
if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES || pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS) {
|
|
ParallelHashGrowth growth = pstate->growth;
|
|
|
|
LWLockRelease(&pstate->lock);
|
|
if (growth == PHJ_GROWTH_NEED_MORE_BATCHES) {
|
|
ExecParallelHashIncreaseNumBatches(hashtable);
|
|
} else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS) {
|
|
ExecParallelHashIncreaseNumBuckets(hashtable);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (pstate->growth != PHJ_GROWTH_DISABLED && batch->at_least_one_chunk &&
|
|
(batch->shared->estimated_size + size > pstate->space_allowed)) {
|
|
/*
|
|
* We have determined that this batch would exceed the space budget if
|
|
* loaded into memory. Command all participants to help repartition.
|
|
*/
|
|
batch->shared->space_exhausted = true;
|
|
pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
|
|
LWLockRelease(&pstate->lock);
|
|
|
|
return false;
|
|
}
|
|
|
|
batch->at_least_one_chunk = true;
|
|
batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
|
|
batch->preallocated = want;
|
|
LWLockRelease(&pstate->lock);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Set up a space in the DSM for all workers to record instrumentation data
|
|
* about their hash table.
|
|
*/
|
|
void ExecHashInitializeDSM(HashState* node, ParallelContext* pcxt, int nodeid)
|
|
{
|
|
int plan_node_id = node->ps.plan->plan_node_id;
|
|
knl_u_parallel_context* cxt = (knl_u_parallel_context*)pcxt->seg;
|
|
size_t size = offsetof(SharedHashInfo, instrument) + pcxt->nworkers * sizeof(Instrumentation);
|
|
node->shared_info = (SharedHashInfo*)MemoryContextAllocZero(cxt->memCtx, size);
|
|
node->shared_info->num_workers = pcxt->nworkers;
|
|
node->shared_info->plan_node_id = plan_node_id;
|
|
cxt->pwCtx->queryInfo.shared_info[nodeid] = node->shared_info;
|
|
}
|
|
|
|
/*
|
|
* Locate the DSM space for hash table instrumentation data that we'll write
|
|
* to at shutdown time.
|
|
*/
|
|
void ExecHashInitializeWorker(HashState* node, void* pwcxt)
|
|
{
|
|
knl_u_parallel_context* cxt = (knl_u_parallel_context*)pwcxt;
|
|
int planNodeId = node->ps.plan->plan_node_id;
|
|
|
|
SharedHashInfo* shared_info = NULL;
|
|
for (int i = 0; i < cxt->pwCtx->queryInfo.hash_num; i++) {
|
|
if (planNodeId == ((SharedHashInfo*)(cxt->pwCtx->queryInfo.shared_info[i]))->plan_node_id) {
|
|
shared_info = (SharedHashInfo*)cxt->pwCtx->queryInfo.shared_info[i];
|
|
break;
|
|
}
|
|
}
|
|
if (shared_info == NULL) {
|
|
ereport(ERROR, (errmsg("could not find plan info, plan node id:%d", planNodeId)));
|
|
}
|
|
|
|
node->instrument = &shared_info->instrument[t_thrd.bgworker_cxt.ParallelWorkerNumber];
|
|
}
|
|
|
|
/*
|
|
* Update this backend's copy of hashtable->spacePeak to account for a given
|
|
* batch. This is called at the end of hashing for batch 0, and then for each
|
|
* batch when it is done or discovered to be already done. The result is used
|
|
* for EXPLAIN output.
|
|
*/
|
|
void ExecParallelHashUpdateSpacePeak(HashJoinTable hashtable, int batchno)
|
|
{
|
|
int64 size;
|
|
|
|
size = (int64)hashtable->batches[batchno].shared->size;
|
|
size += sizeof(dsa_pointer_atomic) * (int64)hashtable->nbuckets;
|
|
hashtable->spacePeak = Max(hashtable->spacePeak, size);
|
|
}
|
|
|
|
/*
|
|
* Retrieve instrumentation data from workers before the DSM segment is
|
|
* detached, so that EXPLAIN can access it.
|
|
*/
|
|
void ExecHashRetrieveInstrumentation(HashState* node)
|
|
{
|
|
SharedHashInfo* sharedHashInfo = node->shared_info;
|
|
/* Replace node->shared_info with a copy in backend-local memory. */
|
|
size_t size = offsetof(SharedHashInfo, instrument) + sharedHashInfo->num_workers * sizeof(Instrumentation);
|
|
node->shared_info = (SharedHashInfo*)palloc(size);
|
|
error_t rc = memcpy_s(node->shared_info, size, sharedHashInfo, size);
|
|
securec_check(rc, "", "");
|
|
}
|
|
|
|
/*
|
|
* Copy the instrumentation data from 'hashtable' into a HashInstrumentation
|
|
* struct.
|
|
*/
|
|
void ExecHashGetInstrumentation(Instrumentation* instrument, HashJoinTable hashtable)
|
|
{
|
|
instrument->sorthashinfo.nbatch = hashtable->nbatch;
|
|
instrument->sorthashinfo.nbuckets = hashtable->nbuckets;
|
|
instrument->sorthashinfo.nbatch_original = hashtable->nbatch_original;
|
|
instrument->sorthashinfo.spacePeak = hashtable->spacePeak;
|
|
if (hashtable->width[0] > 0) {
|
|
hashtable->width[1] = hashtable->width[1] / hashtable->width[0];
|
|
hashtable->width[0] = -1;
|
|
}
|
|
instrument->width = (int)hashtable->width[1];
|
|
instrument->sysBusy = hashtable->causedBySysRes;
|
|
instrument->spreadNum = hashtable->spreadNum;
|
|
}
|
|
|
|
/*
|
|
* Copy instrumentation data from this worker's hash table (if it built one)
|
|
* to DSM memory so the leader can retrieve it. This must be done in an
|
|
* ExecShutdownHash() rather than ExecEndHash() because the latter runs after
|
|
* we've detached from the DSM segment.
|
|
*/
|
|
void ExecShutdownHash(HashState* node)
|
|
{
|
|
if (node->hashtable) {
|
|
if (node->instrument) {
|
|
ExecHashGetInstrumentation(node->instrument, node->hashtable);
|
|
}
|
|
|
|
/* update unique sql hash work mem info when hash finish */
|
|
UpdateUniqueSQLHashStats(node->hashtable, NULL);
|
|
}
|
|
}
|