4115 lines
153 KiB
C++
Executable File
4115 lines
153 KiB
C++
Executable File
/* -------------------------------------------------------------------------
|
|
*
|
|
* execMain.cpp
|
|
* top level executor interface routines
|
|
*
|
|
* INTERFACE ROUTINES
|
|
* ExecutorStart()
|
|
* ExecutorRun()
|
|
* ExecutorFinish()
|
|
* ExecutorEnd()
|
|
*
|
|
* These four procedures are the external interface to the executor.
|
|
* In each case, the query descriptor is required as an argument.
|
|
*
|
|
* ExecutorStart must be called at the beginning of execution of any
|
|
* query plan and ExecutorEnd must always be called at the end of
|
|
* execution of a plan (unless it is aborted due to error).
|
|
*
|
|
* ExecutorRun accepts direction and count arguments that specify whether
|
|
* the plan is to be executed forwards, backwards, and for how many tuples.
|
|
* In some cases ExecutorRun may be called multiple times to process all
|
|
* the tuples for a plan. It is also acceptable to stop short of executing
|
|
* the whole plan (but only if it is a SELECT).
|
|
*
|
|
* ExecutorFinish must be called after the final ExecutorRun call and
|
|
* before ExecutorEnd. This can be omitted only in case of EXPLAIN,
|
|
* which should also omit ExecutorRun.
|
|
*
|
|
* Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd.
|
|
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
* Portions Copyright (c) 2021, openGauss Contributors
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/gausskernel/runtime/executor/execMain.cpp
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "codegen/gscodegen.h"
|
|
|
|
#include "postgres.h"
|
|
#include "knl/knl_variable.h"
|
|
|
|
#include "access/htup.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/tableam.h"
|
|
#include "access/transam.h"
|
|
#include "access/xact.h"
|
|
#include "access/ustore/knl_uheap.h"
|
|
#include "catalog/pg_partition_fn.h"
|
|
#include "catalog/pg_statistic.h"
|
|
#include "catalog/pg_statistic_ext.h"
|
|
#include "catalog/namespace.h"
|
|
#include "commands/trigger.h"
|
|
#include "executor/exec/execdebug.h"
|
|
#include "executor/node/nodeRecursiveunion.h"
|
|
#include "foreign/fdwapi.h"
|
|
#include "libpq/libpq.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "libpq/pqsignal.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "parser/parsetree.h"
|
|
#include "pgstat.h"
|
|
#include "storage/buf/bufmgr.h"
|
|
#include "storage/lmgr.h"
|
|
#include "tcop/utility.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/snapmgr.h"
|
|
#include "access/heapam.h"
|
|
#ifdef PGXC
|
|
#include "pgxc/pgxc.h"
|
|
#include "commands/copy.h"
|
|
#endif
|
|
#include "vecexecutor/vectorbatch.h"
|
|
#include "vecexecutor/vecexecutor.h"
|
|
#include "utils/anls_opt.h"
|
|
#include "utils/memprot.h"
|
|
#include "utils/memtrack.h"
|
|
#include "workload/workload.h"
|
|
#include "distributelayer/streamProducer.h"
|
|
#include "commands/explain.h"
|
|
#include "workload/workload.h"
|
|
#include "instruments/instr_unique_sql.h"
|
|
#include "gstrace/gstrace_infra.h"
|
|
#include "gstrace/executer_gstrace.h"
|
|
#include "instruments/instr_slow_query.h"
|
|
#include "instruments/instr_statement.h"
|
|
#ifdef ENABLE_MOT
|
|
#include "storage/mot/jit_exec.h"
|
|
#endif
|
|
#include "gs_ledger/ledger_utils.h"
|
|
#include "gs_policy/gs_policy_masking.h"
|
|
#include "optimizer/gplanmgr.h"
|
|
#include "catalog/pg_constraint.h"
|
|
|
|
/* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */
|
|
THR_LOCAL ExecutorStart_hook_type ExecutorStart_hook = NULL;
|
|
THR_LOCAL ExecutorRun_hook_type ExecutorRun_hook = NULL;
|
|
THR_LOCAL ExecutorFinish_hook_type ExecutorFinish_hook = NULL;
|
|
THR_LOCAL ExecutorEnd_hook_type ExecutorEnd_hook = NULL;
|
|
|
|
/* Hook for plugin to get control in ExecCheckRTPerms() */
|
|
THR_LOCAL ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL;
|
|
#define THREAD_INTSERVAL_60S 60
|
|
|
|
/* Debug information to hold the string of top plan node's node tag */
|
|
THR_LOCAL char *producer_top_plannode_str = NULL;
|
|
THR_LOCAL bool is_syncup_producer = false;
|
|
|
|
/* decls for local routines only used within this module */
|
|
void InitPlan(QueryDesc *queryDesc, int eflags);
|
|
static void CheckValidRowMarkRel(Relation rel, RowMarkType markType);
|
|
static void ExecPostprocessPlan(EState *estate);
|
|
void ExecEndPlan(PlanState *planstate, EState *estate);
|
|
static void ExecCollectMaterialForSubplan(EState *estate);
|
|
#ifdef ENABLE_MOT
|
|
static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples,
|
|
ScanDirection direction, DestReceiver *dest, JitExec::MotJitContext* motJitContext);
|
|
#else
|
|
static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples,
|
|
ScanDirection direction, DestReceiver *dest);
|
|
#endif
|
|
static void ExecuteVectorizedPlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples,
|
|
long numberTuples, ScanDirection direction, DestReceiver *dest);
|
|
static bool ExecCheckRTEPerms(RangeTblEntry *rte);
|
|
static bool ExecCheckRTEPermsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols, AclMode requiredPerms);
|
|
void ExecCheckXactReadOnly(PlannedStmt *plannedstmt);
|
|
static void EvalPlanQualStart(EPQState *epqstate, EState *parentestate, Plan *planTree, bool isUHeap = false);
|
|
|
|
extern char* ExecBuildSlotValueDescription(
|
|
Oid reloid, TupleTableSlot *slot, TupleDesc tupdesc, Bitmapset *modifiedCols, int maxfieldlen);
|
|
|
|
extern void BuildStreamFlow(PlannedStmt *plan);
|
|
extern void StartUpStreamInParallel(PlannedStmt* pstmt, EState* estate);
|
|
|
|
extern void CodeGenThreadRuntimeSetup();
|
|
extern bool CodeGenThreadObjectReady();
|
|
extern void CodeGenThreadRuntimeCodeGenerate();
|
|
extern void CodeGenThreadTearDown();
|
|
extern bool anls_opt_is_on(AnalysisOpt dfx_opt);
|
|
#ifdef USE_SPQ
|
|
extern void build_backward_connection(PlannedStmt *planstmt);
|
|
#endif
|
|
|
|
/*
|
|
* Note that GetUpdatedColumns() also exists in commands/trigger.c. There does
|
|
* not appear to be any good header to put it into, given the structures that
|
|
* it uses, so we let them be duplicated. Be sure to update both if one needs
|
|
* to be changed, however.
|
|
*/
|
|
#define GetInsertedColumns(relinfo, estate) \
|
|
(rt_fetch((relinfo)->ri_RangeTableIndex, (estate)->es_range_table)->insertedCols)
|
|
#define GetUpdatedColumns(relinfo, estate) \
|
|
(rt_fetch((relinfo)->ri_RangeTableIndex, (estate)->es_range_table)->updatedCols)
|
|
#define GET_ALL_UPDATED_COLUMNS(relinfo, estate) \
|
|
(bms_union(exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->updatedCols, \
|
|
exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->extraUpdatedCols))
|
|
|
|
/* ----------------------------------------------------------------
|
|
* report_iud_time
|
|
*
|
|
* send the finish time of insert/update/delete operations to pgstat collector.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void report_iud_time(QueryDesc *query)
|
|
{
|
|
ListCell *lc = NULL;
|
|
Oid rid;
|
|
if (u_sess->attr.attr_sql.enable_save_datachanged_timestamp == false) {
|
|
return;
|
|
}
|
|
|
|
PlannedStmt *plannedstmt = query->plannedstmt;
|
|
if (plannedstmt->resultRelations) {
|
|
foreach (lc, (List*)linitial(plannedstmt->resultRelations)) {
|
|
Index idx = lfirst_int(lc);
|
|
rid = getrelid(idx, plannedstmt->rtable);
|
|
if (OidIsValid(rid) == false || rid < FirstNormalObjectId) {
|
|
continue;
|
|
}
|
|
Relation rel = NULL;
|
|
rel = heap_open(rid, AccessShareLock);
|
|
if (rel->rd_rel->relkind == RELKIND_RELATION) {
|
|
if (rel->rd_rel->relpersistence == RELPERSISTENCE_PERMANENT ||
|
|
rel->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED) {
|
|
pgstat_report_data_changed(rid, STATFLG_RELATION, rel->rd_rel->relisshared);
|
|
}
|
|
}
|
|
heap_close(rel, AccessShareLock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorStart
|
|
*
|
|
* This routine must be called at the beginning of any execution of any
|
|
* query plan
|
|
*
|
|
* Takes a QueryDesc previously created by CreateQueryDesc (which is separate
|
|
* only because some places use QueryDescs for utility commands). The tupDesc
|
|
* field of the QueryDesc is filled in to describe the tuples that will be
|
|
* returned, and the internal fields (estate and planstate) are set up.
|
|
*
|
|
* eflags contains flag bits as described in executor.h.
|
|
*
|
|
* NB: the CurrentMemoryContext when this is called will become the parent
|
|
* of the per-query context used for this Executor invocation.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorStart is called. Such a plugin would
|
|
* normally call standard_ExecutorStart().
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecutorStart(QueryDesc* queryDesc, int eflags)
|
|
{
|
|
gstrace_entry(GS_TRC_ID_ExecutorStart);
|
|
|
|
/* it's unsafe to deal with plugins hooks as dynamic lib may be released */
|
|
if (ExecutorStart_hook && !(g_instance.status > NoShutdown))
|
|
(*ExecutorStart_hook)(queryDesc, eflags);
|
|
else
|
|
standard_ExecutorStart(queryDesc, eflags);
|
|
|
|
gstrace_exit(GS_TRC_ID_ExecutorStart);
|
|
}
|
|
|
|
void standard_ExecutorStart(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
EState *estate = NULL;
|
|
MemoryContext old_context;
|
|
double totaltime = 0;
|
|
|
|
/* sanity checks: queryDesc must not be started already */
|
|
Assert(queryDesc != NULL);
|
|
Assert(queryDesc->estate == NULL);
|
|
|
|
#ifdef MEMORY_CONTEXT_CHECKING
|
|
/* Check all memory contexts when executor starts */
|
|
MemoryContextCheck(t_thrd.top_mem_cxt, false);
|
|
#endif
|
|
|
|
/*
|
|
* If the transaction is read-only, we need to check if any writes are
|
|
* planned to non-temporary tables. EXPLAIN is considered read-only.
|
|
*/
|
|
if (u_sess->attr.attr_common.XactReadOnly && !(eflags & EXEC_FLAG_EXPLAIN_ONLY)) {
|
|
ExecCheckXactReadOnly(queryDesc->plannedstmt);
|
|
}
|
|
|
|
/* reset the sequent number of memory context */
|
|
t_thrd.utils_cxt.mctx_sequent_count = 0;
|
|
|
|
/* Initialize the memory tracking information */
|
|
if (u_sess->attr.attr_memory.memory_tracking_mode > MEMORY_TRACKING_NONE) {
|
|
MemoryTrackingInit();
|
|
}
|
|
|
|
/*
|
|
* Build EState, switch into per-query memory context for startup.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
queryDesc->estate = estate;
|
|
|
|
/* record the init memory track of the executor engine */
|
|
if (u_sess->attr.attr_memory.memory_tracking_mode > MEMORY_TRACKING_NONE &&
|
|
t_thrd.utils_cxt.ExecutorMemoryTrack == NULL) {
|
|
#ifndef ENABLE_MEMORY_CHECK
|
|
t_thrd.utils_cxt.ExecutorMemoryTrack = ((AllocSet)(estate->es_query_cxt))->track;
|
|
#else
|
|
t_thrd.utils_cxt.ExecutorMemoryTrack = ((AsanSet)(estate->es_query_cxt))->track;
|
|
#endif
|
|
}
|
|
|
|
#ifndef ENABLE_MULTIPLE_NODES
|
|
if (!IS_SPQ_COORDINATOR) {
|
|
(void)InitStreamObject(queryDesc->plannedstmt);
|
|
}
|
|
#endif
|
|
|
|
if (StreamTopConsumerAmI() && queryDesc->instrument_options != 0 && IS_PGXC_DATANODE) {
|
|
int dop = queryDesc->plannedstmt->query_dop;
|
|
if (queryDesc->plannedstmt->in_compute_pool) {
|
|
dop = 1;
|
|
}
|
|
AutoContextSwitch streamCxtGuard(u_sess->stream_cxt.stream_runtime_mem_cxt);
|
|
u_sess->instr_cxt.global_instr = StreamInstrumentation::InitOnDn(queryDesc, dop);
|
|
|
|
// u_sess->instr_cxt.thread_instr in DN
|
|
u_sess->instr_cxt.thread_instr =
|
|
u_sess->instr_cxt.global_instr->allocThreadInstrumentation(queryDesc->plannedstmt->planTree->plan_node_id);
|
|
}
|
|
|
|
/* CN of the compute pool. */
|
|
if (IS_PGXC_COORDINATOR && StreamTopConsumerAmI() && queryDesc->instrument_options != 0 &&
|
|
queryDesc->plannedstmt->in_compute_pool) {
|
|
const int dop = 1;
|
|
|
|
/* m_instrDataContext in CN of compute pool is under t_thrd.mem_cxt.stream_runtime_mem_cxt */
|
|
AutoContextSwitch streamCxtGuard(u_sess->stream_cxt.stream_runtime_mem_cxt);
|
|
u_sess->instr_cxt.global_instr = StreamInstrumentation::InitOnCP(queryDesc, dop);
|
|
|
|
u_sess->instr_cxt.thread_instr =
|
|
u_sess->instr_cxt.global_instr->allocThreadInstrumentation(queryDesc->plannedstmt->planTree->plan_node_id);
|
|
}
|
|
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
#ifdef ENABLE_LLVM_COMPILE
|
|
/* Initialize the actual CodeGenObj */
|
|
CodeGenThreadRuntimeSetup();
|
|
#endif
|
|
|
|
/*
|
|
* Fill in external parameters, if any, from queryDesc; and allocate
|
|
* workspace for internal parameters
|
|
*/
|
|
estate->es_param_list_info = queryDesc->params;
|
|
|
|
if (queryDesc->plannedstmt->nParamExec > 0) {
|
|
estate->es_param_exec_vals =
|
|
(ParamExecData *)palloc0(queryDesc->plannedstmt->nParamExec * sizeof(ParamExecData));
|
|
}
|
|
|
|
#ifdef USE_SPQ
|
|
estate->es_sharenode = nullptr;
|
|
if (IS_SPQ_EXECUTOR && StreamTopConsumerAmI()) {
|
|
build_backward_connection(queryDesc->plannedstmt);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If non-read-only query, set the command ID to mark output tuples with
|
|
*/
|
|
switch (queryDesc->operation) {
|
|
case CMD_SELECT:
|
|
/*
|
|
* SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark tuples
|
|
*/
|
|
if (queryDesc->plannedstmt->rowMarks != NIL || queryDesc->plannedstmt->hasModifyingCTE) {
|
|
estate->es_output_cid = GetCurrentCommandId(true);
|
|
}
|
|
|
|
/*
|
|
* A SELECT without modifying CTEs can't possibly queue triggers,
|
|
* so force skip-triggers mode. This is just a marginal efficiency
|
|
* hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't
|
|
* all that expensive, but we might as well do it.
|
|
*/
|
|
if (!queryDesc->plannedstmt->hasModifyingCTE) {
|
|
eflags |= EXEC_FLAG_SKIP_TRIGGERS;
|
|
}
|
|
break;
|
|
|
|
case CMD_INSERT:
|
|
case CMD_DELETE:
|
|
case CMD_UPDATE:
|
|
case CMD_MERGE:
|
|
estate->es_output_cid = GetCurrentCommandId(true);
|
|
break;
|
|
|
|
default:
|
|
ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE),
|
|
errmsg("unrecognized operation code: %d", (int)queryDesc->operation)));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy other important information into the EState
|
|
*/
|
|
estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot);
|
|
estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot);
|
|
estate->es_top_eflags = eflags;
|
|
estate->es_instrument = queryDesc->instrument_options;
|
|
|
|
/* Apply BloomFilter array space. */
|
|
if (queryDesc->plannedstmt->MaxBloomFilterNum > 0) {
|
|
int bloom_size = queryDesc->plannedstmt->MaxBloomFilterNum;
|
|
estate->es_bloom_filter.array_size = bloom_size;
|
|
estate->es_bloom_filter.bfarray = (filter::BloomFilter **)palloc0(bloom_size * sizeof(filter::BloomFilter *));
|
|
}
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
/* statement always start from CN or dn connected by client directly. */
|
|
if (IS_PGXC_COORDINATOR || IsConnFromApp()) {
|
|
#else
|
|
/* statement always start in non-stream thread */
|
|
if (!StreamThreadAmI()) {
|
|
#endif
|
|
SetCurrentStmtTimestamp();
|
|
} /* else stmtSystemTimestamp synchronize from CN */
|
|
|
|
/*
|
|
* Initialize the plan state tree
|
|
*/
|
|
#ifndef ENABLE_LITE_MODE
|
|
instr_time starttime;
|
|
(void)INSTR_TIME_SET_CURRENT(starttime);
|
|
#endif
|
|
|
|
IPC_PERFORMANCE_LOG_OUTPUT("standard_ExecutorStart InitPlan start.");
|
|
InitPlan(queryDesc, eflags);
|
|
IPC_PERFORMANCE_LOG_OUTPUT("standard_ExecutorStart InitPlan end.");
|
|
#ifndef ENABLE_LITE_MODE
|
|
totaltime += elapsed_time(&starttime);
|
|
#endif
|
|
|
|
/*
|
|
* if current plan is working for expression, no need to collect instrumentation.
|
|
*/
|
|
if (estate->es_instrument != INSTRUMENT_NONE && StreamTopConsumerAmI() && u_sess->instr_cxt.global_instr &&
|
|
u_sess->instr_cxt.thread_instr) {
|
|
int node_id = queryDesc->plannedstmt->planTree->plan_node_id - 1;
|
|
int *m_instrArrayMap = u_sess->instr_cxt.thread_instr->m_instrArrayMap;
|
|
|
|
u_sess->instr_cxt.thread_instr->m_instrArray[m_instrArrayMap[node_id]].instr.instruPlanData.init_time =
|
|
totaltime;
|
|
}
|
|
|
|
/*
|
|
* Set up an AFTER-trigger statement context, unless told not to, or
|
|
* unless it's EXPLAIN-only mode (when ExecutorFinish won't be called).
|
|
*/
|
|
if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY))) {
|
|
AfterTriggerBeginQuery();
|
|
}
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRun
|
|
*
|
|
* This is the main routine of the executor module. It accepts
|
|
* the query descriptor from the traffic cop and executes the
|
|
* query plan.
|
|
*
|
|
* ExecutorStart must have been called already.
|
|
*
|
|
* If direction is NoMovementScanDirection then nothing is done
|
|
* except to start up/shut down the destination. Otherwise,
|
|
* we retrieve up to 'count' tuples in the specified direction.
|
|
*
|
|
* Note: count = 0 is interpreted as no portal limit, i.e., run to
|
|
* completion. Also note that the count limit is only applied to
|
|
* retrieved tuples, not for instance to those inserted/updated/deleted
|
|
* by a ModifyTable plan node.
|
|
*
|
|
* There is no return value, but output tuples (if any) are sent to
|
|
* the destination receiver specified in the QueryDesc; and the number
|
|
* of tuples processed at the top level can be found in
|
|
* estate->es_processed.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorRun is called. Such a plugin would
|
|
* normally call standard_ExecutorRun().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, long count)
|
|
{
|
|
/* sql active feature, opeartor history statistics */
|
|
int instrument_option = 0;
|
|
bool has_track_operator = false;
|
|
char* old_stmt_name = u_sess->pcache_cxt.cur_stmt_name;
|
|
u_sess->statement_cxt.root_query_plan = queryDesc;
|
|
u_sess->statement_cxt.executer_run_level++;
|
|
if (u_sess->SPI_cxt._connected >= 0) {
|
|
u_sess->pcache_cxt.cur_stmt_name = NULL;
|
|
}
|
|
instr_stmt_exec_report_query_plan(queryDesc);
|
|
exec_explain_plan(queryDesc);
|
|
if (u_sess->attr.attr_resource.use_workload_manager &&
|
|
u_sess->attr.attr_resource.resource_track_level == RESOURCE_TRACK_OPERATOR &&
|
|
queryDesc != NULL && queryDesc->plannedstmt != NULL &&
|
|
queryDesc->plannedstmt->is_stream_plan && u_sess->exec_cxt.need_track_resource) {
|
|
#ifdef STREAMPLAN
|
|
if (queryDesc->instrument_options) {
|
|
instrument_option = queryDesc->instrument_options;
|
|
}
|
|
|
|
if (IS_PGXC_COORDINATOR && instrument_option != 0 && u_sess->instr_cxt.global_instr == NULL &&
|
|
queryDesc->plannedstmt->num_nodes != 0) {
|
|
has_track_operator = true;
|
|
queryDesc->plannedstmt->instrument_option = instrument_option;
|
|
AutoContextSwitch streamCxtGuard(t_thrd.mem_cxt.msg_mem_cxt);
|
|
int dop = queryDesc->plannedstmt->query_dop;
|
|
|
|
u_sess->instr_cxt.global_instr = StreamInstrumentation::InitOnCn(queryDesc, dop);
|
|
|
|
MemoryContext old_context = u_sess->instr_cxt.global_instr->getInstrDataContext();
|
|
u_sess->instr_cxt.thread_instr = u_sess->instr_cxt.global_instr->allocThreadInstrumentation(
|
|
queryDesc->plannedstmt->planTree->plan_node_id);
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool can_operator_history_statistics = false;
|
|
if (u_sess->exec_cxt.need_track_resource && queryDesc &&
|
|
(has_track_operator || (IS_PGXC_DATANODE && queryDesc->instrument_options))) {
|
|
can_operator_history_statistics = true;
|
|
}
|
|
|
|
if (can_operator_history_statistics) {
|
|
ExplainNodeFinish(queryDesc->planstate, NULL, (TimestampTz)0.0, true);
|
|
}
|
|
|
|
if (ExecutorRun_hook) {
|
|
(*ExecutorRun_hook)(queryDesc, direction, count);
|
|
} else {
|
|
standard_ExecutorRun(queryDesc, direction, count);
|
|
}
|
|
|
|
if (IS_PGXC_COORDINATOR || IS_SINGLE_NODE) {
|
|
if (queryDesc->operation == CMD_INSERT || queryDesc->operation == CMD_DELETE ||
|
|
queryDesc->operation == CMD_UPDATE || queryDesc->operation == CMD_MERGE) {
|
|
report_iud_time(queryDesc);
|
|
}
|
|
}
|
|
|
|
/* SQL Self-Tuning : Analyze query plan issues based on runtime info when query execution is finished */
|
|
if (u_sess->exec_cxt.need_track_resource && queryDesc != NULL && has_track_operator &&
|
|
(IS_PGXC_COORDINATOR || IS_SINGLE_NODE)) {
|
|
List *issue_results = PlanAnalyzerOperator(queryDesc, queryDesc->planstate);
|
|
|
|
/* If plan issue is found, store it in sysview gs_wlm_session_history */
|
|
if (issue_results != NIL) {
|
|
RecordQueryPlanIssues(issue_results);
|
|
}
|
|
}
|
|
print_duration(queryDesc);
|
|
instr_stmt_report_cause_type(queryDesc->plannedstmt->cause_type);
|
|
|
|
/* sql active feature, opeartor history statistics */
|
|
if (can_operator_history_statistics) {
|
|
u_sess->instr_cxt.can_record_to_table = true;
|
|
ExplainNodeFinish(queryDesc->planstate, queryDesc->plannedstmt, GetCurrentTimestamp(), false);
|
|
|
|
if ((IS_PGXC_COORDINATOR) && u_sess->instr_cxt.global_instr != NULL) {
|
|
delete u_sess->instr_cxt.global_instr;
|
|
u_sess->instr_cxt.thread_instr = NULL;
|
|
u_sess->instr_cxt.global_instr = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record the number of rows affected into the session, but only support
|
|
* DML statement now
|
|
*/
|
|
if(queryDesc!=NULL && queryDesc->estate!=NULL){
|
|
switch (queryDesc->operation) {
|
|
case CMD_INSERT:
|
|
case CMD_UPDATE:
|
|
case CMD_DELETE:
|
|
case CMD_MERGE:
|
|
u_sess->statement_cxt.current_row_count = queryDesc->estate->es_processed;
|
|
u_sess->statement_cxt.last_row_count = u_sess->statement_cxt.current_row_count;
|
|
break;
|
|
case CMD_SELECT:
|
|
u_sess->statement_cxt.current_row_count = -1;
|
|
u_sess->statement_cxt.last_row_count = u_sess->statement_cxt.current_row_count;
|
|
break;
|
|
default:
|
|
/* default set queryDesc->estate->es_processed */
|
|
u_sess->statement_cxt.current_row_count = queryDesc->estate->es_processed;
|
|
u_sess->statement_cxt.last_row_count = u_sess->statement_cxt.current_row_count;
|
|
break;
|
|
}
|
|
}
|
|
|
|
u_sess->pcache_cxt.cur_stmt_name = old_stmt_name;
|
|
u_sess->statement_cxt.executer_run_level--;
|
|
}
|
|
|
|
void standard_ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, long count)
|
|
{
|
|
EState *estate = NULL;
|
|
CmdType operation;
|
|
DestReceiver *dest = NULL;
|
|
bool send_tuples = false;
|
|
MemoryContext old_context;
|
|
double totaltime = 0;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
estate = queryDesc->estate;
|
|
Assert(estate != NULL);
|
|
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
#ifdef ENABLE_LLVM_COMPILE
|
|
/*
|
|
* Generate machine code for this query.
|
|
*/
|
|
if (CodeGenThreadObjectReady()) {
|
|
if (anls_opt_is_on(ANLS_LLVM_COMPILE) && estate->es_instrument > 0) {
|
|
TRACK_START(queryDesc->planstate->plan->plan_node_id, LLVM_COMPILE_TIME);
|
|
CodeGenThreadRuntimeCodeGenerate();
|
|
TRACK_END(queryDesc->planstate->plan->plan_node_id, LLVM_COMPILE_TIME);
|
|
} else {
|
|
CodeGenThreadRuntimeCodeGenerate();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Allow instrumentation of Executor overall runtime */
|
|
if (queryDesc->totaltime) {
|
|
queryDesc->totaltime->memoryinfo.nodeContext = estate->es_query_cxt;
|
|
InstrStartNode(queryDesc->totaltime);
|
|
}
|
|
|
|
/*
|
|
* extract information from the query descriptor and the query feature.
|
|
*/
|
|
operation = queryDesc->operation;
|
|
dest = queryDesc->dest;
|
|
|
|
/*
|
|
* startup tuple receiver, if we will be emitting tuples
|
|
*/
|
|
estate->es_processed = 0;
|
|
estate->es_last_processed = 0;
|
|
estate->es_lastoid = InvalidOid;
|
|
|
|
send_tuples = (operation == CMD_SELECT || queryDesc->plannedstmt->hasReturning);
|
|
|
|
/*
|
|
* In order to ensure the integrity of the message(T-C-Z), regardless of the value of
|
|
* u_sess->exec_cxt.executor_stop_flag, the 'T' message should be sent.
|
|
*/
|
|
if (send_tuples)
|
|
(*dest->rStartup)(dest, operation, queryDesc->tupDesc);
|
|
|
|
if (queryDesc->plannedstmt->bucketMap[0] != NULL) {
|
|
u_sess->exec_cxt.global_bucket_map = queryDesc->plannedstmt->bucketMap[0];
|
|
u_sess->exec_cxt.global_bucket_cnt = queryDesc->plannedstmt->bucketCnt[0];
|
|
} else {
|
|
u_sess->exec_cxt.global_bucket_map = NULL;
|
|
u_sess->exec_cxt.global_bucket_cnt = 0;
|
|
}
|
|
|
|
#ifndef ENABLE_LITE_MODE
|
|
instr_time starttime;
|
|
(void)INSTR_TIME_SET_CURRENT(starttime);
|
|
#endif
|
|
/*
|
|
* run plan
|
|
*/
|
|
if (!ScanDirectionIsNoMovement(direction)) {
|
|
if (queryDesc->planstate->vectorized) {
|
|
ExecuteVectorizedPlan(estate, queryDesc->planstate, operation, send_tuples, count, direction, dest);
|
|
} else {
|
|
#ifdef ENABLE_MOT
|
|
ExecutePlan(estate, queryDesc->planstate, operation, send_tuples,
|
|
count, direction, dest, queryDesc->mot_jit_context);
|
|
#else
|
|
ExecutePlan(estate, queryDesc->planstate, operation, send_tuples, count, direction, dest);
|
|
#endif
|
|
}
|
|
}
|
|
#ifndef ENABLE_LITE_MODE
|
|
totaltime += elapsed_time(&starttime);
|
|
#endif
|
|
|
|
queryDesc->executed = true;
|
|
|
|
/*
|
|
* if current plan is working for expression, no need to collect instrumentation.
|
|
*/
|
|
if (
|
|
#ifndef ENABLE_MULTIPLE_NODES
|
|
!u_sess->attr.attr_common.enable_seqscan_fusion &&
|
|
#endif
|
|
estate->es_instrument != INSTRUMENT_NONE
|
|
&& StreamTopConsumerAmI() && u_sess->instr_cxt.global_instr && u_sess->instr_cxt.thread_instr) {
|
|
int node_id = queryDesc->plannedstmt->planTree->plan_node_id - 1;
|
|
int* m_instrArrayMap = u_sess->instr_cxt.thread_instr->m_instrArrayMap;
|
|
|
|
u_sess->instr_cxt.thread_instr->m_instrArray[m_instrArrayMap[node_id]].instr.instruPlanData.run_time =
|
|
totaltime;
|
|
}
|
|
|
|
/*
|
|
* shutdown tuple receiver, if we started it
|
|
*/
|
|
if (send_tuples) {
|
|
(*dest->rShutdown)(dest);
|
|
}
|
|
if (queryDesc->totaltime) {
|
|
InstrStopNode(queryDesc->totaltime, estate->es_processed);
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorFinish
|
|
*
|
|
* This routine must be called after the last ExecutorRun call.
|
|
* It performs cleanup such as firing AFTER triggers. It is
|
|
* separate from ExecutorEnd because EXPLAIN ANALYZE needs to
|
|
* include these actions in the total runtime.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorFinish is called. Such a plugin would
|
|
* normally call standard_ExecutorFinish().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecutorFinish(QueryDesc *queryDesc)
|
|
{
|
|
if (ExecutorFinish_hook) {
|
|
(*ExecutorFinish_hook)(queryDesc);
|
|
} else {
|
|
standard_ExecutorFinish(queryDesc);
|
|
}
|
|
|
|
}
|
|
|
|
void standard_ExecutorFinish(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate = NULL;
|
|
MemoryContext old_context;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
estate = queryDesc->estate;
|
|
Assert(estate != NULL);
|
|
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/* This should be run once and only once per Executor instance */
|
|
Assert(!estate->es_finished);
|
|
|
|
/* Switch into per-query memory context */
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Allow instrumentation of Executor overall runtime */
|
|
if (queryDesc->totaltime)
|
|
InstrStartNode(queryDesc->totaltime);
|
|
|
|
/* Run ModifyTable nodes to completion */
|
|
ExecPostprocessPlan(estate);
|
|
|
|
/* Execute queued AFTER triggers, unless told not to */
|
|
if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS)) {
|
|
AfterTriggerEndQuery(estate);
|
|
}
|
|
if (queryDesc->totaltime) {
|
|
InstrStopNode(queryDesc->totaltime, 0);
|
|
}
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
estate->es_finished = true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorEnd
|
|
*
|
|
* This routine must be called at the end of execution of any
|
|
* query plan
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorEnd is called. Such a plugin would
|
|
* normally call standard_ExecutorEnd().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
/*
|
|
* for a very few cases, query plan not be recorded during the execution phase,
|
|
* we record again before executor end.
|
|
*/
|
|
if (unlikely(u_sess->statement_cxt.is_exceed_query_plan_threshold)) {
|
|
instr_stmt_report_query_plan(queryDesc);
|
|
}
|
|
|
|
if (ExecutorEnd_hook) {
|
|
(*ExecutorEnd_hook)(queryDesc);
|
|
} else {
|
|
standard_ExecutorEnd(queryDesc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* description: get the plan node id of stream thread
|
|
* return value: 0: in openGauss thread
|
|
* >=1: in stream thread
|
|
*/
|
|
int ExecGetPlanNodeid(void)
|
|
{
|
|
int key = 0;
|
|
if (StreamThreadAmI()) {
|
|
key = u_sess->stream_cxt.producer_obj->getKey().planNodeId;
|
|
}
|
|
return key;
|
|
}
|
|
|
|
void standard_ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate = NULL;
|
|
MemoryContext old_context;
|
|
double totaltime = 0;
|
|
|
|
#ifndef ENABLE_LITE_MODE
|
|
instr_time starttime;
|
|
(void)INSTR_TIME_SET_CURRENT(starttime);
|
|
#endif
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
estate = queryDesc->estate;
|
|
Assert(estate != NULL);
|
|
|
|
#ifdef MEMORY_CONTEXT_CHECKING
|
|
/* Check all memory contexts when executor starts */
|
|
MemoryContextCheck(t_thrd.top_mem_cxt, false);
|
|
#endif
|
|
|
|
/*
|
|
* Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This
|
|
* Assert is needed because ExecutorFinish is new as of 9.1, and callers
|
|
* might forget to call it.
|
|
*/
|
|
Assert(estate->es_finished || (estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/*
|
|
* Switch into per-query memory context to run ExecEndPlan
|
|
*/
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
EARLY_FREE_LOG(elog(LOG, "Early Free: Start to end plan, memory used %d MB.", getSessionMemoryUsageMB()));
|
|
ExecEndPlan(queryDesc->planstate, estate);
|
|
|
|
/* do away with our snapshots */
|
|
UnregisterSnapshot(estate->es_snapshot);
|
|
UnregisterSnapshot(estate->es_crosscheck_snapshot);
|
|
|
|
#ifdef ENABLE_LLVM_COMPILE
|
|
/* Do not release codegen in Fmgr and Procedure */
|
|
if (!t_thrd.codegen_cxt.g_runningInFmgr && u_sess->SPI_cxt._connected == -1) {
|
|
CodeGenThreadTearDown();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Must switch out of context before destroying it
|
|
*/
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
|
|
#ifdef MEMORY_CONTEXT_CHECKING
|
|
/* Check per-query memory context before FreeExecutorState */
|
|
MemoryContextCheck(estate->es_query_cxt, (estate->es_query_cxt->session_id > 0));
|
|
#endif
|
|
|
|
/*
|
|
* Release EState and per-query memory context. This should release
|
|
* everything the executor has allocated.
|
|
*/
|
|
FreeExecutorState(estate);
|
|
|
|
/* Reset queryDesc fields that no longer point to anything */
|
|
queryDesc->tupDesc = NULL;
|
|
queryDesc->estate = NULL;
|
|
queryDesc->planstate = NULL;
|
|
queryDesc->totaltime = NULL;
|
|
|
|
/* output the memory tracking information into file */
|
|
MemoryTrackingOutputFile();
|
|
#ifndef ENABLE_LITE_MODE
|
|
totaltime += elapsed_time(&starttime);
|
|
#endif
|
|
|
|
/*
|
|
* if current plan is working for expression, no need to collect instrumentation.
|
|
*/
|
|
if (queryDesc->instrument_options != 0 && StreamTopConsumerAmI() && u_sess->instr_cxt.global_instr &&
|
|
u_sess->instr_cxt.thread_instr) {
|
|
int node_id = queryDesc->plannedstmt->planTree->plan_node_id - 1;
|
|
int *m_instrArrayMap = u_sess->instr_cxt.thread_instr->m_instrArrayMap;
|
|
|
|
u_sess->instr_cxt.thread_instr->m_instrArray[m_instrArrayMap[node_id]].instr.instruPlanData.end_time =
|
|
totaltime;
|
|
}
|
|
|
|
/* reset global values of perm space */
|
|
perm_space_value_reset();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRewind
|
|
*
|
|
* This routine may be called on an open queryDesc to rewind it
|
|
* to the start.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecutorRewind(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate = NULL;
|
|
MemoryContext old_context;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
estate = queryDesc->estate;
|
|
Assert(estate != NULL);
|
|
/* It's probably not sensible to rescan updating queries */
|
|
Assert(queryDesc->operation == CMD_SELECT);
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
/*
|
|
* rescan plan
|
|
*/
|
|
ExecReScan(queryDesc->planstate);
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
}
|
|
|
|
/*
|
|
* ExecCheckRTPerms
|
|
* Check access permissions for all relations listed in a range table.
|
|
*
|
|
* Returns true if permissions are adequate. Otherwise, throws an appropriate
|
|
* error if ereport_on_violation is true, or simply returns false otherwise.
|
|
*/
|
|
bool ExecCheckRTPerms(List *rangeTable, bool ereport_on_violation)
|
|
{
|
|
ListCell *l = NULL;
|
|
bool result = true;
|
|
gstrace_entry(GS_TRC_ID_ExecCheckRTPerms);
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
bool with_ts_rel = false;
|
|
char* ts_relname = NULL;
|
|
#endif
|
|
foreach (l, rangeTable) {
|
|
RangeTblEntry *rte = (RangeTblEntry *)lfirst(l);
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
/* As the inner table of timeseries table that the tag rel can be skipped */
|
|
if (with_ts_rel && rte->relname != NULL &&
|
|
strncmp(rte->relname, TsConf::TAG_TABLE_NAME_PREFIX, strlen(TsConf::TAG_TABLE_NAME_PREFIX)) == 0) {
|
|
/* check from the next position after ts# */
|
|
if (strncmp(strchr(rte->relname + strlen(TsConf::TAG_TABLE_NAME_PREFIX), '#') + 1,
|
|
ts_relname, strlen(ts_relname)) == 0) {
|
|
with_ts_rel = false;
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
result = ExecCheckRTEPerms(rte);
|
|
if (!result) {
|
|
Assert(rte->rtekind == RTE_RELATION);
|
|
if (ereport_on_violation) {
|
|
aclcheck_error(ACLCHECK_NO_PRIV, ACL_KIND_CLASS, get_rel_name(rte->relid));
|
|
}
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTPerms);
|
|
return false;
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
} else {
|
|
/* check whether the timeseries table */
|
|
if (rte->rtekind == RTE_RELATION && list_length(rangeTable) > 1 &&
|
|
with_ts_rel == false && rte->orientation == REL_TIMESERIES_ORIENTED) {
|
|
with_ts_rel = true;
|
|
ts_relname = rte->relname;
|
|
continue;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (ExecutorCheckPerms_hook) {
|
|
result = (*ExecutorCheckPerms_hook)(rangeTable, ereport_on_violation);
|
|
}
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTPerms);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* ExecCheckRTEPerms
|
|
* Check access permissions for a single RTE.
|
|
*/
|
|
static bool ExecCheckRTEPerms(RangeTblEntry *rte)
|
|
{
|
|
AclMode requiredPerms;
|
|
AclMode relPerms;
|
|
AclMode remainingPerms;
|
|
Oid rel_oid;
|
|
Oid userid;
|
|
Bitmapset *tmpset = NULL;
|
|
int col;
|
|
|
|
gstrace_entry(GS_TRC_ID_ExecCheckRTEPerms);
|
|
/*
|
|
* Only plain-relation RTEs need to be checked here. Function RTEs are
|
|
* checked by init_fcache when the function is prepared for execution.
|
|
* Join, subquery, and special RTEs need no checks.
|
|
*/
|
|
if (rte->rtekind != RTE_RELATION) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Deal with 'plan_table_data' permission checking here.
|
|
* We do not allow ordinary user to select from 'plan_table_data'.
|
|
*/
|
|
if (rte->relname != NULL && strcasecmp(rte->relname, T_PLAN_TABLE_DATA) == 0) {
|
|
if (checkPermsForPlanTable(rte) == 0) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
} else if (checkPermsForPlanTable(rte) == 1) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#ifndef ENABLE_LITE_MODE
|
|
/*
|
|
* If relation is in ledger schema, avoid procedure or function on it.
|
|
*/
|
|
if (u_sess->SPI_cxt._connected > -1 && is_ledger_usertable(rte->relid)) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* No work if requiredPerms is empty.
|
|
*/
|
|
requiredPerms = rte->requiredPerms;
|
|
if (requiredPerms == 0) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* when a non-superuser is doing analyze, a select pg_statistic/pg_statistic_ext query will be
|
|
* sent from the other CN to current CN to synchronize statistics collectted
|
|
* from DNs. Unfortunately, non-superuser is not allowed to select pg_statistic/pg_statistic_ext,
|
|
* so we should do special handling: for query involving pg_statistic/pg_statistic_ext from
|
|
* other CNs, ignore the authorization check.
|
|
*/
|
|
if ((StatisticRelationId == rte->relid || StatisticExtRelationId == rte->relid) && IsConnFromCoord()) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return true;
|
|
}
|
|
|
|
rel_oid = rte->relid;
|
|
|
|
/*
|
|
* userid to check as: current user unless we have a setuid indication.
|
|
*
|
|
* Note: GetUserId() is presently fast enough that there's no harm in
|
|
* calling it separately for each RTE. If that stops being true, we could
|
|
* call it once in ExecCheckRTPerms and pass the userid down from there.
|
|
* But for now, no need for the extra clutter.
|
|
*/
|
|
userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
|
|
|
|
/*
|
|
* We must have *all* the requiredPerms bits, but some of the bits can be
|
|
* satisfied from column-level rather than relation-level permissions.
|
|
* First, remove any bits that are satisfied by relation permissions.
|
|
*/
|
|
relPerms = pg_class_aclmask(rel_oid, userid, requiredPerms, ACLMASK_ALL);
|
|
remainingPerms = requiredPerms & ~relPerms;
|
|
if (remainingPerms != 0) {
|
|
/*
|
|
* If we lack any permissions that exist only as relation permissions,
|
|
* we can fail straight away.
|
|
*/
|
|
if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE)) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if we have the needed privileges at column level.
|
|
*
|
|
* Note: failures just report a table-level error; it would be nicer
|
|
* to report a column-level error if we have some but not all of the
|
|
* column privileges.
|
|
*/
|
|
if (remainingPerms & ACL_SELECT) {
|
|
/*
|
|
* When the query doesn't explicitly reference any columns (for
|
|
* example, SELECT COUNT(*) FROM table), allow the query if we
|
|
* have SELECT on any column of the rel, as per SQL spec.
|
|
*/
|
|
if (bms_is_empty(rte->selectedCols)) {
|
|
if (pg_attribute_aclcheck_all(rel_oid, userid, ACL_SELECT, ACLMASK_ANY) != ACLCHECK_OK) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
tmpset = bms_copy(rte->selectedCols);
|
|
while ((col = bms_first_member(tmpset)) >= 0) {
|
|
/* remove the column number offset */
|
|
col += FirstLowInvalidHeapAttributeNumber;
|
|
if (col == InvalidAttrNumber) {
|
|
/* Whole-row reference, must have priv on all cols */
|
|
if (pg_attribute_aclcheck_all(rel_oid, userid, ACL_SELECT, ACLMASK_ALL) != ACLCHECK_OK) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
} else {
|
|
if (pg_attribute_aclcheck(rel_oid, col, userid, ACL_SELECT) != ACLCHECK_OK) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
bms_free_ext(tmpset);
|
|
}
|
|
|
|
/*
|
|
* Basically the same for the mod columns, with either INSERT or
|
|
* UPDATE privilege as specified by remainingPerms.
|
|
*/
|
|
if ((remainingPerms & ACL_INSERT) &&
|
|
!ExecCheckRTEPermsModified(rel_oid, userid, rte->insertedCols, ACL_INSERT)) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
|
|
if ((remainingPerms & ACL_UPDATE) && !ExecCheckRTEPermsModified(rel_oid, userid, rte->updatedCols, ACL_UPDATE)) {
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return false;
|
|
}
|
|
}
|
|
gstrace_exit(GS_TRC_ID_ExecCheckRTEPerms);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ExecCheckRTEPermsModified
|
|
* Check INSERT or UPDATE access permissions for a single RTE (these
|
|
* are processed uniformly).
|
|
*/
|
|
static bool ExecCheckRTEPermsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols, AclMode requiredPerms)
|
|
{
|
|
int col = -1;
|
|
|
|
/*
|
|
* When the query doesn't explicitly update any columns, allow the query
|
|
* if we have permission on any column of the rel. This is to handle
|
|
* SELECT FOR UPDATE as well as possible corner cases in UPDATE.
|
|
*/
|
|
if (bms_is_empty(modifiedCols)) {
|
|
if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms, ACLMASK_ANY) != ACLCHECK_OK) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
while ((col = bms_next_member(modifiedCols, col)) >= 0) {
|
|
/* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
|
|
AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
|
|
|
|
if (attno == InvalidAttrNumber) {
|
|
/* whole-row reference can't happen here */
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("whole-row update is not implemented")));
|
|
} else {
|
|
if (pg_attribute_aclcheck(relOid, attno, userid, requiredPerms) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check that the query does not imply any writes to non-temp tables.
|
|
*
|
|
* Note: in a Hot Standby slave this would need to reject writes to temp
|
|
* tables as well; but an HS slave can't have created any temp tables
|
|
* in the first place, so no need to check that.
|
|
*/
|
|
void ExecCheckXactReadOnly(PlannedStmt *plannedstmt)
|
|
{
|
|
ListCell *l = NULL;
|
|
|
|
/* Fail if write permissions are requested on any non-temp table */
|
|
foreach (l, plannedstmt->rtable) {
|
|
RangeTblEntry *rte = (RangeTblEntry *)lfirst(l);
|
|
|
|
if (rte->rtekind != RTE_RELATION) {
|
|
continue;
|
|
}
|
|
|
|
if ((rte->requiredPerms & (~ACL_SELECT)) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (isTempNamespace(get_rel_namespace(rte->relid))) {
|
|
continue;
|
|
}
|
|
|
|
if (get_rel_persistence(rte->relid) == RELPERSISTENCE_GLOBAL_TEMP) {
|
|
continue;
|
|
}
|
|
|
|
if (rte->relid == PgxcNodeRelationId && g_instance.attr.attr_storage.IsRoachStandbyCluster &&
|
|
u_sess->attr.attr_common.xc_maintenance_mode) {
|
|
continue;
|
|
}
|
|
|
|
PreventCommandIfReadOnly(CreateCommandTag((Node *)plannedstmt));
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* InitPlan
|
|
*
|
|
* Initializes the query plan: open files, allocate storage
|
|
* and start up the rule manager
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void InitPlan(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
CmdType operation = queryDesc->operation;
|
|
PlannedStmt *plannedstmt = queryDesc->plannedstmt;
|
|
Plan *plan = plannedstmt->planTree;
|
|
List *rangeTable = plannedstmt->rtable;
|
|
EState *estate = queryDesc->estate;
|
|
PlanState *planstate = NULL;
|
|
TupleDesc tupType = NULL;
|
|
ListCell *l = NULL;
|
|
ListCell *lc = NULL;
|
|
int i;
|
|
bool check = false;
|
|
|
|
gstrace_entry(GS_TRC_ID_InitPlan);
|
|
|
|
/* We release the partition object lock in InitPlan, here the snapshow is already obtained, so instantaneous
|
|
* inconsistency will never happend. See pg_partition_fn.h for more detail. Distribute mode doesn't support
|
|
* partition DDL/DML parallel work, no need this action. */
|
|
#ifndef ENABLE_MULTIPLE_NODES
|
|
ListCell *cell;
|
|
foreach(cell, u_sess->storage_cxt.partition_dml_oids) {
|
|
UnlockPartitionObject(lfirst_oid(cell), PARTITION_OBJECT_LOCK_SDEQUENCE, PARTITION_SHARE_LOCK);
|
|
}
|
|
list_free_ext(u_sess->storage_cxt.partition_dml_oids);
|
|
u_sess->storage_cxt.partition_dml_oids = NIL;
|
|
#endif
|
|
|
|
/*
|
|
* Do permissions checks
|
|
*/
|
|
if (!(IS_PGXC_DATANODE && (IsConnFromCoord() || IsConnFromDatanode()))) {
|
|
check = true;
|
|
}
|
|
|
|
if (u_sess->exec_cxt.is_exec_trigger_func) {
|
|
check = true;
|
|
}
|
|
|
|
if (plannedstmt->in_compute_pool) {
|
|
check = true;
|
|
}
|
|
|
|
if (u_sess->pgxc_cxt.is_gc_fdw && u_sess->pgxc_cxt.is_gc_fdw_analyze) {
|
|
check = true;
|
|
}
|
|
|
|
if (check) {
|
|
(void)ExecCheckRTPerms(rangeTable, true);
|
|
}
|
|
|
|
/*
|
|
* initialize the node's execution state
|
|
*/
|
|
estate->es_range_table = rangeTable;
|
|
estate->es_plannedstmt = plannedstmt;
|
|
estate->es_is_flt_frame = plannedstmt->is_flt_frame;
|
|
#ifdef ENABLE_MOT
|
|
estate->mot_jit_context = queryDesc->mot_jit_context;
|
|
#endif
|
|
|
|
/*
|
|
* initialize result relation stuff, and open/lock the result rels.
|
|
*
|
|
* We must do this before initializing the plan tree, else we might try to
|
|
* do a lock upgrade if a result rel is also a source rel.
|
|
*
|
|
*
|
|
* nodegroup:
|
|
* Node: We may skip a case where target table is not on this datanode, such
|
|
* case happens on a target table's node group not matching the nodes that we
|
|
* are shipping plan to.
|
|
*/
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
if (plannedstmt->resultRelations && (!IS_PGXC_DATANODE || NeedExecute(plan))) {
|
|
#else
|
|
if (plannedstmt->resultRelations && (!StreamThreadAmI() || NeedExecute(plan))) {
|
|
#endif
|
|
List *resultRelations = plannedstmt->resultRelations;
|
|
int numResultRelations = 0;
|
|
ResultRelInfo *resultRelInfos = NULL;
|
|
ResultRelInfo *resultRelInfo = NULL;
|
|
|
|
foreach (l, plannedstmt->resultRelations) {
|
|
numResultRelations += list_length((List*)lfirst(l));
|
|
}
|
|
resultRelInfos = (ResultRelInfo *)palloc(numResultRelations * sizeof(ResultRelInfo));
|
|
resultRelInfo = resultRelInfos;
|
|
foreach (lc, resultRelations) {
|
|
List* resultRels = (List*)lfirst(lc);
|
|
foreach (l, resultRels) {
|
|
Index resultRelationIndex = lfirst_int(l);
|
|
Oid resultRelationOid;
|
|
Relation resultRelation;
|
|
|
|
resultRelationOid = getrelid(resultRelationIndex, rangeTable);
|
|
resultRelation = heap_open(resultRelationOid, RowExclusiveLock);
|
|
/* check if modifytable's related temp table is valid */
|
|
if (STMT_RETRY_ENABLED) {
|
|
// do noting for now, if query retry is on, just to skip validateTempRelation here
|
|
} else
|
|
validateTempRelation(resultRelation);
|
|
|
|
InitResultRelInfo(resultRelInfo, resultRelation, resultRelationIndex, estate->es_instrument);
|
|
resultRelInfo++;
|
|
}
|
|
}
|
|
estate->es_result_relations = resultRelInfos;
|
|
estate->es_num_result_relations = numResultRelations;
|
|
/* es_result_relation_info is NULL except when within ModifyTable */
|
|
estate->es_result_relation_info = NULL;
|
|
#ifdef PGXC
|
|
estate->es_result_remoterel = NULL;
|
|
#endif
|
|
} else {
|
|
/*
|
|
* if no result relation, then set state appropriately
|
|
*/
|
|
estate->es_result_relations = NULL;
|
|
estate->es_num_result_relations = 0;
|
|
estate->es_result_relation_info = NULL;
|
|
#ifdef PGXC
|
|
estate->es_result_remoterel = NULL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Similarly, we have to lock relations selected FOR [KEY] UPDATE/SHARE
|
|
* before we initialize the plan tree, else we'd be risking lock upgrades.
|
|
* While we are at it, build the ExecRowMark list.
|
|
*/
|
|
estate->es_rowMarks = NIL;
|
|
if (plannedstmt->rowMarks) {
|
|
uint64 plan_start_time = time(NULL);
|
|
foreach (l, plannedstmt->rowMarks) {
|
|
PlanRowMark *rc = (PlanRowMark *)lfirst(l);
|
|
Oid relid;
|
|
Relation relation = NULL;
|
|
ExecRowMark *erm = NULL;
|
|
|
|
/* ignore "parent" rowmarks; they are irrelevant at runtime */
|
|
if (rc->isParent) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If you change the conditions under which rel locks are acquired
|
|
* here, be sure to adjust ExecOpenScanRelation to match.
|
|
*/
|
|
switch (rc->markType) {
|
|
case ROW_MARK_EXCLUSIVE:
|
|
case ROW_MARK_NOKEYEXCLUSIVE:
|
|
case ROW_MARK_SHARE:
|
|
case ROW_MARK_KEYSHARE:
|
|
if (IS_PGXC_COORDINATOR || u_sess->pgxc_cxt.PGXCNodeId < 0 ||
|
|
bms_is_member(u_sess->pgxc_cxt.PGXCNodeId, rc->bms_nodeids)) {
|
|
relid = getrelid(rc->rti, rangeTable);
|
|
relation = heap_open(relid, RowShareLock);
|
|
}
|
|
break;
|
|
case ROW_MARK_REFERENCE:
|
|
if (IS_PGXC_COORDINATOR || u_sess->pgxc_cxt.PGXCNodeId < 0 ||
|
|
bms_is_member(u_sess->pgxc_cxt.PGXCNodeId, rc->bms_nodeids)) {
|
|
relid = getrelid(rc->rti, rangeTable);
|
|
relation = heap_open(relid, AccessShareLock);
|
|
}
|
|
break;
|
|
case ROW_MARK_COPY:
|
|
case ROW_MARK_COPY_DATUM:
|
|
/* there's no real table here ... */
|
|
break;
|
|
default:
|
|
ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE),
|
|
errmsg("unrecognized markType: %d when initializing query plan.", rc->markType)));
|
|
break;
|
|
}
|
|
|
|
/* Check that relation is a legal target for marking */
|
|
if (relation != NULL) {
|
|
CheckValidRowMarkRel(relation, rc->markType);
|
|
}
|
|
|
|
erm = (ExecRowMark *)palloc(sizeof(ExecRowMark));
|
|
erm->relation = relation;
|
|
erm->rti = rc->rti;
|
|
erm->prti = rc->prti;
|
|
erm->rowmarkId = rc->rowmarkId;
|
|
erm->markType = rc->markType;
|
|
erm->waitPolicy = rc->waitPolicy;
|
|
erm->waitSec = rc->waitSec;
|
|
erm->numAttrs = rc->numAttrs;
|
|
ItemPointerSetInvalid(&(erm->curCtid));
|
|
estate->es_rowMarks = lappend(estate->es_rowMarks, erm);
|
|
}
|
|
uint64 plan_end_time = time(NULL);
|
|
if ((plan_end_time - plan_start_time) > THREAD_INTSERVAL_60S) {
|
|
ereport(WARNING,
|
|
(errmsg("InitPlan foreach plannedstmt->rowMarks takes %lus, plan_start_time:%lus, plan_end_time:%lus.",
|
|
plan_end_time - plan_start_time, plan_start_time, plan_end_time)));
|
|
}
|
|
}
|
|
/*
|
|
* Initialize the executor's tuple table to empty.
|
|
*/
|
|
estate->es_tupleTable = NIL;
|
|
estate->es_epqTupleSlot = NULL;
|
|
estate->es_trig_tuple_slot = NULL;
|
|
estate->es_trig_oldtup_slot = NULL;
|
|
estate->es_trig_newtup_slot = NULL;
|
|
|
|
/* mark EvalPlanQual not active */
|
|
estate->es_epqTuple = NULL;
|
|
estate->es_epqTupleSet = NULL;
|
|
estate->es_epqScanDone = NULL;
|
|
|
|
/* data redistribution for DFS table. */
|
|
if (u_sess->attr.attr_sql.enable_cluster_resize) {
|
|
estate->dataDestRelIndex = plannedstmt->dataDestRelIndex;
|
|
}
|
|
|
|
/* deprecated: explain_info_hashtbl/collected_info_hashtbl
|
|
* set false disable data insertion into the hash table.
|
|
* deprecated function:
|
|
* - pg_stat_get_wlm_realtime_operator_info
|
|
* - pg_stat_get_wlm_realtime_ec_operator_info
|
|
* - pg_stat_get_wlm_ec_operator_info
|
|
* - gs_stat_get_wlm_plan_operator_info
|
|
* - pg_stat_get_wlm_operator_info
|
|
* */
|
|
estate->es_can_realtime_statistics = false;
|
|
estate->es_can_history_statistics = false;
|
|
|
|
if (u_sess->attr.attr_resource.use_workload_manager &&
|
|
u_sess->attr.attr_resource.resource_track_level == RESOURCE_TRACK_OPERATOR && !IsInitdb) {
|
|
int current_realtime_num = hash_get_num_entries(g_operator_table.explain_info_hashtbl);
|
|
if (current_realtime_num != 0) {
|
|
/* unreached branch */
|
|
ereport(LOG, (errmsg("Too many realtime info in the memory, current realtime record num is %d.",
|
|
current_realtime_num)));
|
|
}
|
|
|
|
int current_collectinfo_num = hash_get_num_entries(g_operator_table.collected_info_hashtbl);
|
|
if (current_collectinfo_num != 0) {
|
|
/* unreached branch */
|
|
ereport(LOG, (errmsg("Too many history info in the memory, current history record num is %d.",
|
|
current_collectinfo_num)));
|
|
}
|
|
u_sess->instr_cxt.operator_plan_number = plannedstmt->num_plannodes;
|
|
}
|
|
|
|
/*
|
|
* Initialize private state information for each SubPlan. We must do this
|
|
* before running ExecInitNode on the main query tree, since
|
|
* ExecInitSubPlan expects to be able to find these entries.
|
|
*/
|
|
Assert(estate->es_subplanstates == NIL);
|
|
|
|
/* Only generate one time when u_sess->debug_query_id = 0 in CN */
|
|
if ((IS_SINGLE_NODE || IS_PGXC_COORDINATOR) && u_sess->debug_query_id == 0) {
|
|
u_sess->debug_query_id = generate_unique_id64(>_queryId);
|
|
pgstat_report_queryid(u_sess->debug_query_id);
|
|
}
|
|
#ifndef ENABLE_MULTIPLE_NODES
|
|
plannedstmt->queryId = u_sess->debug_query_id;
|
|
#endif
|
|
|
|
if (StreamTopConsumerAmI()) {
|
|
uint64 stream_start_time = time(NULL);
|
|
BuildStreamFlow(plannedstmt);
|
|
uint64 stream_end_time = time(NULL);
|
|
if ((stream_end_time - stream_start_time) > THREAD_INTSERVAL_60S) {
|
|
ereport(WARNING,
|
|
(errmsg("BuildStreamFlow stream_start_time:%lu,stream_end_time:%lu, BuildStreamFlow takes %lus.",
|
|
stream_start_time, stream_end_time, (stream_end_time - stream_start_time))));
|
|
}
|
|
}
|
|
|
|
if (IS_PGXC_DATANODE) {
|
|
u_sess->instr_cxt.gs_query_id->queryId = u_sess->debug_query_id;
|
|
} else {
|
|
u_sess->instr_cxt.gs_query_id->procId = t_thrd.proc_cxt.MyProcPid;
|
|
u_sess->instr_cxt.gs_query_id->queryId = u_sess->debug_query_id;
|
|
}
|
|
|
|
i = 1; /* subplan indices count from 1 */
|
|
foreach (l, plannedstmt->subplans) {
|
|
Plan *subplan = (Plan *)lfirst(l);
|
|
PlanState *subplanstate = NULL;
|
|
int sp_eflags;
|
|
|
|
/*
|
|
* A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If
|
|
* it is a parameterless subplan (not initplan), we suggest that it be
|
|
* prepared to handle REWIND efficiently; otherwise there is no need.
|
|
*/
|
|
sp_eflags = eflags & EXEC_FLAG_EXPLAIN_ONLY;
|
|
if (bms_is_member(i, plannedstmt->rewindPlanIDs)) {
|
|
sp_eflags |= EXEC_FLAG_REWIND;
|
|
}
|
|
|
|
/*
|
|
* We initialize non-cte subplan node on coordinator (for explain) or one dn thread
|
|
* that executes the subplan
|
|
*/
|
|
if (subplan && (plannedstmt->subplan_ids == NIL ||
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
(IS_PGXC_COORDINATOR && list_nth_int(plannedstmt->subplan_ids, i - 1) != 0) ||
|
|
#else
|
|
(!IS_SPQ_RUNNING && StreamTopConsumerAmI() && list_nth_int(plannedstmt->subplan_ids, i - 1) != 0) ||
|
|
(IS_SPQ_COORDINATOR && list_nth_int(plannedstmt->subplan_ids, i - 1) != 0) ||
|
|
#endif
|
|
plannedstmt->planTree->plan_node_id == list_nth_int(plannedstmt->subplan_ids, i - 1))) {
|
|
estate->es_under_subplan = true;
|
|
subplanstate = ExecInitNode(subplan, estate, sp_eflags);
|
|
|
|
/* Report subplan or recursive union is init */
|
|
if (IS_PGXC_DATANODE && IsA(subplan, RecursiveUnion)) {
|
|
elog(DEBUG1, "MPP with-recursive init subplan for RecursiveUnion[%d] under top_plannode:[%d]",
|
|
subplan->plan_node_id, plannedstmt->planTree->plan_node_id);
|
|
}
|
|
|
|
estate->es_under_subplan = false;
|
|
}
|
|
|
|
estate->es_subplanstates = lappend(estate->es_subplanstates, subplanstate);
|
|
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Initialize the private state information for all the nodes in the query
|
|
* tree. This opens files, allocates storage and leaves us ready to start
|
|
* processing tuples.
|
|
*/
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
if (!IS_PGXC_COORDINATOR && plannedstmt->initPlan != NIL) {
|
|
#else
|
|
if (!StreamTopConsumerAmI() && plannedstmt->initPlan != NIL) {
|
|
#endif
|
|
plan->initPlan = plannedstmt->initPlan;
|
|
estate->es_subplan_ids = plannedstmt->subplan_ids;
|
|
}
|
|
planstate = ExecInitNode(plan, estate, eflags);
|
|
|
|
if (estate->pruningResult) {
|
|
destroyPruningResult(estate->pruningResult);
|
|
estate->pruningResult = NULL;
|
|
}
|
|
|
|
if (planstate->ps_ProjInfo) {
|
|
planstate->ps_ProjInfo->pi_topPlan = true;
|
|
}
|
|
|
|
/*
|
|
* Get the tuple descriptor describing the type of tuples to return.
|
|
*/
|
|
tupType = ExecGetResultType(planstate);
|
|
|
|
/*
|
|
* Initialize the junk filter if needed. SELECT queries need a filter if
|
|
* there are any junk attrs in the top-level tlist.
|
|
*/
|
|
if (operation == CMD_SELECT) {
|
|
bool junk_filter_needed = false;
|
|
ListCell *tlist = NULL;
|
|
|
|
foreach (tlist, plan->targetlist) {
|
|
TargetEntry *tle = (TargetEntry *)lfirst(tlist);
|
|
|
|
if (tle->resjunk) {
|
|
junk_filter_needed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef ENABLE_MULTIPLE_NODES
|
|
if (StreamTopConsumerAmI() || StreamThreadAmI()) {
|
|
#else
|
|
if (StreamThreadAmI()) {
|
|
#endif
|
|
junk_filter_needed = false;
|
|
}
|
|
|
|
if (junk_filter_needed) {
|
|
JunkFilter *j = NULL;
|
|
|
|
j = ExecInitJunkFilter(planstate->plan->targetlist, tupType->tdhasoid, ExecInitExtraTupleSlot(estate), tupType->td_tam_ops);
|
|
estate->es_junkFilter = j;
|
|
|
|
/* Want to return the cleaned tuple type */
|
|
tupType = j->jf_cleanTupType;
|
|
}
|
|
}
|
|
|
|
queryDesc->tupDesc = tupType;
|
|
queryDesc->planstate = planstate;
|
|
|
|
if (plannedstmt->num_streams > 0 && !StreamThreadAmI() &&
|
|
!(eflags & EXEC_FLAG_EXPLAIN_ONLY)) {
|
|
/* init stream thread in parallel */
|
|
StartUpStreamInParallel(queryDesc->plannedstmt, queryDesc->estate);
|
|
}
|
|
|
|
gstrace_exit(GS_TRC_ID_InitPlan);
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed result relation is a legal target for the operation
|
|
*
|
|
* Generally the parser and/or planner should have noticed any such mistake
|
|
* already, but let's make sure.
|
|
*
|
|
* Note: when changing this function, you probably also need to look at
|
|
* CheckValidRowMarkRel.
|
|
*/
|
|
void CheckValidResultRel(Relation resultRel, CmdType operation)
|
|
{
|
|
TriggerDesc *trigDesc = resultRel->trigdesc;
|
|
FdwRoutine *fdwroutine = NULL;
|
|
|
|
switch (resultRel->rd_rel->relkind) {
|
|
case RELKIND_RELATION:
|
|
if (u_sess->exec_cxt.is_exec_trigger_func && is_ledger_related_rel(resultRel)) {
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change ledger relation \"%s\"", RelationGetRelationName(resultRel))));
|
|
}
|
|
CheckCmdReplicaIdentity(resultRel, operation);
|
|
break;
|
|
case RELKIND_SEQUENCE:
|
|
case RELKIND_LARGE_SEQUENCE:
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change (large) sequence \"%s\"", RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change TOAST relation \"%s\"", RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
case RELKIND_CONTQUERY:
|
|
/*
|
|
* Okay only if there's a suitable INSTEAD OF trigger. Messages
|
|
* here should match rewriteHandler.c's rewriteTargetView and
|
|
* RewriteQuery, except that we omit errdetail because we haven't
|
|
* got the information handy (and given that we really shouldn't
|
|
* get here anyway, it's not worth great exertion to get).
|
|
*/
|
|
switch (operation) {
|
|
case CMD_INSERT:
|
|
if (trigDesc == NULL || !trigDesc->trig_insert_instead_row) {
|
|
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot insert into view \"%s\"", RelationGetRelationName(resultRel)),
|
|
errhint("To enable inserting into the view, provide an INSTEAD OF INSERT trigger or "
|
|
"an unconditional ON INSERT DO INSTEAD rule.")));
|
|
}
|
|
|
|
break;
|
|
case CMD_UPDATE:
|
|
if (trigDesc == NULL || !trigDesc->trig_update_instead_row) {
|
|
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot update view \"%s\"", RelationGetRelationName(resultRel)),
|
|
errhint("To enable updating the view, provide an INSTEAD OF UPDATE trigger or "
|
|
"an unconditional ON UPDATE DO INSTEAD rule.")));
|
|
}
|
|
break;
|
|
case CMD_DELETE:
|
|
if (trigDesc == NULL || !trigDesc->trig_delete_instead_row) {
|
|
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot delete from view \"%s\"", RelationGetRelationName(resultRel)),
|
|
errhint("To enable deleting from the view, provide an INSTEAD OF DELETE trigger or "
|
|
"an unconditional ON DELETE DO INSTEAD rule.")));
|
|
}
|
|
break;
|
|
default:
|
|
ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE),
|
|
errmsg("unrecognized CmdType: %d when perform operations on view.", (int)operation)));
|
|
break;
|
|
}
|
|
break;
|
|
case RELKIND_MATVIEW:
|
|
break;
|
|
case RELKIND_STREAM:
|
|
case RELKIND_FOREIGN_TABLE:
|
|
/* Okay only if the FDW supports it */
|
|
fdwroutine = GetFdwRoutineForRelation(resultRel, false);
|
|
switch (operation) {
|
|
case CMD_INSERT:
|
|
if (fdwroutine->ExecForeignInsert == NULL) {
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot insert into foreign table \"%s\"", RelationGetRelationName(resultRel))));
|
|
}
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0) {
|
|
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow inserts", RelationGetRelationName(resultRel))));
|
|
}
|
|
break;
|
|
case CMD_UPDATE:
|
|
if (fdwroutine->ExecForeignUpdate == NULL) {
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot update foreign table \"%s\"", RelationGetRelationName(resultRel))));
|
|
}
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0) {
|
|
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow updates", RelationGetRelationName(resultRel))));
|
|
}
|
|
break;
|
|
case CMD_DELETE:
|
|
if (fdwroutine->ExecForeignDelete == NULL) {
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot delete from foreign table \"%s\"", RelationGetRelationName(resultRel))));
|
|
}
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0) {
|
|
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow deletes", RelationGetRelationName(resultRel))));
|
|
}
|
|
break;
|
|
default:
|
|
ereport(ERROR, (errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE),
|
|
errmsg("unrecognized CmdType: %d when perform operation on foreign table.", (int)operation)));
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change relation \"%s\"", RelationGetRelationName(resultRel))));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed rowmark target relation is a legal target
|
|
*
|
|
* In most cases parser and/or planner should have noticed this already, but
|
|
* they don't cover all cases.
|
|
*/
|
|
static void CheckValidRowMarkRel(Relation rel, RowMarkType markType)
|
|
{
|
|
switch (rel->rd_rel->relkind) {
|
|
case RELKIND_RELATION:
|
|
/* OK */
|
|
break;
|
|
case RELKIND_SEQUENCE:
|
|
case RELKIND_LARGE_SEQUENCE:
|
|
/* Must disallow this because we don't vacuum sequences */
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in (large) sequence \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
/* We could allow this, but there seems no good reason to */
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in TOAST relation \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
/* Should not get here; planner should have expanded the view */
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in view \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_CONTQUERY:
|
|
/* Should not get here */
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in contview \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_MATVIEW:
|
|
/* Should not get here */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in materialized view \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_FOREIGN_TABLE:
|
|
/* Should not get here; planner should have used ROW_MARK_COPY */
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in foreign table \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_STREAM:
|
|
/* Should not get here; planner should have used ROW_MARK_COPY */
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in stream \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
default:
|
|
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in relation \"%s\"", RelationGetRelationName(rel))));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize ResultRelInfo data for one result relation
|
|
*
|
|
* Caution: before Postgres 9.1, this function included the relkind checking
|
|
* that's now in CheckValidResultRel, and it also did ExecOpenIndices if
|
|
* appropriate. Be sure callers cover those needs.
|
|
*/
|
|
void InitResultRelInfo(ResultRelInfo *resultRelInfo, Relation resultRelationDesc, Index resultRelationIndex,
|
|
int instrument_options)
|
|
{
|
|
errno_t rc = memset_s(resultRelInfo, sizeof(ResultRelInfo), 0, sizeof(ResultRelInfo));
|
|
securec_check(rc, "\0", "\0");
|
|
resultRelInfo->type = T_ResultRelInfo;
|
|
resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
|
|
resultRelInfo->ri_RelationDesc = resultRelationDesc;
|
|
resultRelInfo->ri_NumIndices = 0;
|
|
resultRelInfo->ri_ContainGPI = false;
|
|
resultRelInfo->ri_IndexRelationDescs = NULL;
|
|
resultRelInfo->ri_IndexRelationInfo = NULL;
|
|
/* make a copy so as not to depend on relcache info not changing... */
|
|
resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
|
|
if (resultRelInfo->ri_TrigDesc) {
|
|
int n = resultRelInfo->ri_TrigDesc->numtriggers;
|
|
|
|
resultRelInfo->ri_TrigFunctions = (FmgrInfo *)palloc0(n * sizeof(FmgrInfo));
|
|
resultRelInfo->ri_TrigWhenExprs = (List **)palloc0(n * sizeof(List *));
|
|
if (instrument_options) {
|
|
resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options);
|
|
}
|
|
} else {
|
|
resultRelInfo->ri_TrigFunctions = NULL;
|
|
resultRelInfo->ri_TrigWhenExprs = NULL;
|
|
resultRelInfo->ri_TrigInstrument = NULL;
|
|
}
|
|
if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE
|
|
|| resultRelationDesc->rd_rel->relkind == RELKIND_STREAM) {
|
|
resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true);
|
|
} else {
|
|
resultRelInfo->ri_FdwRoutine = NULL;
|
|
}
|
|
resultRelInfo->ri_FdwState = NULL;
|
|
resultRelInfo->ri_ConstraintExprs = NULL;
|
|
resultRelInfo->ri_GeneratedExprs = NULL;
|
|
resultRelInfo->ri_junkFilter = NULL;
|
|
resultRelInfo->ri_projectReturning = NULL;
|
|
resultRelInfo->ri_mergeTargetRTI = 0;
|
|
resultRelInfo->ri_mergeState = (MergeState *)palloc0(sizeof(MergeState));
|
|
#ifdef USE_SPQ
|
|
resultRelInfo->ri_actionAttno = InvalidAttrNumber;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ExecGetTriggerResultRel
|
|
*
|
|
* Get a ResultRelInfo for a trigger target relation. Most of the time,
|
|
* triggers are fired on one of the result relations of the query, and so
|
|
* we can just return a member of the es_result_relations array. (Note: in
|
|
* self-join situations there might be multiple members with the same OID;
|
|
* if so it doesn't matter which one we pick.) However, it is sometimes
|
|
* necessary to fire triggers on other relations; this happens mainly when an
|
|
* RI update trigger queues additional triggers on other relations, which will
|
|
* be processed in the context of the outer query. For efficiency's sake,
|
|
* we want to have a ResultRelInfo for those triggers too; that can avoid
|
|
* repeated re-opening of the relation. (It also provides a way for EXPLAIN
|
|
* ANALYZE to report the runtimes of such triggers.) So we make additional
|
|
* ResultRelInfo's as needed, and save them in es_trig_target_relations.
|
|
*/
|
|
ResultRelInfo *ExecGetTriggerResultRel(EState *estate, Oid relid)
|
|
{
|
|
ResultRelInfo *rInfo = NULL;
|
|
int nr;
|
|
ListCell *l = NULL;
|
|
Relation rel;
|
|
MemoryContext old_context;
|
|
|
|
/* First, search through the query result relations */
|
|
rInfo = estate->es_result_relations;
|
|
nr = estate->es_num_result_relations;
|
|
while (nr > 0) {
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) {
|
|
return rInfo;
|
|
}
|
|
rInfo++;
|
|
nr--;
|
|
}
|
|
/* Nope, but maybe we already made an extra ResultRelInfo for it */
|
|
foreach (l, estate->es_trig_target_relations) {
|
|
rInfo = (ResultRelInfo *)lfirst(l);
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) {
|
|
return rInfo;
|
|
}
|
|
}
|
|
/* Nope, so we need a new one */
|
|
/*
|
|
* Open the target relation's relcache entry. We assume that an
|
|
* appropriate lock is still held by the backend from whenever the trigger
|
|
* event got queued, so we need take no new lock here. Also, we need not
|
|
* recheck the relkind, so no need for CheckValidResultRel.
|
|
*/
|
|
rel = heap_open(relid, NoLock);
|
|
|
|
/*
|
|
* Make the new entry in the right context.
|
|
*/
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
rInfo = makeNode(ResultRelInfo);
|
|
InitResultRelInfo(rInfo, rel, 0, /* dummy rangetable index */
|
|
estate->es_instrument);
|
|
estate->es_trig_target_relations = lappend(estate->es_trig_target_relations, rInfo);
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
|
|
/*
|
|
* Currently, we don't need any index information in ResultRelInfos used
|
|
* only for triggers, so no need to call ExecOpenIndices.
|
|
*/
|
|
return rInfo;
|
|
}
|
|
|
|
/*
|
|
* ExecContextForcesOids
|
|
*
|
|
* This is pretty grotty: when doing INSERT, UPDATE, or CREATE TABLE AS,
|
|
* we need to ensure that result tuples have space for an OID iff they are
|
|
* going to be stored into a relation that has OIDs. In other contexts
|
|
* we are free to choose whether to leave space for OIDs in result tuples
|
|
* (we generally don't want to, but we do if a physical-tlist optimization
|
|
* is possible). This routine checks the plan context and returns TRUE if the
|
|
* choice is forced, FALSE if the choice is not forced. In the TRUE case,
|
|
* *hasoids is set to the required value.
|
|
*
|
|
* One reason this is ugly is that all plan nodes in the plan tree will emit
|
|
* tuples with space for an OID, though we really only need the topmost node
|
|
* to do so. However, node types like Sort don't project new tuples but just
|
|
* return their inputs, and in those cases the requirement propagates down
|
|
* to the input node. Eventually we might make this code smart enough to
|
|
* recognize how far down the requirement really goes, but for now we just
|
|
* make all plan nodes do the same thing if the top level forces the choice.
|
|
*
|
|
* We assume that if we are generating tuples for INSERT or UPDATE,
|
|
* estate->es_result_relation_info is already set up to describe the target
|
|
* relation. Note that in an UPDATE that spans an inheritance tree, some of
|
|
* the target relations may have OIDs and some not. We have to make the
|
|
* decisions on a per-relation basis as we initialize each of the subplans of
|
|
* the ModifyTable node, so ModifyTable has to set es_result_relation_info
|
|
* while initializing each subplan.
|
|
*
|
|
* CREATE TABLE AS is even uglier, because we don't have the target relation's
|
|
* descriptor available when this code runs; we have to look aside at the
|
|
* flags passed to ExecutorStart().
|
|
*/
|
|
bool ExecContextForcesOids(PlanState *planstate, bool *hasoids)
|
|
{
|
|
ResultRelInfo *ri = planstate->state->es_result_relation_info;
|
|
|
|
if (ri != NULL) {
|
|
Relation rel = ri->ri_RelationDesc;
|
|
|
|
if (rel != NULL) {
|
|
*hasoids = rel->rd_rel->relhasoids;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (planstate->state->es_top_eflags & EXEC_FLAG_WITH_OIDS) {
|
|
*hasoids = true;
|
|
return true;
|
|
}
|
|
if (planstate->state->es_top_eflags & EXEC_FLAG_WITHOUT_OIDS) {
|
|
*hasoids = false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecPostprocessPlan
|
|
*
|
|
* Give plan nodes a final chance to execute before shutdown
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void ExecPostprocessPlan(EState *estate)
|
|
{
|
|
ListCell *lc = NULL;
|
|
|
|
/*
|
|
* Make sure nodes run forward.
|
|
*/
|
|
estate->es_direction = ForwardScanDirection;
|
|
|
|
/*
|
|
* Run any secondary ModifyTable nodes to completion, in case the main
|
|
* query did not fetch all rows from them. (We do this to ensure that
|
|
* such nodes have predictable results.)
|
|
*/
|
|
foreach (lc, estate->es_auxmodifytables) {
|
|
PlanState *ps = (PlanState *)lfirst(lc);
|
|
|
|
if (!ps->vectorized) {
|
|
for (;;) {
|
|
TupleTableSlot *slot = NULL;
|
|
|
|
/* Reset the per-output-tuple exprcontext each time */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
slot = ExecProcNode(ps);
|
|
|
|
if (TupIsNull(slot)) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (;;) {
|
|
VectorBatch *batch = NULL;
|
|
|
|
/* Reset the per-output-tuple exprcontext */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
/*
|
|
* Execute the plan and obtain a batch
|
|
*/
|
|
batch = VectorEngine(ps);
|
|
|
|
if (BatchIsNull(batch)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndPlan
|
|
*
|
|
* Cleans up the query plan -- closes files and frees up storage
|
|
*
|
|
* NOTE: we are no longer very worried about freeing storage per se
|
|
* in this code; FreeExecutorState should be guaranteed to release all
|
|
* memory that needs to be released. What we are worried about doing
|
|
* is closing relations and dropping buffer pins. Thus, for example,
|
|
* tuple tables must be cleared or dropped to ensure pins are released.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void ExecEndPlan(PlanState *planstate, EState *estate)
|
|
{
|
|
ResultRelInfo *resultRelInfo = NULL;
|
|
int i;
|
|
ListCell *l = NULL;
|
|
|
|
/*
|
|
* shut down the node-type-specific query processing
|
|
*/
|
|
ExecEndNode(planstate);
|
|
|
|
/*
|
|
* for subplans too
|
|
*/
|
|
foreach (l, estate->es_subplanstates) {
|
|
PlanState *subplanstate = (PlanState *)lfirst(l);
|
|
|
|
ExecEndNode(subplanstate);
|
|
}
|
|
|
|
/*
|
|
* destroy the executor's tuple table. Actually we only care about
|
|
* releasing buffer pins and tupdesc refcounts; there's no need to pfree
|
|
* the TupleTableSlots, since the containing memory context is about to go
|
|
* away anyway.
|
|
*/
|
|
ExecResetTupleTable(estate->es_tupleTable, false);
|
|
|
|
/*
|
|
* close the result relation(s) if any, but hold locks until xact commit.
|
|
*/
|
|
resultRelInfo = estate->es_result_relations;
|
|
for (i = estate->es_num_result_relations; i > 0; i--) {
|
|
/* Close indices and then the relation itself */
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
resultRelInfo++;
|
|
}
|
|
|
|
/* free the fakeRelationCache */
|
|
if (estate->esfRelations != NULL) {
|
|
FakeRelationCacheDestroy(estate->esfRelations);
|
|
}
|
|
estate->esCurrentPartition = NULL;
|
|
|
|
/*
|
|
* likewise close any trigger target relations
|
|
*/
|
|
foreach (l, estate->es_trig_target_relations) {
|
|
resultRelInfo = (ResultRelInfo *)lfirst(l);
|
|
/* Close indices and then the relation itself */
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
|
|
/*
|
|
* close any relations selected FOR [KEY] UPDATE/SHARE, again keeping locks
|
|
*/
|
|
foreach (l, estate->es_rowMarks) {
|
|
ExecRowMark *erm = (ExecRowMark *)lfirst(l);
|
|
|
|
if (erm->relation) {
|
|
heap_close(erm->relation, NoLock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @Description: Collect Material for Subplan before running the main plan
|
|
*
|
|
* @param[IN] estate: working state for an Executor invocation
|
|
* @return: void
|
|
*/
|
|
static void ExecCollectMaterialForSubplan(EState *estate)
|
|
{
|
|
ListCell *lc = NULL;
|
|
|
|
foreach (lc, estate->es_material_of_subplan) {
|
|
PlanState *node = (PlanState *)lfirst(lc);
|
|
|
|
/*
|
|
* If the current materliaze node is recursive-union and the right tree has stream
|
|
* node, we are skip the pre-materliaze the subplan as at current point the SyncPoint
|
|
* on consumer side is not start yet in ExecRecursiveUnion()
|
|
*/
|
|
if (EXEC_IN_RECURSIVE_MODE(node->plan)) {
|
|
continue;
|
|
}
|
|
|
|
if (IsA(node, MaterialState)) {
|
|
for (;;) {
|
|
TupleTableSlot *slot = NULL;
|
|
|
|
/* Reset the per-output-tuple exprcontext each time */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
slot = ExecProcNode(node);
|
|
|
|
if (TupIsNull(slot)) {
|
|
/* Reset Material so that its output can be re-scanned */
|
|
ExecReScan(node);
|
|
break;
|
|
}
|
|
}
|
|
} else if (IsA(node, VecMaterialState)) {
|
|
for (;;) {
|
|
VectorBatch *batch = NULL;
|
|
|
|
/*
|
|
* Execute the plan and obtain a batch
|
|
*/
|
|
batch = VectorEngine(node);
|
|
|
|
if (BatchIsNull(batch)) {
|
|
/* Reset Material so that its output can be re-scanned */
|
|
VecExecReScan(node);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutePlan
|
|
*
|
|
* Processes the query plan until we have retrieved 'numberTuples' tuples,
|
|
* moving in the specified direction.
|
|
*
|
|
* Runs to completion if numberTuples is 0
|
|
*
|
|
* Note: the ctid attribute is a 'junk' attribute that is removed before the
|
|
* user can see it
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
#ifdef ENABLE_MOT
|
|
static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples,
|
|
ScanDirection direction, DestReceiver *dest, JitExec::MotJitContext* motJitContext)
|
|
#else
|
|
static void ExecutePlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples, long numberTuples,
|
|
ScanDirection direction, DestReceiver *dest)
|
|
#endif
|
|
{
|
|
TupleTableSlot *slot = NULL;
|
|
long current_tuple_count = 0;
|
|
bool stream_instrument = false;
|
|
bool need_sync_step = false;
|
|
bool recursive_early_stop = false;
|
|
#ifdef ENABLE_MOT
|
|
bool motFinishedExecution = false;
|
|
#endif
|
|
/* set the flag to false, prepare to record */
|
|
u_sess->storage_cxt.is_in_pre_read = false;
|
|
u_sess->storage_cxt.bulk_read_count = 0;
|
|
|
|
/* Mark sync-up step is required */
|
|
if (unlikely(NeedSyncUpProducerStep(planstate->plan))) {
|
|
need_sync_step = true;
|
|
/*
|
|
* (G)Distributed With-Recursive Support
|
|
*
|
|
* If current producer thread is under a recursive cte plan node, we need do
|
|
* step sync-up across the whole cluster
|
|
*/
|
|
u_sess->exec_cxt.global_iteration = 0;
|
|
ExecutePlanSyncProducer(planstate, WITH_RECURSIVE_SYNC_NONERQ, &recursive_early_stop, ¤t_tuple_count);
|
|
u_sess->exec_cxt.global_iteration = 1;
|
|
}
|
|
|
|
/*
|
|
* Set the direction.
|
|
*/
|
|
estate->es_direction = direction;
|
|
|
|
if (!IS_SPQ_COORDINATOR && IS_PGXC_DATANODE) {
|
|
/* Collect Material for Subplan first */
|
|
ExecCollectMaterialForSubplan(estate);
|
|
|
|
/* Collect Executor run time including sending data time */
|
|
if (estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr &&
|
|
u_sess->instr_cxt.thread_instr) {
|
|
stream_instrument = true;
|
|
int plan_id = planstate->plan->plan_node_id;
|
|
u_sess->instr_cxt.global_instr->SetStreamSend(plan_id, true);
|
|
}
|
|
}
|
|
|
|
/* Change DestReceiver's tmpContext to PerTupleMemoryContext to avoid memory leak. */
|
|
dest->tmpContext = GetPerTupleMemoryContext(estate);
|
|
|
|
// planstate->plan will be release if rollback excuted
|
|
bool is_saved_recursive_union_plan_nodeid = EXEC_IN_RECURSIVE_MODE(planstate->plan);
|
|
/*
|
|
* Loop until we've processed the proper number of tuples from the plan.
|
|
*/
|
|
for (;;) {
|
|
/* Reset the per-output-tuple exprcontext */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
/*
|
|
* Execute the plan and obtain a tuple
|
|
*/
|
|
#ifdef ENABLE_MOT
|
|
if (unlikely(recursive_early_stop)) {
|
|
slot = NULL;
|
|
} else if (motJitContext && JitExec::IsJitContextValid(motJitContext) && !IS_PGXC_COORDINATOR &&
|
|
JitExec::IsMotCodegenEnabled()) {
|
|
// MOT LLVM
|
|
int scanEnded = 0;
|
|
if (!motFinishedExecution) {
|
|
// previous iteration has not signaled end of scan
|
|
slot = planstate->ps_ResultTupleSlot;
|
|
uint64_t tuplesProcessed = 0;
|
|
int rc = JitExec::JitExecQuery(
|
|
motJitContext, estate->es_param_list_info, slot, &tuplesProcessed, &scanEnded);
|
|
if (scanEnded || (tuplesProcessed == 0) || (rc != 0)) {
|
|
// raise flag so that next round we will bail out (current tuple still must be reported to user)
|
|
motFinishedExecution = true;
|
|
}
|
|
} else {
|
|
(void)ExecClearTuple(slot);
|
|
}
|
|
} else {
|
|
slot = ExecProcNode(planstate);
|
|
}
|
|
#else
|
|
slot = unlikely(recursive_early_stop) ? NULL : ExecProcNode(planstate);
|
|
#endif
|
|
|
|
/*
|
|
* ------------------------------------------------------------------------------
|
|
* (G)Distributed With-Recursive Support
|
|
*
|
|
* If under recursive cte, we need check sync step and do rescan properly
|
|
*/
|
|
if (unlikely(need_sync_step) && TupIsNull(slot)) {
|
|
if (!ExecutePlanSyncProducer(planstate, WITH_RECURSIVE_SYNC_RQSTEP, &recursive_early_stop,
|
|
¤t_tuple_count)) {
|
|
/* current iteration step is not finish, continue to the next iteration */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if the tuple is null, then we assume there is nothing more to
|
|
* process so we just end the loop...
|
|
*/
|
|
if (TupIsNull(slot)) {
|
|
if(!is_saved_recursive_union_plan_nodeid) {
|
|
break;
|
|
}
|
|
ExecEarlyFreeBody(planstate);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we have a junk filter, then project a new tuple with the junk
|
|
* removed.
|
|
*
|
|
* Store this new "clean" tuple in the junkfilter's resultSlot.
|
|
* (Formerly, we stored it back over the "dirty" tuple, which is WRONG
|
|
* because that tuple slot has the wrong descriptor.)
|
|
*/
|
|
#ifdef ENABLE_MULTIPLE_NDOES
|
|
if (estate->es_junkFilter != NULL && !StreamTopConsumerAmI() && !StreamThreadAmI()) {
|
|
#else
|
|
if (estate->es_junkFilter != NULL && !StreamThreadAmI()) {
|
|
#endif
|
|
/* If junkfilter->jf_resultSlot->tts_tupleDescriptor is different from slot->tts_tupleDescriptor,
|
|
* and the datatype is not Compatible,
|
|
* we reset junkfilter->jf_resultSlot->tts_tupleDescriptor by slot->tts_tupleDescriptor.
|
|
* This just do only once.
|
|
*/
|
|
if (current_tuple_count == 0) {
|
|
ExecSetjunkFilteDescriptor(estate->es_junkFilter, slot->tts_tupleDescriptor);
|
|
}
|
|
slot = ExecFilterJunk(estate->es_junkFilter, slot);
|
|
}
|
|
|
|
#if defined(ENABLE_MULTIPLE_NDOES) || defined(USE_SPQ)
|
|
if (t_thrd.spq_ctx.spq_role != ROLE_UTILITY && stream_instrument) {
|
|
t_thrd.pgxc_cxt.GlobalNetInstr = planstate->instrument;
|
|
}
|
|
#endif
|
|
/*
|
|
* If we are supposed to send the tuple somewhere, do so. (In
|
|
* practice, this is probably always the case at this point.)
|
|
*/
|
|
#ifdef ENABLE_MULTIPLE_NDOES
|
|
if (sendTuples && !u_sess->exec_cxt.executorStopFlag)
|
|
#else
|
|
if (sendTuples)
|
|
#endif
|
|
{
|
|
(*dest->receiveSlot)(slot, dest);
|
|
}
|
|
|
|
#ifdef ENABLE_MULTIPLE_NDOES
|
|
t_thrd.pgxc_cxt.GlobalNetInstr = NULL;
|
|
#endif
|
|
/*
|
|
* Count tuples processed, if this is a SELECT. (For other operation
|
|
* types, the ModifyTable plan node must count the appropriate
|
|
* events.)
|
|
*/
|
|
if (operation == CMD_SELECT) {
|
|
(estate->es_processed)++;
|
|
}
|
|
|
|
/*
|
|
* check our tuple count.. if we've processed the proper number then
|
|
* quit, else loop again and process more tuples. Zero numberTuples
|
|
* means no limit.
|
|
*/
|
|
current_tuple_count++;
|
|
if (numberTuples == current_tuple_count) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* end of plan, we should flush the record for pre-read process */
|
|
if (u_sess->storage_cxt.is_in_pre_read) {
|
|
/* it's useless to record the record for last time, because it will be mod of the blocks */
|
|
int minValue = u_sess->storage_cxt.bulk_read_max == 1 ? 1 : u_sess->storage_cxt.bulk_read_min;
|
|
ereport(LOG, (errmsg("End of pre-Read, the max blocks batch is %d, the small blocks batch is %d.",
|
|
u_sess->storage_cxt.bulk_read_max, minValue)));
|
|
}
|
|
|
|
/*
|
|
* if current plan is working for expression, no need to collect instrumentation.
|
|
*/
|
|
if (
|
|
#ifndef ENABLE_MULTIPLE_NODES
|
|
!u_sess->attr.attr_common.enable_seqscan_fusion &&
|
|
#endif
|
|
estate->es_instrument != INSTRUMENT_NONE &&
|
|
u_sess->instr_cxt.global_instr && StreamTopConsumerAmI() && u_sess->instr_cxt.thread_instr) {
|
|
int64 peak_memory = (uint64)(t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->peakChunksQuery -
|
|
t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->initMemInChunks)
|
|
<< (chunkSizeInBits - BITS_IN_MB);
|
|
u_sess->instr_cxt.global_instr->SetPeakNodeMemory(planstate->plan->plan_node_id, peak_memory);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutePlan
|
|
*
|
|
* Processes the query plan until we have retrieved 'numberTuples' tuples,
|
|
* moving in the specified direction.
|
|
*
|
|
* Runs to completion if numberTuples is 0
|
|
*
|
|
* Note: the ctid attribute is a 'junk' attribute that is removed before the
|
|
* user can see it
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void ExecuteVectorizedPlan(EState *estate, PlanState *planstate, CmdType operation, bool sendTuples,
|
|
long numberTuples, ScanDirection direction, DestReceiver *dest)
|
|
{
|
|
VectorBatch *batch = NULL;
|
|
long current_tuple_count;
|
|
bool stream_instrument = false;
|
|
|
|
/*
|
|
* initialize local variables
|
|
*/
|
|
current_tuple_count = 0;
|
|
|
|
/*
|
|
* Set the direction.
|
|
*/
|
|
estate->es_direction = direction;
|
|
|
|
if (IS_PGXC_DATANODE) {
|
|
/* Collect Executor run time including sending data time */
|
|
if (estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr) {
|
|
stream_instrument = true;
|
|
int plan_id = planstate->plan->plan_node_id;
|
|
u_sess->instr_cxt.global_instr->SetStreamSend(plan_id, true);
|
|
}
|
|
|
|
/* Collect Material for Subplan first */
|
|
ExecCollectMaterialForSubplan(estate);
|
|
}
|
|
|
|
/*
|
|
* Loop until we've processed the proper number of tuples from the plan.
|
|
*/
|
|
for (;;) {
|
|
/* Reset the per-output-tuple exprcontext */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
/*
|
|
* Execute the plan and obtain a tuple
|
|
*/
|
|
batch = VectorEngine(planstate);
|
|
|
|
/*
|
|
* if the tuple is null, then we assume there is nothing more to
|
|
* process so we just end the loop...
|
|
*/
|
|
if (BatchIsNull(batch)) {
|
|
ExecEarlyFree(planstate);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we have a junk filter, then project a new tuple with the junk
|
|
* removed.
|
|
*
|
|
* Store this new "clean" tuple in the junkfilter's resultSlot.
|
|
* (Formerly, we stored it back over the "dirty" tuple, which is WRONG
|
|
* because that tuple slot has the wrong descriptor.)
|
|
*/
|
|
#ifdef ENABLE_MULTIPLE_NDOES
|
|
if (estate->es_junkFilter != NULL && !StreamTopConsumerAmI() && !StreamThreadAmI()) {
|
|
#else
|
|
if (estate->es_junkFilter != NULL && !StreamThreadAmI()) {
|
|
#endif
|
|
BatchExecFilterJunk(estate->es_junkFilter, batch);
|
|
}
|
|
|
|
|
|
if (stream_instrument) {
|
|
t_thrd.pgxc_cxt.GlobalNetInstr = planstate->instrument;
|
|
}
|
|
|
|
/*
|
|
* If we are supposed to send the tuple somewhere, do so. (In
|
|
* practice, this is probably always the case at this point.)
|
|
*/
|
|
if (sendTuples && !u_sess->exec_cxt.executorStopFlag) {
|
|
(*dest->sendBatch)(batch, dest);
|
|
}
|
|
|
|
t_thrd.pgxc_cxt.GlobalNetInstr = NULL;
|
|
|
|
/*
|
|
* Count tuples processed, if this is a SELECT. (For other operation
|
|
* types, the ModifyTable plan node must count the appropriate
|
|
* events.)
|
|
*/
|
|
if (operation == CMD_SELECT) {
|
|
estate->es_processed += batch->m_rows;
|
|
}
|
|
|
|
/*
|
|
* check our tuple count.. if we've processed the proper number then
|
|
* quit, else loop again and process more tuples. Zero numberTuples
|
|
* means no limit.
|
|
*/
|
|
current_tuple_count += batch->m_rows;
|
|
if (numberTuples && numberTuples == current_tuple_count) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if current plan is working for expression, no need to collect instrumentation.
|
|
*/
|
|
if (estate->es_instrument != INSTRUMENT_NONE && u_sess->instr_cxt.global_instr && StreamTopConsumerAmI()) {
|
|
int64 peak_memory = (uint64)(t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->peakChunksQuery -
|
|
t_thrd.shemem_ptr_cxt.mySessionMemoryEntry->initMemInChunks)
|
|
<< (chunkSizeInBits - BITS_IN_MB);
|
|
u_sess->instr_cxt.global_instr->SetPeakNodeMemory(planstate->plan->plan_node_id, peak_memory);
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct {
|
|
Bitmapset* varattno;
|
|
} Chk_modify_varattno_context;
|
|
|
|
static bool check_modify_varattno_walker(Node* node, Chk_modify_varattno_context* context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
|
|
if (IsA(node, Var)) {
|
|
Var* var = (Var*)node;
|
|
return bms_is_member(var->varattno - FirstLowInvalidHeapAttributeNumber, context->varattno);
|
|
}
|
|
return expression_tree_walker(node, (bool (*)())check_modify_varattno_walker, (void*)context);
|
|
}
|
|
|
|
/*
|
|
* ExecRelCheck --- check that tuple meets constraints for result relation
|
|
*/
|
|
static const char *ExecRelCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
int ncheck = rel->rd_att->constr->num_check;
|
|
ConstrCheck *check = rel->rd_att->constr->check;
|
|
ExprContext *econtext = NULL;
|
|
MemoryContext oldContext;
|
|
List *qual = NIL;
|
|
int i;
|
|
|
|
/*
|
|
* If first time through for this result relation, build expression
|
|
* nodetrees for rel's constraint expressions. Keep them in the per-query
|
|
* memory context so they'll survive throughout the query.
|
|
*/
|
|
if (resultRelInfo->ri_ConstraintExprs == NULL) {
|
|
oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
resultRelInfo->ri_ConstraintExprs = (List **)palloc(ncheck * sizeof(List *));
|
|
for (i = 0; i < ncheck; i++) {
|
|
|
|
if (estate->es_is_flt_frame){
|
|
resultRelInfo->ri_ConstraintExprs[i] = (List*)ExecPrepareExpr((Expr*)stringToNode(check[i].ccbin), estate);
|
|
} else {
|
|
qual = make_ands_implicit((Expr*)stringToNode(check[i].ccbin));
|
|
resultRelInfo->ri_ConstraintExprs[i] = (List*)ExecPrepareExpr((Expr *)qual,estate);
|
|
}
|
|
}
|
|
(void)MemoryContextSwitchTo(oldContext);
|
|
}
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* And evaluate the constraints */
|
|
for (i = 0; i < ncheck; i++) {
|
|
qual = resultRelInfo->ri_ConstraintExprs[i];
|
|
|
|
/*
|
|
* NOTE: SQL92 specifies that a NULL result from a constraint
|
|
* expression is not to be treated as a failure. Therefore, tell
|
|
* ExecQual to return TRUE for NULL.
|
|
*/
|
|
if(check[i].ccdisable && false == check[i].ccvalid)
|
|
continue;
|
|
else if(check[i].ccdisable && check[i].ccvalid) {
|
|
Bitmapset *insertedCols = NULL;
|
|
Bitmapset *updatedCols = NULL;
|
|
Bitmapset *modifiedCols = NULL;
|
|
ListCell* l = NULL;
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
Chk_modify_varattno_context chk_context;
|
|
chk_context.varattno = modifiedCols;
|
|
foreach (l, qual) {
|
|
ExprState *clause = (ExprState*)lfirst(l);
|
|
if(expression_tree_walker((Node *)clause->expr, (bool(*)())check_modify_varattno_walker, (void *)&chk_context)) {
|
|
ereport(ERROR,
|
|
(errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("forbid DML because relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(rel), check[i].ccname)));
|
|
}
|
|
}
|
|
}else {
|
|
if (estate->es_is_flt_frame){
|
|
if (!ExecCheckByFlatten((ExprState*)qual, econtext)){
|
|
return check[i].ccname;
|
|
}
|
|
} else {
|
|
if (!ExecQual(qual, econtext, true)){
|
|
return check[i].ccname;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* NULL result means no error */
|
|
return NULL;
|
|
}
|
|
|
|
void CheckIndexDisableValid(ResultRelInfo* result_rel_info, EState *estate)
|
|
{
|
|
Relation rel = result_rel_info->ri_RelationDesc;
|
|
CatCList* catlist = NULL;
|
|
HeapTuple tuple;
|
|
Form_pg_constraint con = NULL;
|
|
|
|
catlist = SearchSysCacheList1(CONSTRRELID, ObjectIdGetDatum(RelationGetRelid(rel)));
|
|
if (!catlist)
|
|
return;
|
|
|
|
Relation pg_constraint;
|
|
pg_constraint = heap_open(ConstraintRelationId, NoLock);
|
|
for (int i = 0; i < catlist->n_members; i++) {
|
|
tuple = t_thrd.lsc_cxt.FetchTupleFromCatCList(catlist, i);
|
|
if(HeapTupleIsValid(tuple)){
|
|
con = (Form_pg_constraint)GETSTRUCT(tuple);
|
|
bool isNull = true;
|
|
Datum datum = heap_getattr(tuple, Anum_pg_constraint_condisable, RelationGetDescr(pg_constraint), &isNull);
|
|
bool condisable = DatumGetBool(datum);
|
|
if (con->convalidated && condisable) {
|
|
bool overlap = false;
|
|
if (estate->es_plannedstmt->commandType == CMD_DELETE)
|
|
overlap = true;
|
|
else if (OidIsValid(con->conindid)) {
|
|
Relation indexRel = relation_open(con->conindid, RowExclusiveLock);
|
|
IndexInfo* indexInfo = BuildIndexInfo(indexRel);
|
|
Bitmapset *indexattrs = IndexGetAttrBitmap(indexRel, indexInfo);
|
|
relation_close(indexRel, RowExclusiveLock);
|
|
Bitmapset *insertedCols = NULL;
|
|
Bitmapset *updatedCols = NULL;
|
|
Bitmapset *modifiedCols = NULL;
|
|
insertedCols = GetInsertedColumns(result_rel_info, estate);
|
|
updatedCols = GetUpdatedColumns(result_rel_info, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
overlap = bms_overlap(indexattrs, modifiedCols);
|
|
pfree(indexInfo);
|
|
bms_free(indexattrs);
|
|
bms_free(modifiedCols);
|
|
}
|
|
if (overlap)
|
|
ereport(ERROR,
|
|
(errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("forbid DML because relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(rel), NameStr(con->conname))));
|
|
}
|
|
}
|
|
}
|
|
heap_close(pg_constraint, NoLock);
|
|
ReleaseSysCacheList(catlist);
|
|
}
|
|
|
|
void CheckDisableValidateConstr(ResultRelInfo *resultRelInfo)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
int ncheck = rel->rd_att->constr->num_check;
|
|
ConstrCheck *check = rel->rd_att->constr->check;
|
|
int i = 0;
|
|
for (; i < ncheck; i++) {
|
|
if (check[i].ccdisable == check[i].cctype) {
|
|
ereport(ERROR,
|
|
(errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("forbid DML because relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(rel), check[i].ccname)));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ExecConstraints(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate, bool skipAutoInc,
|
|
bool replaceNull)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
TupleConstr *constr = tupdesc->constr;
|
|
Bitmapset *modifiedCols = NULL;
|
|
Bitmapset *insertedCols = NULL;
|
|
Bitmapset *updatedCols = NULL;
|
|
int maxfieldlen = 64;
|
|
|
|
Assert(constr);
|
|
|
|
/* Get the Table Accessor Method*/
|
|
Assert(slot != NULL && slot->tts_tupleDescriptor != NULL);
|
|
if (constr->has_not_null) {
|
|
int natts = tupdesc->natts;
|
|
int attrChk;
|
|
|
|
for (attrChk = 1; attrChk <= natts; attrChk++) {
|
|
if (tupdesc->attrs[attrChk - 1].attnotnull && tableam_tslot_attisnull(slot, attrChk)) {
|
|
/* Skip auto_increment attribute not null check, ExecAutoIncrement will deal with it. */
|
|
if (skipAutoInc && constr->cons_autoinc && constr->cons_autoinc->attnum == attrChk) {
|
|
continue;
|
|
}
|
|
char *val_desc = NULL;
|
|
bool rel_masked = u_sess->attr.attr_security.Enable_Security_Policy &&
|
|
is_masked_relation_enabled(RelationGetRelid(rel));
|
|
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
if (!rel_masked) {
|
|
val_desc =
|
|
ExecBuildSlotValueDescription(RelationGetRelid(rel), slot, tupdesc, modifiedCols, maxfieldlen);
|
|
}
|
|
|
|
bool can_ignore = (estate->es_plannedstmt && estate->es_plannedstmt->hasIgnore) || replaceNull;
|
|
ereport(can_ignore ? WARNING : ERROR, (errcode(ERRCODE_NOT_NULL_VIOLATION),
|
|
errmsg("null value in column \"%s\" violates not-null constraint",
|
|
NameStr(tupdesc->attrs[attrChk - 1].attname)),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0));
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (constr->num_check == 0) {
|
|
return true;
|
|
}
|
|
|
|
const char *failed = ExecRelCheck(resultRelInfo, slot, estate);
|
|
if (failed == NULL) {
|
|
return true;
|
|
}
|
|
|
|
char *val_desc = NULL;
|
|
bool rel_masked = u_sess->attr.attr_security.Enable_Security_Policy &&
|
|
is_masked_relation_enabled(RelationGetRelid(rel));
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
if (!rel_masked) {
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), slot, tupdesc, modifiedCols, maxfieldlen);
|
|
}
|
|
/* client_min_messages < NOTICE show error details. */
|
|
if (client_min_messages < NOTICE) {
|
|
ereport(ERROR,
|
|
(errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(rel), failed),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
|
|
errcause("some rows copy failed"),
|
|
erraction("check table defination")));
|
|
} else {
|
|
ereport(ERROR,
|
|
(errmodule(MOD_EXECUTOR), errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(rel), failed),
|
|
errdetail("N/A"),
|
|
errcause("some rows copy failed"),
|
|
erraction("set client_min_messages = info for more details")));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs
|
|
*/
|
|
void ExecWithCheckOptions(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
ExprContext* econtext = NULL;
|
|
ListCell *l1 = NULL, *l2 = NULL;
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* Check each of the constraints */
|
|
forboth (l1, resultRelInfo->ri_WithCheckOptions, l2, resultRelInfo->ri_WithCheckOptionExprs) {
|
|
WithCheckOption* wco = (WithCheckOption*)lfirst(l1);
|
|
ExprState* wcoExpr = (ExprState*)lfirst(l2);
|
|
Bitmapset* modifiedCols = NULL;
|
|
Bitmapset *insertedCols = NULL;
|
|
Bitmapset *updatedCols = NULL;
|
|
char* val_desc = NULL;
|
|
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
|
|
/*
|
|
* WITH CHECK OPTION checks are intended to ensure that the new tuple
|
|
* is visible in the view. If the view's qual evaluates to NULL, then
|
|
* the new tuple won't be included in the view. Therefore we need to
|
|
* tell ExecQual to return FALSE for NULL (the opposite of what we do
|
|
* above for CHECK constraints).
|
|
*/
|
|
if (!ExecQual((List*)wcoExpr, econtext, false))
|
|
ereport(ERROR, (errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION),
|
|
errmsg("new row violates WITH CHECK OPTION for view \"%s\"", wco->viewname),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecBuildSlotValueDescription -- construct a string representing a tuple
|
|
*
|
|
* This is intentionally very similar to BuildIndexValueDescription, but
|
|
* unlike that function, we truncate long field values (to at most maxfieldlen
|
|
* bytes). That seems necessary here since heap field values could be very
|
|
* long, whereas index entries typically aren't so wide.
|
|
*
|
|
* Also, unlike the case with index entries, we need to be prepared to ignore
|
|
* dropped columns. We used to use the slot's tuple descriptor to decode the
|
|
* data, but the slot's descriptor doesn't identify dropped columns, so we
|
|
* now need to be passed the relation's descriptor.
|
|
*
|
|
* Note that, like BuildIndexValueDescription, if the user does not have
|
|
* permission to view any of the columns involved, a NULL is returned. Unlike
|
|
* BuildIndexValueDescription, if the user has access to view a subset of the
|
|
* column involved, that subset will be returned with a key identifying which
|
|
* columns they are.
|
|
*/
|
|
char *ExecBuildSlotValueDescription(Oid reloid, TupleTableSlot *slot, TupleDesc tupdesc, Bitmapset *modifiedCols,
|
|
int maxfieldlen)
|
|
{
|
|
StringInfoData buf;
|
|
StringInfoData collist;
|
|
bool write_comma = false;
|
|
bool write_comma_collist = false;
|
|
int i;
|
|
|
|
AclResult aclresult;
|
|
bool table_perm = false;
|
|
bool any_perm = false;
|
|
|
|
initStringInfo(&buf);
|
|
|
|
appendStringInfoChar(&buf, '(');
|
|
|
|
/*
|
|
* Check if the user has permissions to see the row. Table-level SELECT
|
|
* allows access to all columns. If the user does not have table-level
|
|
* SELECT then we check each column and include those the user has SELECT
|
|
* rights on. Additionally, we always include columns the user provided
|
|
* data for.
|
|
*/
|
|
aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK) {
|
|
/* Set up the buffer for the column list */
|
|
initStringInfo(&collist);
|
|
appendStringInfoChar(&collist, '(');
|
|
} else {
|
|
table_perm = any_perm = true;
|
|
}
|
|
|
|
/* Make sure the tuple is fully deconstructed */
|
|
|
|
/* Get the Table Accessor Method*/
|
|
Assert(slot != NULL && slot->tts_tupleDescriptor != NULL);
|
|
tableam_tslot_getallattrs(slot);
|
|
|
|
for (i = 0; i < tupdesc->natts; i++) {
|
|
bool column_perm = false;
|
|
char *val = NULL;
|
|
int vallen;
|
|
|
|
/* ignore dropped columns */
|
|
if (tupdesc->attrs[i].attisdropped) {
|
|
continue;
|
|
}
|
|
|
|
if (!table_perm) {
|
|
/*
|
|
* No table-level SELECT, so need to make sure they either have
|
|
* SELECT rights on the column or that they have provided the
|
|
* data for the column. If not, omit this column from the error
|
|
* message.
|
|
*/
|
|
aclresult = pg_attribute_aclcheck(reloid, tupdesc->attrs[i].attnum, GetUserId(), ACL_SELECT);
|
|
if (bms_is_member(tupdesc->attrs[i].attnum - FirstLowInvalidHeapAttributeNumber, modifiedCols) ||
|
|
aclresult == ACLCHECK_OK) {
|
|
column_perm = any_perm = true;
|
|
|
|
if (write_comma_collist) {
|
|
appendStringInfoString(&collist, ", ");
|
|
} else {
|
|
write_comma_collist = true;
|
|
}
|
|
|
|
appendStringInfoString(&collist, NameStr(tupdesc->attrs[i].attname));
|
|
}
|
|
}
|
|
|
|
if (table_perm || column_perm) {
|
|
if (slot->tts_isnull[i]) {
|
|
val = "null";
|
|
} else {
|
|
Oid foutoid;
|
|
bool typisvarlena = false;
|
|
|
|
getTypeOutputInfo(tupdesc->attrs[i].atttypid, &foutoid, &typisvarlena);
|
|
val = OidOutputFunctionCall(foutoid, slot->tts_values[i]);
|
|
}
|
|
|
|
if (write_comma) {
|
|
appendStringInfoString(&buf, ", ");
|
|
} else {
|
|
write_comma = true;
|
|
}
|
|
|
|
/* truncate if needed */
|
|
vallen = strlen(val);
|
|
if (vallen <= maxfieldlen) {
|
|
appendStringInfoString(&buf, val);
|
|
} else {
|
|
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
appendStringInfoString(&buf, "...");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we end up with zero columns being returned, then return NULL. */
|
|
if (!any_perm) {
|
|
return NULL;
|
|
}
|
|
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
if (!table_perm) {
|
|
appendStringInfoString(&collist, ") = ");
|
|
appendStringInfoString(&collist, buf.data);
|
|
|
|
return collist.data;
|
|
}
|
|
|
|
return buf.data;
|
|
}
|
|
|
|
/*
|
|
* ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
|
|
*/
|
|
ExecRowMark *ExecFindRowMark(EState *estate, Index rti)
|
|
{
|
|
ListCell *lc = NULL;
|
|
|
|
foreach (lc, estate->es_rowMarks) {
|
|
ExecRowMark *erm = (ExecRowMark *)lfirst(lc);
|
|
|
|
if (erm->rti == rti) {
|
|
return erm;
|
|
}
|
|
}
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FETCH_DATA_FAILED), errmsg("failed to find ExecRowMark for rangetable index %u", rti)));
|
|
return NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
/*
|
|
* ExecBuildAuxRowMark -- create an ExecAuxRowMark struct
|
|
*
|
|
* Inputs are the underlying ExecRowMark struct and the targetlist of the
|
|
* input plan node (not planstate node!). We need the latter to find out
|
|
* the column numbers of the resjunk columns.
|
|
*/
|
|
ExecAuxRowMark *ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist)
|
|
{
|
|
ExecAuxRowMark *aerm = (ExecAuxRowMark *)palloc0(sizeof(ExecAuxRowMark));
|
|
char resname[32];
|
|
errno_t rc = 0;
|
|
|
|
aerm->rowmark = erm;
|
|
|
|
/* Look up the resjunk columns associated with this rowmark */
|
|
if (erm->relation) {
|
|
Assert(erm->markType != ROW_MARK_COPY);
|
|
|
|
/* if child rel, need tableoid */
|
|
if (erm->rti != erm->prti || RelationIsPartitioned(erm->relation)) {
|
|
rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "tableoid%u", erm->rowmarkId);
|
|
securec_check_ss(rc, "\0", "\0");
|
|
|
|
aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist, resname);
|
|
if (!AttributeNumberIsValid(aerm->toidAttNo)) {
|
|
ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE),
|
|
errmsg("could not find tableoid junk %s column when build RowMark", resname)));
|
|
}
|
|
}
|
|
|
|
if (RELATION_OWN_BUCKET(erm->relation)) {
|
|
rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "tablebucketid%u", erm->rowmarkId);
|
|
securec_check_ss(rc, "\0", "\0");
|
|
aerm->tbidAttNo = ExecFindJunkAttributeInTlist(targetlist, resname);
|
|
if (!AttributeNumberIsValid(aerm->tbidAttNo)) {
|
|
ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE),
|
|
errmsg("could not find bucketid junk %s column when build RowMark", resname)));
|
|
}
|
|
}
|
|
/* always need ctid for real relations */
|
|
rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "ctid%u", erm->rowmarkId);
|
|
securec_check_ss(rc, "\0", "\0");
|
|
|
|
aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist, resname);
|
|
if (!AttributeNumberIsValid(aerm->ctidAttNo)) {
|
|
ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE),
|
|
errmsg("could not find ctid junk %s column when build RowMark", resname)));
|
|
}
|
|
} else {
|
|
Assert(erm->markType == ROW_MARK_COPY || erm->markType == ROW_MARK_COPY_DATUM);
|
|
|
|
rc = snprintf_s(resname, sizeof(resname), sizeof(resname) - 1, "wholerow%u", erm->rowmarkId);
|
|
securec_check_ss(rc, "\0", "\0");
|
|
|
|
aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist, resname);
|
|
if (!AttributeNumberIsValid(aerm->wholeAttNo)) {
|
|
ereport(ERROR, (errcode(ERRCODE_NULL_JUNK_ATTRIBUTE),
|
|
errmsg("could not find whole-row junk %s column when build RowMark", resname)));
|
|
}
|
|
}
|
|
|
|
return aerm;
|
|
}
|
|
|
|
TupleTableSlot *EvalPlanQualUHeap(EState *estate, EPQState *epqstate, Relation relation, Index rti, ItemPointer tid,
|
|
TransactionId priorXmax)
|
|
{
|
|
TupleTableSlot *slot = NULL;
|
|
UHeapTuple copyTuple = NULL;
|
|
|
|
Assert(rti > 0);
|
|
|
|
copyTuple =
|
|
UHeapLockUpdated(estate->es_output_cid, relation, LockTupleExclusive, tid, priorXmax, estate->es_snapshot);
|
|
|
|
if (copyTuple == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
Assert(copyTuple->tupTableType = UHEAP_TUPLE);
|
|
|
|
*tid = copyTuple->ctid;
|
|
|
|
EvalPlanQualBegin(epqstate, estate);
|
|
|
|
EvalPlanQualSetTuple(epqstate, rti, copyTuple);
|
|
|
|
EvalPlanQualFetchRowMarks(epqstate);
|
|
|
|
slot = EvalPlanQualNext(epqstate);
|
|
|
|
// materialize the slot
|
|
if (!TupIsNull(slot)) {
|
|
ExecGetUHeapTupleFromSlot(slot);
|
|
}
|
|
|
|
EvalPlanQualSetTuple(epqstate, rti, NULL);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQual logic --- recheck modified tuple(s) to see if we want to
|
|
* process the updated version under READ COMMITTED rules.
|
|
*
|
|
* See gausskernel/runtime/executor/README for some info about how this works.
|
|
*
|
|
* Check a modified tuple to see if we want to process its updated version
|
|
* under READ COMMITTED rules.
|
|
*
|
|
* estate - outer executor state data
|
|
* epqstate - state for EvalPlanQual rechecking
|
|
* relation - table containing tuple
|
|
* rti - rangetable index of table containing tuple
|
|
* lockmode - requested tuple lock mode
|
|
* *tid - t_ctid from the outdated tuple (ie, next updated version)
|
|
* priorXmax - t_xmax from the outdated tuple
|
|
*
|
|
* *tid is also an output parameter: it's modified to hold the TID of the
|
|
* latest version of the tuple (note this may be changed even on failure)
|
|
*
|
|
* Returns a slot containing the new candidate update/delete tuple, or
|
|
* NULL if we determine we shouldn't process the row.
|
|
*
|
|
* Note: properly, lockmode should be declared as enum LockTupleMode,
|
|
* but we use "int" to avoid having to include heapam.h in executor.h.
|
|
*/
|
|
TupleTableSlot *EvalPlanQual(EState *estate, EPQState *epqstate, Relation relation, Index rti, int lockmode,
|
|
ItemPointer tid, TransactionId priorXmax, bool partRowMoveUpdate)
|
|
{
|
|
TupleTableSlot *slot = NULL;
|
|
Tuple copyTuple;
|
|
|
|
Assert(rti > 0);
|
|
|
|
/*
|
|
* Get and lock the updated version of the row; if fail, return NULL.
|
|
*/
|
|
copyTuple = tableam_tuple_lock_updated(estate->es_output_cid, relation, lockmode, tid, priorXmax,
|
|
estate->es_snapshot);
|
|
|
|
if (copyTuple == NULL) {
|
|
/*
|
|
* The tuple has been deleted or update in row movement case.
|
|
*/
|
|
if (partRowMoveUpdate) {
|
|
/*
|
|
* the may be a row movement update action which delete tuple from original
|
|
* partition and insert tuple to new partition or we can add lock on the tuple
|
|
* to be delete or updated to avoid throw exception.
|
|
*/
|
|
ereport(ERROR, (errcode(ERRCODE_TRANSACTION_ROLLBACK),
|
|
errmsg("partition table update conflict"),
|
|
errdetail("disable row movement of table can avoid this conflict")));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* For UPDATE/DELETE we have to return tid of actual row we're executing
|
|
* PQ for.
|
|
*/
|
|
*tid = ((HeapTuple)copyTuple)->t_self;
|
|
|
|
/*
|
|
* Need to run a recheck subquery. Initialize or reinitialize EPQ state.
|
|
*/
|
|
EvalPlanQualBegin(epqstate, estate);
|
|
|
|
/*
|
|
* Free old test tuple, if any, and store new tuple where relation's scan
|
|
* node will see it
|
|
*/
|
|
EvalPlanQualSetTuple(epqstate, rti, copyTuple);
|
|
|
|
/*
|
|
* Fetch any non-locked source rows
|
|
*/
|
|
EvalPlanQualFetchRowMarks(epqstate);
|
|
|
|
/*
|
|
* Run the EPQ query. We assume it will return at most one tuple.
|
|
*/
|
|
slot = EvalPlanQualNext(epqstate);
|
|
|
|
/*
|
|
* If we got a tuple, force the slot to materialize the tuple so that it
|
|
* is not dependent on any local state in the EPQ query (in particular,
|
|
* it's highly likely that the slot contains references to any pass-by-ref
|
|
* datums that may be present in copyTuple). As with the next step, this
|
|
* is to guard against early re-use of the EPQ query.
|
|
*/
|
|
if (!TupIsNull(slot)) {
|
|
(void)tableam_tslot_get_tuple_from_slot(relation, slot);
|
|
}
|
|
|
|
/*
|
|
* Clear out the test tuple. This is needed in case the EPQ query is
|
|
* re-used to test a tuple for a different relation. (Not clear that can
|
|
* really happen, but let's be safe.)
|
|
*/
|
|
EvalPlanQualSetTuple(epqstate, rti, NULL);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* Fetch a copy of the newest version of an outdated tuple
|
|
*
|
|
* cid - command ID
|
|
* relation - table containing tuple
|
|
* lockmode - requested tuple lock mode
|
|
* *tid - t_ctid from the outdated tuple (ie, next updated version)
|
|
* priorXmax - t_xmax from the outdated tuple
|
|
*
|
|
* Returns a palloc'd copy of the newest tuple version, or NULL if we find
|
|
* that there is no newest version (ie, the row was deleted not updated).
|
|
* If successful, we have locked the newest tuple version, so caller does not
|
|
* need to worry about it changing anymore.
|
|
*
|
|
* Note: properly, lockmode should be declared as enum LockTupleMode,
|
|
* but we use "int" to avoid having to include heapam.h in executor.h.
|
|
*/
|
|
HeapTuple heap_lock_updated(CommandId cid, Relation relation, int lockmode, ItemPointer tid, TransactionId priorXmax)
|
|
{
|
|
HeapTuple copyTuple = NULL;
|
|
HeapTupleData tuple;
|
|
SnapshotData SnapshotDirty;
|
|
union {
|
|
HeapTupleHeaderData hdr;
|
|
char data[MaxHeapTupleSize + sizeof(HeapTupleHeaderData)];
|
|
} tbuf;
|
|
errno_t errorno = EOK;
|
|
errorno = memset_s(&tbuf, sizeof(tbuf), 0, sizeof(tbuf));
|
|
securec_check(errorno, "\0", "\0");
|
|
|
|
/*
|
|
* fetch target tuple
|
|
*
|
|
* Loop here to deal with updated or busy tuples
|
|
*/
|
|
InitDirtySnapshot(SnapshotDirty);
|
|
tuple.t_self = *tid;
|
|
tuple.t_data = &(tbuf.hdr);
|
|
for (;;) {
|
|
Buffer buffer;
|
|
bool fetched = tableam_tuple_fetch(relation, &SnapshotDirty, &tuple, &buffer, true, NULL);
|
|
|
|
if (fetched) {
|
|
TM_Result test;
|
|
TM_FailureData tmfd;
|
|
|
|
HeapTupleCopyBaseFromPage(&tuple, BufferGetPage(buffer));
|
|
|
|
/*
|
|
* If xmin isn't what we're expecting, the slot must have been
|
|
* recycled and reused for an unrelated tuple. This implies that
|
|
* the latest version of the row was deleted, so we need do
|
|
* nothing. (Should be safe to examine xmin without getting
|
|
* buffer's content lock, since xmin never changes in an existing
|
|
* tuple.)
|
|
*/
|
|
if (!TransactionIdEquals(HeapTupleGetRawXmin(&tuple), priorXmax)) {
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/* otherwise xmin should not be dirty... */
|
|
if (TransactionIdIsValid(SnapshotDirty.xmin)) {
|
|
/*
|
|
* for transaction's commit, it is first set csnlog, and then
|
|
* removed from procarray, once the csnlog is set, the parent xid
|
|
* ismissing from the sub xid's csnlog, so you may not wait the top
|
|
* parent xid until it is removed from procarray for this
|
|
* condition. So we add a check here and retune the xmin to
|
|
* invalid if it is already committed.
|
|
*/
|
|
if (TransactionIdDidCommit(SnapshotDirty.xmin)) {
|
|
elog(DEBUG2,
|
|
"t_xmin %lu is committed in clog, but still"
|
|
" in procarray, so set it back to invalid.",
|
|
SnapshotDirty.xmin);
|
|
SnapshotDirty.xmin = InvalidTransactionId;
|
|
} else {
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TRANSACTION_STATE),
|
|
errmsg("t_xmin is uncommitted in tuple to be updated")));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If tuple is being updated by other transaction then we have to
|
|
* wait for its commit/abort.
|
|
*/
|
|
if (TransactionIdIsValid(SnapshotDirty.xmax)) {
|
|
ReleaseBuffer(buffer);
|
|
|
|
if (!u_sess->attr.attr_common.allow_concurrent_tuple_update)
|
|
ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("abort transaction due to concurrent update"),
|
|
errhint("Try to turn on GUC allow_concurrent_tuple_update if concurrent update is expected.")));
|
|
XactLockTableWait(SnapshotDirty.xmax);
|
|
continue; /* loop back to repeat heap_fetch */
|
|
}
|
|
|
|
/*
|
|
* If tuple was inserted by our own transaction, we have to check
|
|
* cmin against es_output_cid: cmin >= current CID means our
|
|
* command cannot see the tuple, so we should ignore it. Without
|
|
* this we are open to the "Halloween problem" of indefinitely
|
|
* re-updating the same tuple. (We need not check cmax because
|
|
* HeapTupleSatisfiesDirty will consider a tuple deleted by our
|
|
* transaction dead, regardless of cmax.) We just checked that
|
|
* priorXmax == xmin, so we can test that variable instead of
|
|
* doing HeapTupleHeaderGetXmin again.
|
|
*/
|
|
if (TransactionIdIsCurrentTransactionId(priorXmax) &&
|
|
HeapTupleHeaderGetCmin(tuple.t_data, BufferGetPage(buffer)) >= cid) {
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This is a live tuple, so now try to lock it.
|
|
*/
|
|
test = tableam_tuple_lock(relation, &tuple, &buffer,
|
|
cid, (LockTupleMode)lockmode, LockWaitBlock, &tmfd,
|
|
false, false, false,InvalidSnapshot, NULL, false);
|
|
/* We now have two pins on the buffer, get rid of one */
|
|
ReleaseBuffer(buffer);
|
|
|
|
switch (test) {
|
|
case TM_SelfCreated:
|
|
ReleaseBuffer(buffer);
|
|
ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("attempted to lock invisible tuple")));
|
|
break;
|
|
case TM_SelfModified:
|
|
/* treat it as deleted; do not process */
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
|
|
case TM_Ok:
|
|
/* successfully locked */
|
|
break;
|
|
|
|
case TM_Updated:
|
|
ReleaseBuffer(buffer);
|
|
if (IsolationUsesXactSnapshot()) {
|
|
ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("could not serialize access due to concurrent update")));
|
|
}
|
|
|
|
Assert(!ItemPointerEquals(&tmfd.ctid, &tuple.t_self));
|
|
/* it was updated, so look at the updated version */
|
|
tuple.t_self = tmfd.ctid;
|
|
/* updated row should have xmin matching this xmax */
|
|
priorXmax = tmfd.xmax;
|
|
continue;
|
|
break; /* keep compiler quiet */
|
|
|
|
case TM_Deleted:
|
|
ReleaseBuffer(buffer);
|
|
if (IsolationUsesXactSnapshot()) {
|
|
ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("could not serialize access due to concurrent update")));
|
|
}
|
|
|
|
Assert(ItemPointerEquals(&tmfd.ctid, &tuple.t_self));
|
|
/* tuple was deleted, so give up */
|
|
return NULL;
|
|
|
|
default:
|
|
ReleaseBuffer(buffer);
|
|
ereport(ERROR, (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
|
|
errmsg("unrecognized heap_lock_tuple status: %u", test)));
|
|
return NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
/*
|
|
* We got tuple - now copy it for use by recheck query.
|
|
*/
|
|
copyTuple = (HeapTuple)tableam_tops_copy_tuple(&tuple);
|
|
ReleaseBuffer(buffer);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the referenced slot was actually empty, the latest version of
|
|
* the row must have been deleted, so we need do nothing.
|
|
*/
|
|
/*
|
|
* As above, if xmin isn't what we're expecting, do nothing.
|
|
*/
|
|
/*
|
|
* If we get here, the tuple was found but failed SnapshotDirty.
|
|
* Assuming the xmin is either a committed xact or our own xact (as it
|
|
* certainly should be if we're trying to modify the tuple), this must
|
|
* mean that the row was updated or deleted by either a committed xact
|
|
* or our own xact. If it was deleted, we can ignore it; if it was
|
|
* updated then chain up to the next version and repeat the whole
|
|
* process.
|
|
*
|
|
* As above, it should be safe to examine xmax and t_ctid without the
|
|
* buffer content lock, because they can't be changing.
|
|
*/
|
|
bool is_null = tuple.t_data == NULL ||
|
|
!TransactionIdEquals(HeapTupleGetRawXmin(&tuple), priorXmax) ||
|
|
ItemPointerEquals(&tuple.t_self, &tuple.t_data->t_ctid);
|
|
if (is_null) {
|
|
/* deleted, so forget about it */
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/* updated, so look at the updated row */
|
|
tuple.t_self = tuple.t_data->t_ctid;
|
|
/* updated row should have xmin matching this xmax */
|
|
priorXmax = HeapTupleGetUpdateXid(&tuple);
|
|
ReleaseBuffer(buffer);
|
|
/* loop back to fetch next in chain */
|
|
}
|
|
|
|
/*
|
|
* Return the copied tuple
|
|
*/
|
|
return copyTuple;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualInit -- initialize during creation of a plan state node
|
|
* that might need to invoke EPQ processing.
|
|
*
|
|
* Note: subplan/auxrowmarks can be NULL/NIL if they will be set later
|
|
* with EvalPlanQualSetPlan. projInfos is used for Multiple-Modify to
|
|
* fetch the slot corresponding to the target table.
|
|
*/
|
|
void EvalPlanQualInit(EPQState *epqstate, EState *estate, Plan *subplan, List *auxrowmarks, int epqParam,
|
|
ProjectionInfo** projInfos)
|
|
{
|
|
/* Mark the EPQ state inactive */
|
|
epqstate->estate = NULL;
|
|
epqstate->planstate = NULL;
|
|
epqstate->origslot = NULL;
|
|
/* ... and remember data that EvalPlanQualBegin will need */
|
|
epqstate->plan = subplan;
|
|
epqstate->arowMarks = auxrowmarks;
|
|
epqstate->epqParam = epqParam;
|
|
epqstate->parentestate = estate;
|
|
epqstate->projInfos = projInfos;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualSetPlan -- set or change subplan of an EPQState.
|
|
*
|
|
* We need this so that ModifyTuple can deal with multiple subplans.
|
|
*/
|
|
void EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
|
|
{
|
|
/* If we have a live EPQ query, shut it down */
|
|
EvalPlanQualEnd(epqstate);
|
|
/* And set/change the plan pointer */
|
|
epqstate->plan = subplan;
|
|
/* The rowmarks depend on the plan, too */
|
|
epqstate->arowMarks = auxrowmarks;
|
|
}
|
|
|
|
/*
|
|
* Install one test tuple into EPQ state, or clear test tuple if tuple == NULL
|
|
*
|
|
* NB: passed tuple must be palloc'd; it may get freed later
|
|
*/
|
|
void EvalPlanQualSetTuple(EPQState *epqstate, Index rti, Tuple tuple)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
Assert(rti > 0);
|
|
|
|
/*
|
|
* free old test tuple, if any, and store new tuple where relation's scan
|
|
* node will see it
|
|
*/
|
|
if (estate->es_epqTuple[rti - 1] != NULL) {
|
|
tableam_tops_free_tuple(estate->es_epqTuple[rti - 1]);
|
|
}
|
|
estate->es_epqTuple[rti - 1] = tuple;
|
|
estate->es_epqTupleSet[rti - 1] = true;
|
|
}
|
|
|
|
/*
|
|
* Fetch back the current test tuple (if any) for the specified RTI
|
|
*/
|
|
Tuple EvalPlanQualGetTuple(EPQState *epqstate, Index rti)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
Assert(rti > 0);
|
|
return estate->es_epqTuple[rti - 1];
|
|
}
|
|
|
|
/*
|
|
* Return, and create if necessary, a slot for an EPQ test tuple.
|
|
*/
|
|
TupleTableSlot *EvalPlanQualUSlot(EPQState *epqstate, Relation relation, Index rti)
|
|
{
|
|
TupleTableSlot **slot;
|
|
|
|
// To adapt inplacetuple and tuple,we have to use slot instead of tuple here
|
|
slot = &epqstate->estate->es_epqTupleSlot[rti - 1];
|
|
|
|
if (*slot == NULL) {
|
|
MemoryContext oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt);
|
|
|
|
*slot = ExecAllocTableSlot(&epqstate->estate->es_tupleTable, TableAmUstore);
|
|
if (relation)
|
|
ExecSetSlotDescriptor(*slot, RelationGetDescr(relation));
|
|
else
|
|
ExecSetSlotDescriptor(*slot, epqstate->origslot->tts_tupleDescriptor);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
(*slot)->tts_tam_ops = TableAmUstore;
|
|
|
|
return *slot;
|
|
}
|
|
|
|
void EvalPlanQualFetchRowMarksUHeap(EPQState *epqstate)
|
|
{
|
|
ListCell *l = NULL;
|
|
UHeapTupleData utuple;
|
|
|
|
union {
|
|
UHeapDiskTupleData hdr;
|
|
char data[MaxPossibleUHeapTupleSize];
|
|
} tbuf;
|
|
|
|
errno_t errorno = EOK;
|
|
errorno = memset_s(&tbuf, sizeof(tbuf), 0, sizeof(tbuf));
|
|
securec_check(errorno, "\0", "\0");
|
|
utuple.disk_tuple = &(tbuf.hdr);
|
|
|
|
Assert(epqstate->origslot != NULL);
|
|
|
|
foreach (l, epqstate->arowMarks) {
|
|
ExecAuxRowMark *aerm = (ExecAuxRowMark *)lfirst(l);
|
|
ExecRowMark *erm = aerm->rowmark;
|
|
Datum datum;
|
|
bool isNull;
|
|
TupleTableSlot *slot = NULL;
|
|
Oid tableoid = InvalidOid;
|
|
|
|
if (RowMarkRequiresRowShareLock(erm->markType)) {
|
|
elog(ERROR, "EvalPlanQual doesn't support locking rowmarks");
|
|
}
|
|
|
|
if (epqstate->estate->es_result_relation_info != NULL &&
|
|
epqstate->estate->es_result_relation_info->ri_RangeTableIndex == erm->rti) {
|
|
continue;
|
|
}
|
|
/* clear any leftover test tuple for this rel */
|
|
slot = EvalPlanQualUSlot(epqstate, erm->relation, erm->rti);
|
|
ExecClearTuple(slot);
|
|
|
|
if (erm->rti != erm->prti) {
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull);
|
|
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
|
|
tableoid = DatumGetObjectId(datum);
|
|
if (tableoid != RelationGetRelid(erm->relation)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (erm->markType == ROW_MARK_REFERENCE) {
|
|
Assert(erm->relation != NULL);
|
|
|
|
if (RELATION_IS_PARTITIONED(erm->relation)) {
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull);
|
|
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
tableoid = DatumGetObjectId(datum);
|
|
}
|
|
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->ctidAttNo, &isNull);
|
|
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
|
|
/* fetch requests on foreign tables must be passed to their FDW */
|
|
if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE) {
|
|
} else if (RELATION_IS_PARTITIONED(erm->relation)) {
|
|
} else {
|
|
if (!UHeapFetchRow(erm->relation, (ItemPointer)DatumGetPointer(datum), epqstate->estate->es_snapshot,
|
|
slot, &utuple)) {
|
|
elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
|
|
}
|
|
}
|
|
} else {
|
|
if (erm->markType == ROW_MARK_COPY) {
|
|
HeapTupleData tuple;
|
|
HeapTupleHeader td;
|
|
|
|
Assert(erm->markType == ROW_MARK_COPY);
|
|
|
|
/* fetch the whole-row Var for the relation */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo, &isNull);
|
|
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
|
|
td = DatumGetHeapTupleHeader(datum);
|
|
tuple.t_len = HeapTupleHeaderGetDatumLength(td);
|
|
tuple.t_self = td->t_ctid;
|
|
tuple.t_data = td;
|
|
|
|
ExecClearTuple(slot);
|
|
|
|
tableam_tops_deform_tuple(&tuple, slot->tts_tupleDescriptor, slot->tts_values, slot->tts_isnull);
|
|
ExecStoreVirtualTuple(slot);
|
|
} else {
|
|
Assert(erm->markType == ROW_MARK_COPY_DATUM);
|
|
|
|
HeapTupleHeader td;
|
|
HeapTupleData tuple;
|
|
MemoryContext oldcxt;
|
|
TupleDesc tupdesc;
|
|
Form_pg_attribute attrs[erm->numAttrs];
|
|
|
|
Datum *data = (Datum *)palloc0(sizeof(Datum) * erm->numAttrs);
|
|
bool *null = (bool *)palloc0(sizeof(bool) * erm->numAttrs);
|
|
|
|
for (int i = 0; i < erm->numAttrs; i++) {
|
|
data[i] = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo + i, &null[i]);
|
|
attrs[i] = &epqstate->origslot->tts_tupleDescriptor->attrs[aerm->wholeAttNo - 1 + i];
|
|
}
|
|
|
|
oldcxt = MemoryContextSwitchTo(u_sess->cache_mem_cxt);
|
|
tupdesc = CreateTupleDesc(erm->numAttrs, false, attrs);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
tupdesc->natts = erm->numAttrs;
|
|
tupdesc->tdhasoid = false;
|
|
ExecSetSlotDescriptor(slot, tupdesc);
|
|
|
|
if (!slot->tts_per_tuple_mcxt) {
|
|
slot->tts_per_tuple_mcxt = AllocSetContextCreate(slot->tts_mcxt, "SlotPerTupleMcxt",
|
|
ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE);
|
|
}
|
|
|
|
/*
|
|
* This memory is freed during ExecClearTuple().
|
|
* Note that we cannot free tmptuple right after deform_tuple because
|
|
* values in slot->tts_values would be pointing to it.
|
|
*/
|
|
oldcxt = MemoryContextSwitchTo(slot->tts_per_tuple_mcxt);
|
|
HeapTuple tmptuple = heap_form_tuple(tupdesc, data, null);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
td = (HeapTupleHeader)((char *)tmptuple + HEAPTUPLESIZE);
|
|
tuple.t_len = HeapTupleHeaderGetDatumLength(td);
|
|
tuple.t_self = td->t_ctid;
|
|
tuple.t_data = td;
|
|
pfree_ext(data);
|
|
pfree_ext(null);
|
|
|
|
tableam_tops_deform_tuple(&tuple, slot->tts_tupleDescriptor, slot->tts_values, slot->tts_isnull);
|
|
ExecStoreVirtualTuple(slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fetch the current row values for any non-locked relations that need
|
|
* to be scanned by an EvalPlanQual operation. origslot must have been set
|
|
* to contain the current result row (top-level row) that we need to recheck.
|
|
*/
|
|
void EvalPlanQualFetchRowMarks(EPQState *epqstate)
|
|
{
|
|
ListCell *l = NULL;
|
|
union {
|
|
HeapTupleHeaderData hdr;
|
|
char data[MaxHeapTupleSize + sizeof(HeapTupleHeaderData)];
|
|
} tbuf;
|
|
errno_t errorno = EOK;
|
|
errorno = memset_s(&tbuf, sizeof(tbuf), 0, sizeof(tbuf));
|
|
securec_check(errorno, "\0", "\0");
|
|
|
|
Assert(epqstate->origslot != NULL);
|
|
|
|
foreach (l, epqstate->arowMarks) {
|
|
ExecAuxRowMark *aerm = (ExecAuxRowMark *)lfirst(l);
|
|
ExecRowMark *erm = aerm->rowmark;
|
|
Datum datum;
|
|
bool isNull = false;
|
|
HeapTupleData tuple;
|
|
Oid tableoid = InvalidOid;
|
|
int2 bucketid = InvalidBktId;
|
|
|
|
if (RowMarkRequiresRowShareLock(erm->markType)) {
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("EvalPlanQual doesn't support locking rowmarks")));
|
|
}
|
|
|
|
if (epqstate->estate->es_result_relation_info != NULL &&
|
|
epqstate->estate->es_result_relation_info->ri_RangeTableIndex == erm->rti) {
|
|
continue;
|
|
}
|
|
/* clear any leftover test tuple for this rel */
|
|
EvalPlanQualSetTuple(epqstate, erm->rti, NULL);
|
|
|
|
if (erm->relation) {
|
|
Buffer buffer;
|
|
|
|
Assert(erm->markType == ROW_MARK_REFERENCE);
|
|
|
|
/* if child rel, must check whether it produced this row */
|
|
if (erm->rti != erm->prti) {
|
|
Oid tmp_tableoid;
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
|
|
tmp_tableoid = DatumGetObjectId(datum);
|
|
|
|
if (tmp_tableoid != RelationGetRelid(erm->relation)) {
|
|
/* this child is inactive right now */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (RELATION_IS_PARTITIONED(erm->relation)) {
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->toidAttNo, &isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
tableoid = DatumGetObjectId(datum);
|
|
}
|
|
|
|
if (RELATION_OWN_BUCKET(erm->relation)) {
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->tbidAttNo, &isNull);
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
bucketid = DatumGetObjectId(datum);
|
|
}
|
|
/* fetch the tuple's ctid */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->ctidAttNo, &isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
|
|
tuple.t_self = *((ItemPointer)DatumGetPointer(datum));
|
|
/* Must set a private data buffer for heap_fetch */
|
|
tuple.t_data = &tbuf.hdr;
|
|
|
|
if (RELATION_IS_PARTITIONED(erm->relation)) {
|
|
Partition p = partitionOpen(erm->relation, tableoid, NoLock, bucketid);
|
|
Relation fakeRelation = partitionGetRelation(erm->relation, p);
|
|
|
|
/* okay, fetch the tuple */
|
|
if (!tableam_tuple_fetch(fakeRelation, SnapshotAny, &tuple, &buffer, false, NULL)) {
|
|
ereport(ERROR, (errcode(ERRCODE_FETCH_DATA_FAILED),
|
|
errmsg("failed to fetch tuple for EvalPlanQual recheck from partition relation.")));
|
|
}
|
|
|
|
releaseDummyRelation(&fakeRelation);
|
|
partitionClose(erm->relation, p, NoLock);
|
|
} else {
|
|
Relation fakeRelation = erm->relation;
|
|
if (RELATION_OWN_BUCKET(erm->relation)) {
|
|
Assert(bucketid != InvalidBktId);
|
|
fakeRelation = bucketGetRelation(erm->relation, NULL, bucketid);
|
|
}
|
|
if (!tableam_tuple_fetch(fakeRelation, SnapshotAny, &tuple, &buffer, true, NULL)) {
|
|
Page page = BufferGetPage(buffer);
|
|
ItemPointer tid = &tuple.t_self;
|
|
OffsetNumber offnum = ItemPointerGetOffsetNumber(tid);
|
|
if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) {
|
|
ereport(LOG, (errcode(ERRCODE_FETCH_DATA_FAILED),
|
|
errmsg("out of range items")));
|
|
} else if (offnum < FirstOffsetNumber || offnum > UHeapPageGetMaxOffsetNumber(page)) {
|
|
ereport(LOG, (errcode(ERRCODE_FETCH_DATA_FAILED),
|
|
errmsg("out of range items")));
|
|
} else {
|
|
ereport(LOG, (errcode(ERRCODE_FETCH_DATA_FAILED),
|
|
errmsg("tuple is invalid")));
|
|
}
|
|
ReleaseBuffer(buffer);
|
|
ereport(ERROR, (errcode(ERRCODE_FETCH_DATA_FAILED),
|
|
errmsg("failed to fetch tuple")));
|
|
}
|
|
|
|
if (RELATION_OWN_BUCKET(erm->relation)) {
|
|
bucketCloseRelation(fakeRelation);
|
|
}
|
|
}
|
|
|
|
/* successful, copy and store tuple */
|
|
EvalPlanQualSetTuple(epqstate, erm->rti, tableam_tops_copy_tuple(&tuple));
|
|
ReleaseBuffer(buffer);
|
|
} else {
|
|
HeapTupleHeader td;
|
|
|
|
if (erm->markType == ROW_MARK_COPY) {
|
|
/* fetch the whole-row Var for the relation */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo, &isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull) {
|
|
continue;
|
|
}
|
|
|
|
td = DatumGetHeapTupleHeader(datum);
|
|
} else {
|
|
Assert(erm->markType == ROW_MARK_COPY_DATUM);
|
|
Datum *data = (Datum *)palloc0(sizeof(Datum) * erm->numAttrs);
|
|
bool *null = (bool *)palloc0(sizeof(bool) * erm->numAttrs);
|
|
Form_pg_attribute attrs[erm->numAttrs];
|
|
|
|
TupleDesc tupdesc = (TupleDesc)palloc0(sizeof(tupleDesc));
|
|
for (int i = 0; i < erm->numAttrs; i++) {
|
|
data[i] = ExecGetJunkAttribute(epqstate->origslot, aerm->wholeAttNo + i, &null[i]);
|
|
attrs[i] = &epqstate->origslot->tts_tupleDescriptor->attrs[aerm->wholeAttNo - 1 + i];
|
|
}
|
|
|
|
tupdesc = CreateTupleDesc(erm->numAttrs, false, attrs);
|
|
tupdesc->natts = erm->numAttrs;
|
|
tupdesc->tdhasoid = false;
|
|
tupdesc->tdisredistable = false;
|
|
td = (HeapTupleHeader)((char *)heap_form_tuple(tupdesc, data, null) + HEAPTUPLESIZE);
|
|
pfree_ext(data);
|
|
pfree_ext(null);
|
|
pfree_ext(tupdesc);
|
|
}
|
|
|
|
/* build a temporary HeapTuple control structure */
|
|
tuple.t_len = HeapTupleHeaderGetDatumLength(td);
|
|
ItemPointerSetInvalid(&(tuple.t_self));
|
|
/* relation might be a foreign table, if so provide tableoid */
|
|
tuple.t_tableOid = getrelid(erm->rti, epqstate->estate->es_range_table);
|
|
tuple.t_bucketId = InvalidBktId;
|
|
HeapTupleSetZeroBase(&tuple);
|
|
#ifdef PGXC
|
|
tuple.t_xc_node_id = 0;
|
|
#endif
|
|
tuple.t_data = td;
|
|
|
|
/* copy and store tuple */
|
|
EvalPlanQualSetTuple(epqstate, erm->rti, tableam_tops_copy_tuple(&tuple));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fetch the next row (if any) from EvalPlanQual testing
|
|
*
|
|
* (In practice, there should never be more than one row...)
|
|
*/
|
|
TupleTableSlot *EvalPlanQualNext(EPQState *epqstate)
|
|
{
|
|
MemoryContext old_context = MemoryContextSwitchTo(epqstate->estate->es_query_cxt);
|
|
int resultRelation = epqstate->estate->result_rel_index;
|
|
ExprContext* origExprContext = NULL;
|
|
|
|
TupleTableSlot *slot = ExecProcNode(epqstate->planstate);
|
|
/* for multiple modify, fetch the current read slot corresponding to the result relation. */
|
|
if (resultRelation > 0 && !epqstate->plan->isinherit) {
|
|
origExprContext = epqstate->projInfos[resultRelation]->pi_exprContext;
|
|
epqstate->projInfos[resultRelation]->pi_exprContext = epqstate->planstate->ps_ExprContext;
|
|
|
|
slot = ExecProject(epqstate->projInfos[resultRelation], NULL);
|
|
epqstate->projInfos[resultRelation]->pi_exprContext = origExprContext;
|
|
}
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* Initialize or reset an EvalPlanQual state tree
|
|
*/
|
|
void EvalPlanQualBegin(EPQState *epqstate, EState *parentestate, bool isUHeap)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
errno_t rc = 0;
|
|
|
|
if (estate == NULL) {
|
|
/* First time through, so create a child EState */
|
|
EvalPlanQualStart(epqstate, parentestate, epqstate->plan, isUHeap);
|
|
} else {
|
|
/*
|
|
* We already have a suitable child EPQ tree, so just reset it.
|
|
*/
|
|
int rtsize = list_length(parentestate->es_range_table);
|
|
PlanState *planstate = epqstate->planstate;
|
|
|
|
rc = memset_s(estate->es_epqScanDone, rtsize * sizeof(bool), 0, rtsize * sizeof(bool));
|
|
securec_check(rc, "\0", "\0");
|
|
|
|
/* Recopy current values of parent parameters */
|
|
if (parentestate->es_plannedstmt->nParamExec > 0) {
|
|
int i = parentestate->es_plannedstmt->nParamExec;
|
|
|
|
while (--i >= 0) {
|
|
/* copy value if any, but not execPlan link */
|
|
estate->es_param_exec_vals[i].value = parentestate->es_param_exec_vals[i].value;
|
|
estate->es_param_exec_vals[i].isnull = parentestate->es_param_exec_vals[i].isnull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark child plan tree as needing rescan at all scan nodes. The
|
|
* first ExecProcNode will take care of actually doing the rescan.
|
|
*/
|
|
planstate->chgParam = bms_add_member(planstate->chgParam, epqstate->epqParam);
|
|
estate->result_rel_index = parentestate->result_rel_index;
|
|
estate->es_result_relation_info = parentestate->es_result_relation_info;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start execution of an EvalPlanQual plan tree.
|
|
*
|
|
* This is a cut-down version of ExecutorStart(): we copy some state from
|
|
* the top-level estate rather than initializing it fresh.
|
|
*/
|
|
void Setestate(EState *estate, EState *parentestate)
|
|
{
|
|
estate->es_direction = ForwardScanDirection;
|
|
estate->es_snapshot = parentestate->es_snapshot;
|
|
estate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot;
|
|
estate->es_range_table = parentestate->es_range_table;
|
|
estate->es_plannedstmt = parentestate->es_plannedstmt;
|
|
estate->es_junkFilter = parentestate->es_junkFilter;
|
|
estate->es_output_cid = parentestate->es_output_cid;
|
|
estate->es_result_relations = parentestate->es_result_relations;
|
|
estate->es_num_result_relations = parentestate->es_num_result_relations;
|
|
estate->es_result_relation_info = parentestate->es_result_relation_info;
|
|
estate->result_rel_index = parentestate->result_rel_index;
|
|
if (estate->result_rel_index != 0) {
|
|
estate->es_result_relation_info -= estate->result_rel_index;
|
|
}
|
|
estate->es_skip_early_free = parentestate->es_skip_early_free;
|
|
estate->es_skip_early_deinit_consumer = parentestate->es_skip_early_deinit_consumer;
|
|
|
|
#ifdef PGXC
|
|
/* XXX Check if this is OK */
|
|
estate->es_result_remoterel = parentestate->es_result_remoterel;
|
|
#endif
|
|
|
|
/* es_trig_target_relations must NOT be copied
|
|
* es_auxmodifytables must NOT be copied
|
|
*/
|
|
estate->es_rowMarks = parentestate->es_rowMarks;
|
|
estate->es_top_eflags = parentestate->es_top_eflags;
|
|
estate->es_instrument = parentestate->es_instrument;
|
|
/*
|
|
* The external param list is simply shared from parent. The internal
|
|
* param workspace has to be local state, but we copy the initial values
|
|
* from the parent, so as to have access to any param values that were
|
|
* already set from other parts of the parent's plan tree.
|
|
*/
|
|
estate->es_param_list_info = parentestate->es_param_list_info;
|
|
}
|
|
|
|
static void EvalPlanQualStart(EPQState *epqstate, EState *parentestate, Plan *planTree, bool isUHeap)
|
|
{
|
|
EState *estate = NULL;
|
|
int rtsize;
|
|
MemoryContext old_context;
|
|
ListCell *l = NULL;
|
|
|
|
rtsize = list_length(parentestate->es_range_table);
|
|
|
|
epqstate->estate = estate = CreateExecutorState();
|
|
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
Setestate(estate, parentestate);
|
|
/*
|
|
* Child EPQ EStates share the parent's copy of unchanging state such as
|
|
* the snapshot, rangetable, result-rel info, and external Param info.
|
|
* They need their own copies of local state, including a tuple table,
|
|
* es_param_exec_vals, etc.
|
|
*/
|
|
if (parentestate->es_plannedstmt->nParamExec > 0) {
|
|
int i = parentestate->es_plannedstmt->nParamExec;
|
|
|
|
estate->es_param_exec_vals = (ParamExecData *)palloc0(i * sizeof(ParamExecData));
|
|
while (--i >= 0) {
|
|
/* copy value if any, but not execPlan link */
|
|
estate->es_param_exec_vals[i].value = parentestate->es_param_exec_vals[i].value;
|
|
estate->es_param_exec_vals[i].isnull = parentestate->es_param_exec_vals[i].isnull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Each EState must have its own es_epqScanDone state, but if we have
|
|
* nested EPQ checks they should share es_epqTuple arrays. This allows
|
|
* sub-rechecks to inherit the values being examined by an outer recheck.
|
|
*/
|
|
estate->es_epqScanDone = (bool *)palloc0(rtsize * sizeof(bool));
|
|
if (parentestate->es_epqTuple != NULL) {
|
|
estate->es_epqTuple = parentestate->es_epqTuple;
|
|
estate->es_epqTupleSet = parentestate->es_epqTupleSet;
|
|
} else {
|
|
estate->es_epqTuple = (Tuple *)palloc0(rtsize * sizeof(HeapTuple));
|
|
estate->es_epqTupleSet = (bool *)palloc0(rtsize * sizeof(bool));
|
|
}
|
|
|
|
/*
|
|
* Each estate also has its own tuple table.
|
|
*/
|
|
estate->es_tupleTable = NIL;
|
|
|
|
if (isUHeap) {
|
|
if (estate->es_epqTupleSlot == NULL) {
|
|
estate->es_epqTupleSlot =
|
|
(TupleTableSlot **)MemoryContextAllocZero(CurrentMemoryContext, rtsize * sizeof(TupleTableSlot *));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize private state information for each SubPlan. We must do this
|
|
* before running ExecInitNode on the main query tree, since
|
|
* ExecInitSubPlan expects to be able to find these entries. Some of the
|
|
* SubPlans might not be used in the part of the plan tree we intend to
|
|
* run, but since it's not easy to tell which, we just initialize them
|
|
* all.
|
|
*/
|
|
Assert(estate->es_subplanstates == NIL);
|
|
foreach (l, parentestate->es_plannedstmt->subplans) {
|
|
Plan *subplan = (Plan *)lfirst(l);
|
|
PlanState *subplanstate = NULL;
|
|
|
|
estate->es_under_subplan = true;
|
|
subplanstate = ExecInitNode(subplan, estate, 0);
|
|
estate->es_under_subplan = false;
|
|
estate->es_subplanstates = lappend(estate->es_subplanstates, subplanstate);
|
|
}
|
|
|
|
/*
|
|
* Initialize the private state information for all the nodes in the part
|
|
* of the plan tree we need to run. This opens files, allocates storage
|
|
* and leaves us ready to start processing tuples.
|
|
*/
|
|
epqstate->planstate = ExecInitNode(planTree, estate, 0);
|
|
estate->es_result_relation_info = parentestate->es_result_relation_info;
|
|
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualEnd -- shut down at termination of parent plan state node,
|
|
* or if we are done with the current EPQ child.
|
|
*
|
|
* This is a cut-down version of ExecutorEnd(); basically we want to do most
|
|
* of the normal cleanup, but *not* close result relations (which we are
|
|
* just sharing from the outer query). We do, however, have to close any
|
|
* trigger target relations that got opened, since those are not shared.
|
|
* (There probably shouldn't be any of the latter, but just in case...)
|
|
*/
|
|
void EvalPlanQualEnd(EPQState *epqstate)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
MemoryContext old_context;
|
|
ListCell *l = NULL;
|
|
|
|
if (estate == NULL) {
|
|
return; /* idle, so nothing to do */
|
|
}
|
|
|
|
old_context = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
ExecEndNode(epqstate->planstate);
|
|
|
|
foreach (l, estate->es_subplanstates) {
|
|
PlanState *subplanstate = (PlanState *)lfirst(l);
|
|
|
|
ExecEndNode(subplanstate);
|
|
}
|
|
|
|
/* throw away the per-estate tuple table */
|
|
ExecResetTupleTable(estate->es_tupleTable, false);
|
|
|
|
/* close any trigger target relations attached to this EState */
|
|
foreach (l, estate->es_trig_target_relations) {
|
|
ResultRelInfo *resultRelInfo = (ResultRelInfo *)lfirst(l);
|
|
|
|
/* Close indices and then the relation itself */
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
|
|
(void)MemoryContextSwitchTo(old_context);
|
|
|
|
FreeExecutorState(estate);
|
|
|
|
/* Mark EPQState idle */
|
|
epqstate->estate = NULL;
|
|
epqstate->planstate = NULL;
|
|
epqstate->origslot = NULL;
|
|
}
|
|
|
|
TupleTableSlot* FetchPlanSlot(PlanState* subPlanState, ProjectionInfo** projInfos, bool isinherit)
|
|
{
|
|
int result_rel_index = subPlanState->state->result_rel_index;
|
|
|
|
if (result_rel_index > 0 && !isinherit) {
|
|
return ExecProject(projInfos[result_rel_index], NULL);
|
|
} else {
|
|
return ExecProcNode(subPlanState);
|
|
}
|
|
}
|