Files
openGauss-server/src/common/backend/parser/parse_expr.cpp

3387 lines
118 KiB
C++

/* -------------------------------------------------------------------------
*
* parse_expr.cpp
* handle expressions in parser
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
* Portions Copyright (c) 2021, openGauss Contributors
*
*
* IDENTIFICATION
* src/commmon/backend/parser/parse_expr.cpp
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "knl/knl_variable.h"
#include "catalog/pg_type.h"
#include "catalog/pg_proc.h"
#include "catalog/gs_package.h"
#include "commands/dbcommands.h"
#include "commands/sequence.h"
#include "db4ai/predict_by.h"
#include "executor/node/nodeCtescan.h"
#include "foreign/foreign.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/var.h"
#include "optimizer/planner.h"
#include "parser/analyze.h"
#include "parser/parser.h"
#include "parser/parse_coerce.h"
#include "parser/parse_collate.h"
#include "parser/parse_expr.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "parser/parse_target.h"
#include "parser/parse_type.h"
#include "parser/parse_agg.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/plpgsql.h"
#include "utils/xml.h"
#include "funcapi.h"
#include "utils/guc.h"
#include "utils/guc_tables.h"
extern Node* build_column_default(Relation rel, int attrno, bool isInsertCmd = false, bool needOnUpdate = false);
extern Node* makeAConst(Value* v, int location);
extern Value* makeStringValue(char* str);
static Node* transformParamRef(ParseState* pstate, ParamRef* pref);
static Node* transformAExprOp(ParseState* pstate, A_Expr* a);
static Node* transformAExprAnd(ParseState* pstate, A_Expr* a);
static Node* transformAExprOr(ParseState* pstate, A_Expr* a);
static Node* transformAExprNot(ParseState* pstate, A_Expr* a);
static Node* transformAExprOpAny(ParseState* pstate, A_Expr* a);
static Node* transformAExprOpAll(ParseState* pstate, A_Expr* a);
static Node* transformAExprDistinct(ParseState* pstate, A_Expr* a);
static Node* transformAExprNullIf(ParseState* pstate, A_Expr* a);
static Node* transformAExprOf(ParseState* pstate, A_Expr* a);
static Node* transformAExprIn(ParseState* pstate, A_Expr* a);
static Node* transformUserSetElem(ParseState* pstate, UserSetElem *elem);
static Node* transformUserVar(UserVar *uservar);
static Node* transformFuncCall(ParseState* pstate, FuncCall* fn);
static Node* transformCaseExpr(ParseState* pstate, CaseExpr* c);
static Node* transformSubLink(ParseState* pstate, SubLink* sublink);
static Node* transformSelectIntoVarList(ParseState* pstate, SelectIntoVarList* sis);
static Node* transformArrayExpr(ParseState* pstate, A_ArrayExpr* a, Oid array_type, Oid element_type, int32 typmod);
static Node* transformRowExpr(ParseState* pstate, RowExpr* r);
static Node* transformCoalesceExpr(ParseState* pstate, CoalesceExpr* c);
static Node* transformMinMaxExpr(ParseState* pstate, MinMaxExpr* m);
static Node* transformXmlExpr(ParseState* pstate, XmlExpr* x);
static Node* transformXmlSerialize(ParseState* pstate, XmlSerialize* xs);
static Node* transformBooleanTest(ParseState* pstate, BooleanTest* b);
static Node* transformCurrentOfExpr(ParseState* pstate, CurrentOfExpr* cexpr);
static Node* transformPredictByFunction(ParseState* pstate, PredictByFunction* cexpr);
static Node* transformWholeRowRef(ParseState* pstate, RangeTblEntry* rte, int location);
static Node* transformIndirection(ParseState* pstate, Node* basenode, List* indirection);
static Node* transformTypeCast(ParseState* pstate, TypeCast* tc);
static Node* transformCollateClause(ParseState* pstate, CollateClause* c);
static Node* make_row_comparison_op(ParseState* pstate, List* opname, List* largs, List* rargs, int location);
static Node* make_row_distinct_op(ParseState* pstate, List* opname, RowExpr* lrow, RowExpr* rrow, int location);
static Node* convertStarToCRef(RangeTblEntry* rte, char* catname, char* nspname, char* relname, int location);
static bool IsSequenceFuncCall(Node* filed1, Node* filed2, Node* filed3);
static Node* transformSequenceFuncCall(ParseState* pstate, Node* field1, Node* field2, Node* field3, int location);
static Node* transformConnectByRootFuncCall(ParseState* pstate, Node* funcNameVal, ColumnRef *cref);
static char *ColumnRefFindRelname(ParseState *pstate, const char *colname);
static Node *transformStartWithColumnRef(ParseState *pstate, ColumnRef *cref, char **colname);
static Node* tryTransformFunc(ParseState* pstate, List* fields, int location);
static void SubCheckOutParam(List* exprtargs, Oid funcid);
static Node* transformPrefixKey(ParseState* pstate, PrefixKey* pkey);
#define OrientedIsCOLorPAX(rte) ((rte)->orientation == REL_COL_ORIENTED || (rte)->orientation == REL_PAX_ORIENTED)
#define INDEX_KEY_MAX_PREFIX_LENGTH (int)2676
static inline bool IsAutoIncrementColumn(TupleDesc rdAtt, int attrNo)
{
return rdAtt->constr && rdAtt->constr->cons_autoinc && rdAtt->constr->cons_autoinc->attnum == attrNo;
}
static void AddDefaultExprNode(ParseState* pstate)
{
RightRefState* refState = pstate->rightRefState;
if (refState->isInsertHasRightRef) {
return;
}
pstate->rightRefState->isInsertHasRightRef = true;
Relation relation = (Relation)linitial(pstate->p_target_relation);
TupleDesc rdAtt = relation->rd_att;
int fieldCnt = rdAtt->natts;
refState->constValues = (Const**)palloc0(sizeof(Const) * fieldCnt);
for (int i = 0; i < fieldCnt; ++i) {
Form_pg_attribute attTup = rdAtt->attrs[i];
if (IsAutoIncrementColumn(rdAtt, i + 1)) {
refState->constValues[i] = makeConst(attTup->atttypid, -1, attTup->attcollation,
attTup->attlen, (Datum)0, false, attTup->attbyval);
} else if (ISGENERATEDCOL(rdAtt, i)) {
refState->constValues[i] = nullptr;
} else {
Node* expr = build_column_default(relation, i + 1, true);
if (expr && IsA(expr, Const)) {
refState->constValues[i] = (Const*)expr;
} else {
refState->constValues[i] = nullptr;
}
}
}
}
/*
* transformExpr -
* Analyze and transform expressions. Type checking and type casting is
* done here. The optimizer and the executor cannot handle the original
* (raw) expressions collected by the parse tree. Hence the transformation
* here.
*
* NOTE: there are various cases in which this routine will get applied to
* an already-transformed expression. Some examples:
* 1. At least one construct (BETWEEN/AND) puts the same nodes
* into two branches of the parse tree; hence, some nodes
* are transformed twice.
* 2. Another way it can happen is that coercion of an operator or
* function argument to the required type (via coerce_type())
* can apply transformExpr to an already-transformed subexpression.
* An example here is "SELECT count(*) + 1.0 FROM table".
* 3. CREATE TABLE t1 (LIKE t2 INCLUDING INDEXES) can pass in
* already-transformed index expressions.
* While it might be possible to eliminate these cases, the path of
* least resistance so far has been to ensure that transformExpr() does
* no damage if applied to an already-transformed tree. This is pretty
* easy for cases where the transformation replaces one node type with
* another, such as A_Const => Const; we just do nothing when handed
* a Const. More care is needed for node types that are used as both
* input and output of transformExpr; see SubLink for example.
*/
Node* transformExpr(ParseState* pstate, Node* expr)
{
Node* result = NULL;
if (expr == NULL) {
return NULL;
}
/* Guard against stack overflow due to overly complex expressions */
check_stack_depth();
switch (nodeTag(expr)) {
case T_ColumnRef:
result = transformColumnRef(pstate, (ColumnRef*)expr);
if (IS_SUPPORT_RIGHT_REF(pstate->rightRefState)) {
if (pstate->rightRefState->isUpsert) {
pstate->rightRefState->isUpsertHasRightRef = true;
} else {
AddDefaultExprNode(pstate);
}
}
break;
case T_ParamRef:
result = transformParamRef(pstate, (ParamRef*)expr);
break;
case T_A_Const: {
A_Const* con = (A_Const*)expr;
Value* val = &con->val;
result = (Node*)make_const(pstate, val, con->location);
break;
}
case T_A_Indirection: {
A_Indirection* ind = (A_Indirection*)expr;
result = transformExpr(pstate, ind->arg);
result = transformIndirection(pstate, result, ind->indirection);
break;
}
case T_A_ArrayExpr:
result = transformArrayExpr(pstate, (A_ArrayExpr*)expr, InvalidOid, InvalidOid, -1);
break;
case T_TypeCast: {
TypeCast* tc = (TypeCast*)expr;
/*
* If the subject of the typecast is an ARRAY[] construct and
* the target type is an array type, we invoke
* transformArrayExpr() directly so that we can pass down the
* type information. This avoids some cases where
* transformArrayExpr() might not infer the correct type.
*/
if (IsA(tc->arg, A_ArrayExpr)) {
Oid targetType;
Oid elementType;
int32 targetTypmod;
typenameTypeIdAndMod(pstate, tc->typname, &targetType, &targetTypmod);
/*
* If target is a domain over array, work with the base
* array type here. transformTypeCast below will cast the
* array type to the domain. In the usual case that the
* target is not a domain, transformTypeCast is a no-op.
*/
targetType = getBaseTypeAndTypmod(targetType, &targetTypmod);
elementType = get_element_type(targetType);
if (OidIsValid(elementType)) {
tc = (TypeCast*)copyObject(tc);
tc->arg = transformArrayExpr(pstate, (A_ArrayExpr*)tc->arg, targetType, elementType, targetTypmod);
}
}
result = transformTypeCast(pstate, tc);
break;
}
case T_CollateClause:
result = transformCollateClause(pstate, (CollateClause*)expr);
break;
case T_A_Expr: {
A_Expr* a = (A_Expr*)expr;
switch (a->kind) {
case AEXPR_OP:
result = transformAExprOp(pstate, a);
break;
case AEXPR_AND:
result = transformAExprAnd(pstate, a);
break;
case AEXPR_OR:
result = transformAExprOr(pstate, a);
break;
case AEXPR_NOT:
result = transformAExprNot(pstate, a);
break;
case AEXPR_OP_ANY:
result = transformAExprOpAny(pstate, a);
break;
case AEXPR_OP_ALL:
result = transformAExprOpAll(pstate, a);
break;
case AEXPR_DISTINCT:
result = transformAExprDistinct(pstate, a);
break;
case AEXPR_NULLIF:
result = transformAExprNullIf(pstate, a);
break;
case AEXPR_OF:
result = transformAExprOf(pstate, a);
break;
case AEXPR_IN:
result = transformAExprIn(pstate, a);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized A_Expr kind: %d", a->kind)));
}
break;
}
case T_UserSetElem: {
result = transformUserSetElem(pstate, (UserSetElem *)expr);
break;
}
case T_UserVar: {
result = transformUserVar((UserVar *)expr);
break;
}
case T_FuncCall:
result = transformFuncCall(pstate, (FuncCall*)expr);
break;
case T_NamedArgExpr: {
NamedArgExpr* na = (NamedArgExpr*)expr;
na->arg = (Expr*)transformExpr(pstate, (Node*)na->arg);
result = expr;
break;
}
case T_SubLink:
result = transformSubLink(pstate, (SubLink*)expr);
break;
case T_SelectIntoVarList:
result = transformSelectIntoVarList(pstate, (SelectIntoVarList*)expr);
break;
case T_CaseExpr:
result = transformCaseExpr(pstate, (CaseExpr*)expr);
break;
case T_RowExpr:
result = transformRowExpr(pstate, (RowExpr*)expr);
break;
case T_CoalesceExpr:
result = transformCoalesceExpr(pstate, (CoalesceExpr*)expr);
break;
case T_MinMaxExpr:
result = transformMinMaxExpr(pstate, (MinMaxExpr*)expr);
break;
case T_GroupingFunc:
result = transformGroupingFunc(pstate, (GroupingFunc*)expr);
break;
case T_XmlExpr:
result = transformXmlExpr(pstate, (XmlExpr*)expr);
break;
case T_XmlSerialize:
result = transformXmlSerialize(pstate, (XmlSerialize*)expr);
break;
case T_NullTest: {
NullTest* n = (NullTest*)expr;
n->arg = (Expr*)transformExpr(pstate, (Node*)n->arg);
/* the argument can be any type, so don't coerce it */
n->argisrow = type_is_rowtype(exprType((Node*)n->arg));
result = expr;
break;
}
case T_BooleanTest:
result = transformBooleanTest(pstate, (BooleanTest*)expr);
break;
case T_CurrentOfExpr:
result = transformCurrentOfExpr(pstate, (CurrentOfExpr*)expr);
break;
case T_PredictByFunction:
result = transformPredictByFunction(pstate, (PredictByFunction*) expr);
break;
case T_PrefixKey:
result = transformPrefixKey(pstate, (PrefixKey*)expr);
break;
case T_SetVariableExpr:
result = transformSetVariableExpr((SetVariableExpr*)expr);
break;
/*********************************************
* Quietly accept node types that may be presented when we are
* called on an already-transformed tree.
*
* Do any other node types need to be accepted? For now we are
* taking a conservative approach, and only accepting node
* types that are demonstrably necessary to accept.
*********************************************/
case T_Var:
case T_Const:
case T_Param:
case T_Aggref:
case T_WindowFunc:
case T_ArrayRef:
case T_FuncExpr:
case T_Rownum:
case T_OpExpr:
case T_DistinctExpr:
case T_NullIfExpr:
case T_ScalarArrayOpExpr:
case T_BoolExpr:
case T_FieldSelect:
case T_FieldStore:
case T_RelabelType:
case T_CoerceViaIO:
case T_ArrayCoerceExpr:
case T_ConvertRowtypeExpr:
case T_CollateExpr:
case T_CaseTestExpr:
case T_ArrayExpr:
case T_CoerceToDomain:
case T_CoerceToDomainValue:
case T_SetToDefault: {
result = (Node*)expr;
break;
}
default:
/* should not reach here */
ereport(ERROR,
(errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE), errmsg("unrecognized node type: %d", (int)nodeTag(expr))));
break;
}
return result;
}
/*
* helper routine for delivering "column does not exist" error message
*
* (Usually we don't have to work this hard, but the general case of field
* selection from an arbitrary node needs it.)
*/
static void unknown_attribute(ParseState* pstate, Node* relref, char* attname, int location)
{
RangeTblEntry* rte = NULL;
if (IsA(relref, Var) && ((Var*)relref)->varattno == InvalidAttrNumber) {
/* Reference the RTE by alias not by actual table name */
rte = GetRTEByRangeTablePosn(pstate, ((Var*)relref)->varno, ((Var*)relref)->varlevelsup);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column %s.%s does not exist", rte->eref->aliasname, attname),
parser_errposition(pstate, location)));
} else {
/* Have to do it by reference to the type of the expression */
Oid relTypeId = exprType(relref);
if (ISCOMPLEX(relTypeId)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" not found in data type %s", attname, format_type_be(relTypeId)),
parser_errposition(pstate, location)));
} else if (relTypeId == RECORDOID) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("could not identify column \"%s\" in record data type", attname),
parser_errposition(pstate, location)));
} else {
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("column notation .%s applied to type %s, "
"which is not a composite type",
attname,
format_type_be(relTypeId)),
parser_errposition(pstate, location)));
}
}
}
static Node* transformIndirection(ParseState* pstate, Node* basenode, List* indirection)
{
Node* result = basenode;
List* subscripts = NIL;
int location = exprLocation(basenode);
ListCell* i = NULL;
/*
* We have to split any field-selection operations apart from
* subscripting. Adjacent A_Indices nodes have to be treated as a single
* multidimensional subscript operation.
*/
foreach (i, indirection) {
Node* n = (Node*)lfirst(i);
if (IsA(n, A_Indices)) {
subscripts = lappend(subscripts, n);
} else if (IsA(n, A_Star)) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("row expansion via \"*\" is not supported here"),
parser_errposition(pstate, location)));
} else {
Node* newresult = NULL;
AssertEreport(IsA(n, String), MOD_OPT, "");
/* process subscripts before this field selection */
if (subscripts != NIL) {
result = (Node*)transformArraySubscripts(
pstate, result, exprType(result), InvalidOid, exprTypmod(result), subscripts, NULL);
}
subscripts = NIL;
newresult = ParseFuncOrColumn(pstate, list_make1(n), list_make1(result), NULL, location);
if (newresult == NULL) {
unknown_attribute(pstate, result, strVal(n), location);
}
result = newresult;
}
}
/* process trailing subscripts, if any */
if (subscripts != NIL) {
result = (Node*)transformArraySubscripts(
pstate, result, exprType(result), InvalidOid, exprTypmod(result), subscripts, NULL);
}
return result;
}
static Node* replaceExprAliasIfNecessary(ParseState* pstate, char* colname, ColumnRef* cref)
{
ListCell* lc = NULL;
bool isFind = false;
Expr* matchExpr = NULL;
TargetEntry* tle = NULL;
foreach (lc, pstate->p_target_list) {
tle = (TargetEntry*)lfirst(lc);
/*
* 1. in a select stmt in stored procudre, a columnref may be a param(e.g. a declared var or the stored
* procedure's arg), which is not a alias, so can not be matched here.
* 2. in a select stmt in stored procudre such like a[1],a[2],a[3], they have same name,
* so, we should pass this target.
*/
bool isArrayParam = IsA(tle->expr, ArrayRef) && ((ArrayRef*)tle->expr)->refexpr != NULL &&
IsA(((ArrayRef*)tle->expr)->refexpr, Param);
if (tle->resname != NULL && !IsA(tle->expr, Param) && !isArrayParam &&
strncmp(tle->resname, colname, strlen(colname) + 1) == 0) {
if (checkExprHasWindowFuncs((Node*)tle->expr)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("Alias \"%s\" reference with window function included is not supported.", colname),
parser_errposition(pstate, cref->location)));
#ifndef ENABLE_MULTIPLE_NODES
} else if (ContainRownumExpr((Node*)tle->expr)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("Alias \"%s\" reference with ROWNUM included is invalid.", colname),
parser_errposition(pstate, cref->location)));
#endif
} else if (contain_volatile_functions((Node*)tle->expr)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("Alias \"%s\" reference with volatile function included is not supported.", colname),
parser_errposition(pstate, cref->location)));
} else {
if (!isFind) {
matchExpr = tle->expr;
isFind = true;
} else {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("Alias \"%s\" is ambiguous.", colname),
parser_errposition(pstate, cref->location)));
return NULL;
}
}
}
}
return (Node*)copyObject(matchExpr);
}
static Node* ParseColumnRef(ParseState* pstate, RangeTblEntry* rte, char* colname, ColumnRef* cref)
{
Node* node = NULL;
/* Try to identify as a column of the RTE */
node = scanRTEForColumn(pstate, rte, colname, cref->location);
if (node == NULL) {
/* Try it as a function call on the whole row */
node = transformWholeRowRef(pstate, rte, cref->location);
node = ParseFuncOrColumn(pstate, list_make1(makeString(colname)), list_make1(node), NULL, cref->location);
}
return node;
}
static ColumnRef *fixSWNameSubLevel(RangeTblEntry *rte, char *rname, char **colname)
{
ListCell *lc = NULL;
foreach(lc, rte->eref->colnames) {
Value *val = (Value *)lfirst(lc);
if (strstr(strVal(val), *colname)) {
*colname = pstrdup(strVal(val));
break;
}
}
ColumnRef* c = makeNode(ColumnRef);
c->fields = list_make2((Node*)makeString(rname), (Node*)makeString(*colname));
c->location = -1;
return c;
}
/*
* Transform a ColumnRef.
*
* If you find yourself changing this code, see also ExpandColumnRefStar.
*/
Node* transformColumnRef(ParseState* pstate, ColumnRef* cref)
{
Node* node = NULL;
char* nspname = NULL;
char* relname = NULL;
char* colname = NULL;
RangeTblEntry* rte = NULL;
int levels_up;
bool hasplus = false;
enum { CRERR_NO_COLUMN, CRERR_NO_RTE, CRERR_WRONG_DB, CRERR_TOO_MANY } crerr = CRERR_NO_COLUMN;
/*
* Give the PreParseColumnRefHook, if any, first shot. If it returns
* non-null then that's all, folks.
*/
if (pstate->p_pre_columnref_hook != NULL) {
node = (*pstate->p_pre_columnref_hook)(pstate, cref);
if (node != NULL) {
return node;
}
}
/*
* First to check if last cref->fields is "(+)" we have to evaluate the previous
* elements can costructe a
*/
int fields_len = list_length(cref->fields);
hasplus = IsColumnRefPlusOuterJoin(cref);
if (hasplus) {
/*
* Report error when found operator "(+)" and ignoreplus is false.
* Actually we only set ignoreplus be true in WhereClause of Select Satatement for now.
*/
if (!pstate->ignoreplus) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("Operator \"(+)\" can only be used in WhereClause of Select-Statement or Subquery."),
parser_errposition(pstate, cref->location)));
}
/* If identify it is a "(+)" we need minus the length first */
fields_len--;
}
/* ----------
* The allowed syntaxes are:
*
* A First try to resolve as unqualified column name;
* if no luck, try to resolve as unqualified table name (A.*).
* A.B A is an unqualified table name; B is either a
* column or function name (trying column name first).
* A.B.C schema A, table B, col or func name C.
* A.B.C.D catalog A, schema B, table C, col or func D.
* A.* A is an unqualified table name; means whole-row value.
* A.B.* whole-row value of table B in schema A.
* A.B.C.* whole-row value of table C in schema B in catalog A.
*
* We do not need to cope with bare "*"; that will only be accepted by
* the grammar at the top level of a SELECT list, and transformTargetList
* will take care of it before it ever gets here. Also, "A.*" etc will
* be expanded by transformTargetList if they appear at SELECT top level,
* so here we are only going to see them as function or operator inputs.
*
* Currently, if a catalog name is given then it must equal the current
* database name; we check it here and then discard it.
* ----------
*/
switch (fields_len) {
case 1: {
Node* field1 = (Node*)linitial(cref->fields);
AssertEreport(IsA(field1, String), MOD_OPT, "");
colname = strVal(field1);
if (pstate->p_hasStartWith) {
Node *expr = transformStartWithColumnRef(pstate, cref, &colname);
/* function case, return directly */
if (expr != NULL) {
return expr;
}
}
/*
* Try to identify as an unqualified column
*
* if hasplus, only consider current pstate level
*/
node = colNameToVar(pstate, colname, hasplus, cref->location, &rte);
if (hasplus && node == NULL) {
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_COLUMN),
errmsg("column reference \"%s\" is ambiguous.", colname),
errhint("\"%s\" with \"(+)\" can only reference relation in current query level.", colname),
parser_errposition(pstate, cref->location)));
}
if (node == NULL) {
/*
* Not known as a column of any range-table entry.
*
* Consider the possibility that it's VALUE in a domain
* check expression. (We handle VALUE as a name, not a
* keyword, to avoid breaking a lot of applications that
* have used VALUE as a column name in the past.)
*/
if (pstate->p_value_substitute != NULL && strcmp(colname, "value") == 0) {
node = (Node*)copyObject(pstate->p_value_substitute);
/*
* Try to propagate location knowledge. This should
* be extended if p_value_substitute can ever take on
* other node types.
*/
if (IsA(node, CoerceToDomainValue)) {
((CoerceToDomainValue*)node)->location = cref->location;
}
break;
}
/*
* Try to find the name as a relation. Note that only
* relations already entered into the rangetable will be
* recognized.
*
* This is a hack for backwards compatibility with
* PostQUEL-inspired syntax. The preferred form now is
* "rel.*".
*/
rte = refnameRangeTblEntry(pstate, NULL, colname, cref->location, &levels_up);
if (rte != NULL) {
if ((OrientedIsCOLorPAX(rte) || RelIsSpecifiedFTbl(rte, HDFS) || RelIsSpecifiedFTbl(rte, OBS)) &&
((rte->alias && (strcmp(rte->alias->aliasname, colname) == 0)) ||
(strcmp(rte->relname, colname) == 0))) {
Node* row_expr = convertStarToCRef(rte, NULL, NULL, colname, cref->location);
node = transformExpr(pstate, row_expr);
} else {
node = transformWholeRowRef(pstate, rte, cref->location);
}
break;
}
/*expr of target_list replace of node*/
node = replaceExprAliasIfNecessary(pstate, colname, cref);
if (!pstate->isAliasReplace && contain_subplans(node)) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg(
"Alias \"%s\" contains subplan, which is not supported to use in grouping() function",
colname)));
}
/*
* Now give the p_bind_variable_columnref_hook, check column index. only DBE_SQL can get here.
*/
if (node == NULL) {
if (pstate->p_bind_variable_columnref_hook != NULL) {
node = (*pstate->p_bind_variable_columnref_hook)(pstate, cref);
if (node != NULL) {
return node;
}
}
if (pstate->p_bind_describe_hook != NULL) {
node = (*pstate->p_bind_describe_hook)(pstate, cref);
return node;
}
}
}
break;
}
case 2: {
Node* field1 = (Node*)linitial(cref->fields);
Node* field2 = (Node*)lsecond(cref->fields);
AssertEreport(IsA(field1, String), MOD_OPT, "");
relname = strVal(field1);
/* Locate the referenced RTE */
if (hasplus) {
rte = refnameRangeTblEntry(pstate, nspname, relname, cref->location, NULL);
} else {
rte = refnameRangeTblEntry(pstate, nspname, relname, cref->location, &levels_up);
}
/* check if it's sequence function call, like: sequence1.nextval */
if (rte == NULL && IsSequenceFuncCall(NULL, field1, field2)) {
return transformSequenceFuncCall(pstate, NULL, field1, field2, cref->location);
} else if (rte == NULL) {
crerr = CRERR_NO_RTE;
break;
}
/* Whole-row reference? */
if (IsA(field2, A_Star)) {
if (OrientedIsCOLorPAX(rte) || RelIsSpecifiedFTbl(rte, HDFS) || RelIsSpecifiedFTbl(rte, OBS)) {
Node* row_expr = convertStarToCRef(rte, NULL, NULL, relname, cref->location);
node = transformExpr(pstate, row_expr);
} else {
node = transformWholeRowRef(pstate, rte, cref->location);
}
break;
}
AssertEreport(IsA(field2, String), MOD_OPT, "");
colname = strVal(field2);
if (rte->rtekind == RTE_SUBQUERY && rte->swSubExist) {
cref = fixSWNameSubLevel(rte, relname, &colname);
}
if (pstate->p_hasStartWith || rte->swConverted) {
Node *expr = transformStartWithColumnRef(pstate, cref, &colname);
/* function case, return directly */
if (expr != NULL) {
return expr;
}
if (strstr(colname, "@")) {
ListCell *lc = NULL;
foreach(lc, pstate->p_rtable) {
RangeTblEntry *tbl = (RangeTblEntry *)lfirst(lc);
if (tbl->relname != NULL &&
strcmp(tbl->relname, "tmp_reuslt") == 0) {
rte = tbl;
break;
}
}
}
}
node = ParseColumnRef(pstate, rte, colname, cref);
break;
}
case 3: {
Node* field1 = (Node*)linitial(cref->fields);
Node* field2 = (Node*)lsecond(cref->fields);
Node* field3 = (Node*)lthird(cref->fields);
AssertEreport(IsA(field1, String), MOD_OPT, "");
nspname = strVal(field1);
AssertEreport(IsA(field2, String), MOD_OPT, "");
relname = strVal(field2);
/* Locate the referenced RTE */
if (hasplus) {
rte = refnameRangeTblEntry(pstate, nspname, relname, cref->location, NULL);
} else {
rte = refnameRangeTblEntry(pstate, nspname, relname, cref->location, &levels_up);
}
/* check if it's sequence function call, like: nsp.sequence.nextval */
if (rte == NULL && IsSequenceFuncCall(field1, field2, field3)) {
return transformSequenceFuncCall(pstate, field1, field2, field3, cref->location);
} else if (rte == NULL) {
crerr = CRERR_NO_RTE;
break;
}
/* Whole-row reference? */
if (IsA(field3, A_Star)) {
if (OrientedIsCOLorPAX(rte) || RelIsSpecifiedFTbl(rte, HDFS) || RelIsSpecifiedFTbl(rte, OBS)) {
Node* row_expr = convertStarToCRef(rte, NULL, nspname, relname, cref->location);
node = transformExpr(pstate, row_expr);
} else {
node = transformWholeRowRef(pstate, rte, cref->location);
}
break;
}
AssertEreport(IsA(field3, String), MOD_OPT, "");
colname = strVal(field3);
node = ParseColumnRef(pstate, rte, colname, cref);
break;
}
case 4: {
Node* field1 = (Node*)linitial(cref->fields);
Node* field2 = (Node*)lsecond(cref->fields);
Node* field3 = (Node*)lthird(cref->fields);
Node* field4 = (Node*)lfourth(cref->fields);
char* catname = NULL;
AssertEreport(IsA(field1, String), MOD_OPT, "");
catname = strVal(field1);
AssertEreport(IsA(field2, String), MOD_OPT, "");
nspname = strVal(field2);
AssertEreport(IsA(field3, String), MOD_OPT, "");
relname = strVal(field3);
/*
* We check the catalog name and then ignore it.
*/
if (strcmp(catname, get_and_check_db_name(u_sess->proc_cxt.MyDatabaseId, true)) != 0) {
crerr = CRERR_WRONG_DB;
break;
}
/* Locate the referenced RTE */
if (hasplus) {
rte = refnameRangeTblEntry(pstate, nspname, relname, cref->location, NULL);
} else {
rte = refnameRangeTblEntry(pstate, nspname, relname, cref->location, &levels_up);
}
/* check if it's sequence function call, like: nsp.sequence.nextval */
if (rte == NULL && IsSequenceFuncCall(field2, field3, field4)) {
return transformSequenceFuncCall(pstate, field2, field3, field4, cref->location);
} else if (rte == NULL) {
crerr = CRERR_NO_RTE;
break;
}
/* Whole-row reference? */
if (IsA(field4, A_Star)) {
if (OrientedIsCOLorPAX(rte) || RelIsSpecifiedFTbl(rte, HDFS) || RelIsSpecifiedFTbl(rte, OBS)) {
Node* row_expr = convertStarToCRef(rte, catname, nspname, relname, cref->location);
node = transformExpr(pstate, row_expr);
} else {
node = transformWholeRowRef(pstate, rte, cref->location);
}
break;
}
AssertEreport(IsA(field4, String), MOD_OPT, "");
colname = strVal(field4);
node = ParseColumnRef(pstate, rte, colname, cref);
break;
}
default:
crerr = CRERR_TOO_MANY; /* too many dotted names */
break;
}
/*
* Now give the PostParseColumnRefHook, if any, a chance. We pass the
* translation-so-far so that it can throw an error if it wishes in the
* case that it has a conflicting interpretation of the ColumnRef. (If it
* just translates anyway, we'll throw an error, because we can't undo
* whatever effects the preceding steps may have had on the pstate.) If it
* returns NULL, use the standard translation, or throw a suitable error
* if there is none.
*/
if (pstate->p_post_columnref_hook != NULL) {
Node* hookresult = NULL;
/*
* if node is not a table column, we should pass a null to the hook,
* or it will misjudge the columnref as ambiguous.
*/
hookresult = (*pstate->p_post_columnref_hook)(pstate, cref, node);
if (node == NULL) {
node = hookresult;
} else if (hookresult != NULL) {
if (IS_SUPPORT_RIGHT_REF(pstate->rightRefState)) {
node = hookresult;
} else {
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_COLUMN),
errmsg("column reference \"%s\" is ambiguous", NameListToString(cref->fields)),
parser_errposition(pstate, cref->location)));
}
}
}
if (node == NULL && u_sess->attr.attr_sql.sql_compatibility == A_FORMAT) {
node = tryTransformFunc(pstate, cref->fields, cref->location);
if (node) {
return node;
}
}
/* check current column match request index or not, use value in func in A_FORMAT */
if (u_sess->attr.attr_sql.sql_compatibility == A_FORMAT) {
Node* check = plpgsql_check_match_var(node, pstate, cref);
if (check) {
return check;
}
}
/*
* Throw error if no translation found.
*/
if (node == NULL) {
switch (crerr) {
case CRERR_NO_COLUMN:
errorMissingColumn(pstate, relname, colname, cref->location);
break;
case CRERR_NO_RTE:
errorMissingRTE(pstate, makeRangeVar(nspname, relname, cref->location), hasplus);
break;
case CRERR_WRONG_DB:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cross-database references are not implemented: %s", NameListToString(cref->fields)),
parser_errposition(pstate, cref->location)));
break;
case CRERR_TOO_MANY:
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("improper qualified name (too many dotted names): %s", NameListToString(cref->fields)),
parser_errposition(pstate, cref->location)));
break;
default:
break;
}
}
/* Only when hanlde operator "(+)" in WhereClause need recode the RTE info */
if (pstate->p_plusjoin_rte_info != NULL && pstate->p_plusjoin_rte_info->needrecord && rte != NULL) {
pstate->p_plusjoin_rte_info->info =
lappend(pstate->p_plusjoin_rte_info->info, makePlusJoinRTEItem(rte, hasplus));
}
return node;
}
static bool isCol2Function(List* fields)
{
char* schemaname = NULL;
char* pkgname = NULL;
char* funcname = NULL;
DeconstructQualifiedName(fields, &schemaname, &funcname, &pkgname);
Oid npsOid = InvalidOid;
Oid pkgOid = InvalidOid;
if (schemaname != NULL) {
npsOid = get_namespace_oid(schemaname, true);
}
else {
npsOid = getCurrentNamespace();
}
if (pkgname != NULL) {
pkgOid = PackageNameListGetOid(fields, true);
}
bool is_found = false;
/* check args and if have return arg*/
CatCList *catlist = NULL;
#ifndef ENABLE_MULTIPLE_NODES
if (t_thrd.proc->workingVersionNum < 92470) {
catlist = SearchSysCacheList1(PROCNAMEARGSNSP, CStringGetDatum(funcname));
} else {
catlist = SearchSysCacheList1(PROCALLARGS, CStringGetDatum(funcname));
}
#else
catlist = SearchSysCacheList1(PROCNAMEARGSNSP, CStringGetDatum(funcname));
#endif
for (int i = 0; i < catlist->n_members; i++) {
HeapTuple proctup = t_thrd.lsc_cxt.FetchTupleFromCatCList(catlist, i);
Form_pg_proc procform = (Form_pg_proc)GETSTRUCT(proctup);
/* get function all args */
Oid *p_argtypes = NULL;
char **p_argnames = NULL;
char *p_argmodes = NULL;
int allArgs = get_func_arg_info(proctup, &p_argtypes, &p_argnames, &p_argmodes);
if (allArgs > 0 || !OidIsValid(procform->prorettype)) {
continue;
}
if (OidIsValid(npsOid)) {
/* Consider only procs in specified namespace */
if (procform->pronamespace != npsOid) {
continue;
}
}
if (OidIsValid(pkgOid)) {
bool isNull = false;
Datum packageid_datum = SysCacheGetAttr(PROCOID, proctup, Anum_pg_proc_packageid, &isNull);
Oid packageid = ObjectIdGetDatum(packageid_datum);
if (packageid != pkgOid) {
continue;
}
}
is_found = true;
}
ReleaseSysCacheList(catlist);
return is_found;
}
static Node* tryTransformFunc(ParseState* pstate, List* fields, int location)
{
if (!isCol2Function(fields)) {
return NULL;
}
Node* result = NULL;
FuncCall *fn = makeNode(FuncCall);
fn->funcname = fields;
fn->args = NIL;
fn->agg_order = NIL;
fn->agg_star = FALSE;
fn->agg_distinct = FALSE;
fn->func_variadic = FALSE;
fn->over = NULL;
fn->location = location;
fn->call_func = false;
/* function must have 0 args */
List* targs = NIL;
/* ... and hand off to ParseFuncOrColumn */
result = ParseFuncOrColumn(pstate, fn->funcname, targs, fn, fn->location, fn->call_func);
/* extract out parameter for package function */
if (IsPackageFunction(fn->funcname) && result != NULL && nodeTag(result) == T_FuncExpr && fn->call_func) {
FuncExpr* funcexpr = (FuncExpr*)result;
int funcoid = funcexpr->funcid;
funcexpr->args = extract_function_outarguments(funcoid, funcexpr->args, fn->funcname);
}
return result;
}
static Node* transformParamRef(ParseState* pstate, ParamRef* pref)
{
Node* result = NULL;
/*
* The core parser knows nothing about Params. If a hook is supplied,
* call it. If not, or if the hook returns NULL, throw a generic error.
*/
if (pstate->p_paramref_hook != NULL) {
result = (*pstate->p_paramref_hook)(pstate, pref);
} else {
result = NULL;
}
if (result == NULL) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_PARAMETER),
errmsg("there is no parameter $%d", pref->number),
parser_errposition(pstate, pref->location)));
}
return result;
}
/* Test whether an a_expr is a plain NULL constant or not */
static bool exprIsNullConstant(Node* arg)
{
if (arg && IsA(arg, A_Const)) {
A_Const* con = (A_Const*)arg;
if (con->val.type == T_Null) {
return true;
}
}
return false;
}
static Node* transformAExprOp(ParseState* pstate, A_Expr* a)
{
Node* lexpr = a->lexpr;
Node* rexpr = a->rexpr;
Node* result = NULL;
/*
* Special-case "foo = NULL" and "NULL = foo" for compatibility with
* standards-broken products (like Microsoft's). Turn these into IS NULL
* exprs. (If either side is a CaseTestExpr, then the expression was
* generated internally from a CASE-WHEN expression, and
* transform_null_equals does not apply.)
*/
if (u_sess->attr.attr_sql.Transform_null_equals && list_length(a->name) == 1 &&
strcmp(strVal(linitial(a->name)), "=") == 0 && (exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)) &&
(!IsA(lexpr, CaseTestExpr) && !IsA(rexpr, CaseTestExpr))) {
NullTest* n = makeNode(NullTest);
n->nulltesttype = IS_NULL;
n->arg = exprIsNullConstant(lexpr) ? (Expr *)rexpr : (Expr *)lexpr;
result = transformExpr(pstate, (Node*)n);
} else if (lexpr && IsA(lexpr, RowExpr) && rexpr && IsA(rexpr, SubLink) &&
((SubLink*)rexpr)->subLinkType == EXPR_SUBLINK) {
/*
* Convert "row op subselect" into a ROWCOMPARE sublink. Formerly the
* grammar did this, but now that a row construct is allowed anywhere
* in expressions, it's easier to do it here.
*/
SubLink* s = (SubLink*)rexpr;
s->subLinkType = ROWCOMPARE_SUBLINK;
s->testexpr = lexpr;
s->operName = a->name;
s->location = a->location;
result = transformExpr(pstate, (Node*)s);
} else if (lexpr && IsA(lexpr, RowExpr) && rexpr && IsA(rexpr, RowExpr)) {
/* "row op row" */
lexpr = transformExpr(pstate, lexpr);
rexpr = transformExpr(pstate, rexpr);
AssertEreport(IsA(lexpr, RowExpr), MOD_OPT, "");
AssertEreport(IsA(rexpr, RowExpr), MOD_OPT, "");
result = make_row_comparison_op(pstate, a->name, ((RowExpr*)lexpr)->args, ((RowExpr*)rexpr)->args, a->location);
} else {
/* Ordinary scalar operator */
lexpr = transformExpr(pstate, lexpr);
rexpr = transformExpr(pstate, rexpr);
result = (Node*)make_op(pstate, a->name, lexpr, rexpr, a->location);
}
return result;
}
static Node* transformAExprAnd(ParseState* pstate, A_Expr* a)
{
Node* lexpr = transformExpr(pstate, a->lexpr);
Node* rexpr = transformExpr(pstate, a->rexpr);
lexpr = coerce_to_boolean(pstate, lexpr, "AND");
rexpr = coerce_to_boolean(pstate, rexpr, "AND");
return (Node*)makeBoolExpr(AND_EXPR, list_make2(lexpr, rexpr), a->location);
}
static Node* transformAExprOr(ParseState* pstate, A_Expr* a)
{
Node* lexpr = transformExpr(pstate, a->lexpr);
Node* rexpr = transformExpr(pstate, a->rexpr);
lexpr = coerce_to_boolean(pstate, lexpr, "OR");
rexpr = coerce_to_boolean(pstate, rexpr, "OR");
return (Node*)makeBoolExpr(OR_EXPR, list_make2(lexpr, rexpr), a->location);
}
static Node* transformAExprNot(ParseState* pstate, A_Expr* a)
{
Node* rexpr = transformExpr(pstate, a->rexpr);
rexpr = coerce_to_boolean(pstate, rexpr, "NOT");
return (Node*)makeBoolExpr(NOT_EXPR, list_make1(rexpr), a->location);
}
static Node* transformAExprOpAny(ParseState* pstate, A_Expr* a)
{
Node* lexpr = transformExpr(pstate, a->lexpr);
Node* rexpr = transformExpr(pstate, a->rexpr);
return (Node*)make_scalar_array_op(pstate, a->name, true, lexpr, rexpr, a->location);
}
static Node* transformAExprOpAll(ParseState* pstate, A_Expr* a)
{
Node* lexpr = transformExpr(pstate, a->lexpr);
Node* rexpr = transformExpr(pstate, a->rexpr);
return (Node*)make_scalar_array_op(pstate, a->name, false, lexpr, rexpr, a->location);
}
static Node* transformAExprDistinct(ParseState* pstate, A_Expr* a)
{
Node* lexpr = transformExpr(pstate, a->lexpr);
Node* rexpr = transformExpr(pstate, a->rexpr);
if (lexpr && IsA(lexpr, RowExpr) && rexpr && IsA(rexpr, RowExpr)) {
/* "row op row" */
return make_row_distinct_op(pstate, a->name, (RowExpr*)lexpr, (RowExpr*)rexpr, a->location);
} else {
/* Ordinary scalar operator */
return (Node*)make_distinct_op(pstate, a->name, lexpr, rexpr, a->location);
}
}
static Node* transformAExprNullIf(ParseState* pstate, A_Expr* a)
{
Node* lexpr = transformExpr(pstate, a->lexpr);
Node* rexpr = transformExpr(pstate, a->rexpr);
OpExpr* result = NULL;
result = (OpExpr*)make_op(pstate, a->name, lexpr, rexpr, a->location);
/*
* The comparison operator itself should yield boolean ...
*/
if (result->opresulttype != BOOLOID) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("NULLIF requires = operator to yield boolean"),
parser_errposition(pstate, a->location)));
}
/*
* ... but the NullIfExpr will yield the first operand's type.
*/
result->opresulttype = exprType((Node*)linitial(result->args));
/*
* We rely on NullIfExpr and OpExpr being the same struct
*/
NodeSetTag(result, T_NullIfExpr);
return (Node*)result;
}
static Node* transformAExprOf(ParseState* pstate, A_Expr* a)
{
/*
* Checking an expression for match to a list of type names. Will result
* in a boolean constant node.
*/
Node* lexpr = transformExpr(pstate, a->lexpr);
Const* result = NULL;
ListCell* telem = NULL;
Oid ltype, rtype;
bool matched = false;
ltype = exprType(lexpr);
foreach (telem, (List*)a->rexpr) {
rtype = typenameTypeId(pstate, (const TypeName*)lfirst(telem));
matched = (rtype == ltype);
if (matched) {
break;
}
}
/*
* We have two forms: equals or not equals. Flip the sense of the result
* for not equals.
*/
if (strcmp(strVal(linitial(a->name)), "<>") == 0) {
matched = (!matched);
}
result = (Const*)makeBoolConst(matched, false);
/* Make the result have the original input's parse location */
result->location = exprLocation((Node*)a);
return (Node*)result;
}
static Node* transformAExprIn(ParseState* pstate, A_Expr* a)
{
Node* result = NULL;
Node* lexpr = NULL;
List* rexprs = NIL;
List* rvars = NIL;
List* rnonvars = NIL;
bool useOr = false;
bool haveRowExpr = false;
bool haveSetType = false;
ListCell* l = NULL;
/*
* If the operator is <>, combine with AND not OR.
*/
if (strcmp(strVal(linitial(a->name)), "<>") == 0) {
useOr = false;
} else {
useOr = true;
}
/*
* We try to generate a ScalarArrayOpExpr from IN/NOT IN, but this is only
* possible if the inputs are all scalars (no RowExprs) and there is a
* suitable array type available. If not, we fall back to a boolean
* condition tree with multiple copies of the lefthand expression. Also,
* any IN-list items that contain Vars are handled as separate boolean
* conditions, because that gives the planner more scope for optimization
* on such clauses.
*
* First step: transform all the inputs, and detect whether any are
* RowExprs or contain Vars.
*/
lexpr = transformExpr(pstate, a->lexpr);
haveRowExpr = (lexpr && IsA(lexpr, RowExpr));
haveSetType = type_is_set(exprType(lexpr));
rexprs = rvars = rnonvars = NIL;
foreach (l, (List*)a->rexpr) {
Node* rexpr = (Node*)transformExpr(pstate, (Node*)lfirst(l));
haveRowExpr = haveRowExpr || (rexpr && IsA(rexpr, RowExpr));
haveSetType = haveSetType || type_is_set(exprType(rexpr));
rexprs = lappend(rexprs, rexpr);
if (contain_vars_of_level(rexpr, 0)) {
rvars = lappend(rvars, rexpr);
} else {
rnonvars = lappend(rnonvars, rexpr);
}
}
/*
* ScalarArrayOpExpr is only going to be useful if there's more than one
* non-Var righthand item. Also, it won't work for RowExprs.
*/
if (!haveRowExpr && list_length(rnonvars) > 1) {
List* allexprs = NIL;
Oid scalar_type;
Oid array_type;
const char *context = haveSetType ? "IN" : NULL;
/*
* Try to select a common type for the array elements. Note that
* since the LHS' type is first in the list, it will be preferred when
* there is doubt (eg, when all the RHS items are unknown literals).
*
* Note: use list_concat here not lcons, to avoid damaging rnonvars.
*/
allexprs = list_concat(list_make1(lexpr), rnonvars);
scalar_type = select_common_type(pstate, allexprs, context, NULL);
/* Do we have an array type to use? */
if (OidIsValid(scalar_type)) {
array_type = get_array_type(scalar_type);
} else {
array_type = InvalidOid;
}
if (array_type != InvalidOid) {
/*
* OK: coerce all the right-hand non-Var inputs to the common type
* and build an ArrayExpr for them.
*/
List* aexprs = NIL;
ArrayExpr* newa = NULL;
aexprs = NIL;
foreach (l, rnonvars) {
Node* rexpr = (Node*)lfirst(l);
rexpr = coerce_to_common_type(pstate, rexpr, scalar_type, "IN");
aexprs = lappend(aexprs, rexpr);
}
newa = makeNode(ArrayExpr);
newa->array_typeid = array_type;
/* array_collid will be set by parse_collate.c */
newa->element_typeid = scalar_type;
newa->elements = aexprs;
newa->multidims = false;
newa->location = -1;
result = (Node*)make_scalar_array_op(pstate, a->name, useOr, lexpr, (Node*)newa, a->location);
/* Consider only the Vars (if any) in the loop below */
rexprs = rvars;
}
}
/*
* Must do it the hard way, ie, with a boolean expression tree.
*/
foreach (l, rexprs) {
Node* rexpr = (Node*)lfirst(l);
Node* cmp = NULL;
if (haveRowExpr) {
if (!IsA(lexpr, RowExpr) || !IsA(rexpr, RowExpr)) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("arguments of row IN must all be row expressions"),
parser_errposition(pstate, a->location)));
}
cmp = make_row_comparison_op(
pstate, a->name, (List*)copyObject(((RowExpr*)lexpr)->args), ((RowExpr*)rexpr)->args, a->location);
} else {
cmp = (Node*)make_op(pstate, a->name, (Node*)copyObject(lexpr), rexpr, a->location);
}
cmp = coerce_to_boolean(pstate, cmp, "IN");
if (result == NULL) {
result = cmp;
} else {
result = (Node*)makeBoolExpr(useOr ? OR_EXPR : AND_EXPR, list_make2(result, cmp), a->location);
}
}
return result;
}
bool IsStartWithFunction(FuncExpr* result)
{
return result->funcid == SYS_CONNECT_BY_PATH_FUNCOID ||
result->funcid == CONNECT_BY_ROOT_FUNCOID;
}
static bool NeedExtractOutParam(FuncCall* fn, Node* result)
{
if (result == NULL || nodeTag(result) != T_FuncExpr) {
return false;
}
/* Always extract for called package functions */
if (IsPackageFunction(fn->funcname) && fn->call_func) {
return true;
}
/*
* When proc_outparam_override is on, extract all but select func
*/
FuncExpr* funcexpr = (FuncExpr*)result;
Oid schema_oid = get_func_namespace(funcexpr->funcid);
if (IsAformatStyleFunctionOid(schema_oid) && enable_out_param_override()) {
return false;
}
if (is_function_with_plpgsql_language_and_outparam(funcexpr->funcid) && !fn->call_func) {
return true;
}
char prokind = get_func_prokind(funcexpr->funcid);
if (!PROC_IS_PRO(prokind) && !fn->call_func) {
return false;
}
#ifndef ENABLE_MULTIPLE_NODES
return enable_out_param_override();
#else
return false;
#endif
}
/*
* rewrite userSetElem.
* extract name from old userSetElem into new userSetElem,
* such as, @var_name1 := @var_name2 := @var_name3 := ... := expr.
*/
static Node* transformUserSetElem(ParseState* pstate, UserSetElem *elem)
{
UserSetElem *result = makeNode(UserSetElem);
result->name = elem->name;
Node *value = transformExpr(pstate, (Node*)elem->val);
if (IsA(elem->val, UserSetElem)) {
result->name = list_concat(result->name, ((UserSetElem *)value)->name);
result->val = ((UserSetElem *)value)->val;
} else {
result->val = (Expr *)value;
}
return (Node *)result;
}
/*
* Get user_defined varibales from hash table,
* if not found, NULL is returned.
*/
static Node* transformUserVar(UserVar *uservar)
{
bool found = false;
GucUserParamsEntry *entry = (GucUserParamsEntry *)hash_search(u_sess->utils_cxt.set_user_params_htab,
uservar->name, HASH_FIND, &found);
if (!found) {
/* return a null const */
Const *nullValue = makeConst(UNKNOWNOID, -1, InvalidOid, -2, (Datum)0, true, false);
return (Node *)nullValue;
}
UserVar *result = makeNode(UserVar);
result->name = uservar->name;
result->value = (Expr *)copyObject(entry->value);
return (Node *)result;
}
static Node* transformFuncCall(ParseState* pstate, FuncCall* fn)
{
List* targs = NIL;
ListCell* args = NULL;
Node* result = NULL;
/* Transform the list of arguments ... */
targs = NIL;
foreach (args, fn->args) {
targs = lappend(targs, transformExpr(pstate, (Node*)lfirst(args)));
}
if (fn->agg_within_group) {
Assert(fn->agg_order != NIL);
foreach (args, fn->agg_order) {
SortBy* arg = (SortBy*)lfirst(args);
targs = lappend(targs, transformExpr(pstate, arg->node));
}
}
/* ... and hand off to ParseFuncOrColumn */
result = ParseFuncOrColumn(pstate, fn->funcname, targs, fn, fn->location, fn->call_func);
if (IsStartWithFunction((FuncExpr*)result) && !pstate->p_hasStartWith) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmodule(MOD_OPT),
errmsg("Invalid function call."),
errdetail("START WITH CONNECT BY function found in non-hierarchical query."),
errcause("Incorrect query input"),
erraction("Please check and revise your query")));
}
#ifndef ENABLE_MULTIPLE_NODES
if (u_sess->plsql_cxt.curr_compile_context != NULL) {
if (result != NULL && nodeTag(result) == T_FuncExpr) {
FuncExpr* funcexpr = (FuncExpr*)result;
SubCheckOutParam(targs, funcexpr->funcid);
}
}
#endif
/* extract out parameter for package function */
if (NeedExtractOutParam(fn, result)) {
FuncExpr* funcexpr = (FuncExpr*)result;
int funcoid = funcexpr->funcid;
funcexpr->args = extract_function_outarguments(funcoid, funcexpr->args, fn->funcname);
}
/* lock nextval on cn when transformFuncExpr to avoid dead lock with alter sequence */
lockSeqForNextvalFunc(result);
return result;
}
/*
* @Description: We should lock sequence on CN when use nextval to avoid deadlock on dn
* with alter sequence.
* @in node - FuncExpr node
*/
void lockSeqForNextvalFunc(Node* node)
{
if (node != NULL && IsA(node, FuncExpr) && ((FuncExpr*)node)->funcid == NEXTVALFUNCOID) {
FuncExpr* funcexpr = (FuncExpr*)node;
Assert(funcexpr->args->length == 1);
if (IsA(linitial(funcexpr->args), Const)) {
Const* con = (Const*)linitial(funcexpr->args);
/* lock sequence and hold the lock */
Oid relid = DatumGetObjectId(con->constvalue);
lockNextvalOnCn(relid);
}
}
}
/*
* @Description: get function's oid for overlaod function
* @in fun_expr - function call statement
* @in expr - plpgsql expr
* @return - function's oid
*/
Oid getMultiFuncInfo(char* fun_expr, PLpgSQL_expr* expr, bool isoutparamcheck)
{
List* raw_parser_list = raw_parser(fun_expr);
ListCell* parsetree_item = NULL;
foreach (parsetree_item, raw_parser_list) {
Node* parsetree = (Node*)lfirst(parsetree_item);
ParseState* pstate = make_parsestate(NULL);
plpgsql_parser_setup(pstate, expr);
if (nodeTag(parsetree) == T_SelectStmt) {
SelectStmt* stmt = (SelectStmt*)parsetree;
List* frmList = isoutparamcheck ? stmt->targetList : stmt->fromClause;
ListCell* fl = NULL;
foreach (fl, frmList) {
Node* n = (Node*)lfirst(fl);
List* targs = NIL;
ListCell* args = NULL;
FuncCall* fn = NULL;
if (IsA(n, RangeFunction)) {
RangeFunction* r = (RangeFunction*)n;
if (r->funccallnode != NULL && nodeTag(r->funccallnode) == T_FuncCall) {
fn = (FuncCall*)(r->funccallnode);
}
} else if (isoutparamcheck && IsA(n, ResTarget)) {
ResTarget* r = (ResTarget*)n;
if (r->val != NULL && nodeTag(r->val) == T_FuncCall) {
fn = (FuncCall*)(r->val);
}
}
if (fn == NULL) {
continue;
}
foreach (args, fn->args) {
targs = lappend(targs, transformExpr(pstate, (Node*)lfirst(args)));
}
Node* result = ParseFuncOrColumn(pstate, fn->funcname, targs, fn, fn->location, true);
if (result != NULL && nodeTag(result) == T_FuncExpr) {
FuncExpr* funcexpr = (FuncExpr*)result;
if (isoutparamcheck) {
SubCheckOutParam(targs, funcexpr->funcid);
}
return funcexpr->funcid;
}
}
}
}
return InvalidOid;
}
static void SubCheckOutParam(List* exprtargs, Oid funcid)
{
if (OidIsValid(funcid)) {
HeapTuple proctup = SearchSysCache(PROCOID, ObjectIdGetDatum(funcid), 0, 0, 0);
/*
* function may be deleted after clist be searched.
*/
if (!HeapTupleIsValid(proctup)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function Oid \"%d\" doesn't exist ", funcid)));
}
Oid *p_argtypes = NULL;
char **p_argnames = NULL;
char *p_argmodes = NULL;
/* get the all args informations, only "in" parameters if p_argmodes is null */
int all_arg = get_func_arg_info(proctup, &p_argtypes, &p_argnames, &p_argmodes);
Form_pg_proc procStruct = (Form_pg_proc) GETSTRUCT(proctup);
char *funcname = NameStr(procStruct->proname);
ReleaseSysCache(proctup);
if ((0 == all_arg || NULL == p_argmodes || all_arg != list_length(exprtargs))) {
return;
}
ListCell* cell1 = NULL;
int i = 0;
foreach(cell1, exprtargs) {
if (nodeTag(((Node*)lfirst(cell1))) != T_Param && (p_argmodes[i] == 'o' || p_argmodes[i] == 'b')) {
StringInfoData buf;
initStringInfo(&buf);
appendStringInfo(&buf, "$%d", i);
char *p_argname = p_argnames != NULL ? p_argnames[i]:buf.data;
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("when invoking function %s, no destination for argments num \"%s\"",
funcname, p_argname)));
}
i++;
}
}
}
void CheckOutParamIsConst(PLpgSQL_expr* expr)
{
PLpgSQL_function *function = NULL;
PLpgSQL_execstate *estate = (PLpgSQL_execstate*)palloc(sizeof(PLpgSQL_execstate));
expr->func = (PLpgSQL_function *) palloc0(sizeof(PLpgSQL_function));
function = expr->func;
function->fn_is_trigger = false;
function->fn_input_collation = InvalidOid;
function->out_param_varno = -1; /* set up for no OUT param */
function->resolve_option = GetResolveOption();
function->fn_cxt = CurrentMemoryContext;
PLpgSQL_compile_context* curr_compile = u_sess->plsql_cxt.curr_compile_context;
estate->ndatums = curr_compile->plpgsql_nDatums;
estate->datums = (PLpgSQL_datum **)palloc(sizeof(PLpgSQL_datum *) * curr_compile->plpgsql_nDatums);
for (int i = 0; i < curr_compile->plpgsql_nDatums; i++)
estate->datums[i] = curr_compile->plpgsql_Datums[i];
function->cur_estate = estate;
function->cur_estate->func = function;
(void)getMultiFuncInfo(expr->query, expr, true);
if (expr->func != NULL)
pfree_ext(expr->func);
if (estate->datums != NULL)
pfree_ext(estate->datums);
if (estate != NULL)
pfree_ext(estate);
expr->func = NULL;
}
static Node* transformCaseExpr(ParseState* pstate, CaseExpr* c)
{
CaseExpr* newc = NULL;
Node* arg = NULL;
CaseTestExpr* placeholder = NULL;
List* newargs = NIL;
List* resultexprs = NIL;
ListCell* l = NULL;
Node* defresult = NULL;
Oid ptype;
/* If we already transformed this node, do nothing */
if (OidIsValid(c->casetype)) {
return (Node*)c;
}
bool saved_is_case_when = pstate->p_is_case_when;
pstate->p_is_case_when = true;
newc = makeNode(CaseExpr);
/* transform the test expression, if any */
arg = transformExpr(pstate, (Node*)c->arg);
/* generate placeholder for test expression */
if (arg != NULL) {
/*
* If test expression is an untyped literal, force it to text. We have
* to do something now because we won't be able to do this coercion on
* the placeholder. This is not as flexible as what was done in 7.4
* and before, but it's good enough to handle the sort of silly coding
* commonly seen.
*/
if (exprType(arg) == UNKNOWNOID) {
arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE");
}
/*
* Run collation assignment on the test expression so that we know
* what collation to mark the placeholder with. In principle we could
* leave it to parse_collate.c to do that later, but propagating the
* result to the CaseTestExpr would be unnecessarily complicated.
*/
assign_expr_collations(pstate, arg);
placeholder = makeNode(CaseTestExpr);
placeholder->typeId = exprType(arg);
placeholder->typeMod = exprTypmod(arg);
placeholder->collation = exprCollation(arg);
} else {
placeholder = NULL;
}
newc->arg = (Expr*)arg;
/* transform the list of arguments */
newargs = NIL;
resultexprs = NIL;
foreach (l, c->args) {
CaseWhen* w = (CaseWhen*)lfirst(l);
CaseWhen* neww = makeNode(CaseWhen);
Node* warg = NULL;
AssertEreport(IsA(w, CaseWhen), MOD_OPT, "");
warg = (Node*)w->expr;
if (placeholder != NULL) {
/* shorthand form was specified, so expand... */
warg = (Node*)makeSimpleA_Expr(AEXPR_OP, "=", (Node*)placeholder, warg, w->location);
}
neww->expr = (Expr*)transformExpr(pstate, warg);
neww->expr = (Expr*)coerce_to_boolean(pstate, (Node*)neww->expr, "CASE/WHEN");
warg = (Node*)w->result;
neww->result = (Expr*)transformExpr(pstate, warg);
neww->location = w->location;
newargs = lappend(newargs, neww);
resultexprs = lappend(resultexprs, neww->result);
}
newc->args = newargs;
/* transform the default clause */
defresult = (Node*)c->defresult;
if (defresult == NULL) {
A_Const* n = makeNode(A_Const);
n->val.type = T_Null;
n->location = -1;
defresult = (Node*)n;
}
newc->defresult = (Expr*)transformExpr(pstate, defresult);
/* check results in resultexprs and defresult whether all are in the whitelist. */
List* defresultexprs = NIL;
defresultexprs = lappend(defresultexprs, newc->defresult);
bool allInWhitelist = check_all_in_whitelist(resultexprs) && check_all_in_whitelist(defresultexprs);
list_free_ext(defresultexprs);
/*
* Note: default result is considered the most significant type in
* determining preferred type. This is how the code worked before, but it
* seems a little bogus to me --- tgl
*
* For A format, result1 is considered the most significant type in
* determining preferred type. So append default result to the end of
* the list. Make sure result1 is the first element of the list.
*/
if (u_sess->attr.attr_sql.sql_compatibility == A_FORMAT &&
ENABLE_SQL_BETA_FEATURE(A_STYLE_COERCE) && allInWhitelist) {
resultexprs = lappend(resultexprs, newc->defresult);
} else {
resultexprs = lcons(newc->defresult, resultexprs);
}
ptype = select_common_type(pstate, resultexprs, "CASE", NULL);
AssertEreport(OidIsValid(ptype), MOD_OPT, "");
newc->casetype = ptype;
/* casecollid will be set by parse_collate.c */
/* Convert default result clause, if necessary */
newc->defresult = (Expr*)coerce_to_common_type(pstate, (Node*)newc->defresult, ptype, "CASE/ELSE");
/* Convert when-clause results, if necessary */
foreach (l, newc->args) {
CaseWhen* w = (CaseWhen*)lfirst(l);
w->result = (Expr*)coerce_to_common_type(pstate, (Node*)w->result, ptype, "CASE/WHEN");
}
newc->location = c->location;
pstate->p_is_case_when = saved_is_case_when;
return (Node*)newc;
}
/*
* transformSetVariableExpr gets variable's value according to name and saves it in ConstExpr
*/
Node* transformSetVariableExpr(SetVariableExpr* set)
{
SetVariableExpr *result = makeNode(SetVariableExpr);
result->name = set->name;
result->is_session = set->is_session;
result->is_global = set->is_global;
Const *values = setValueToConstExpr(set);
result->value = (Expr*)copyObject(values);
return (Node *)result;
}
static Node* transformSelectIntoVarList(ParseState* pstate, SelectIntoVarList* sis)
{
SubLink* sublink = (SubLink *)sis->sublink;
Query* qtree = NULL;
if (IsA(sublink->subselect, Query)) {
return (Node *)sis;
}
pstate->p_hasSubLinks = true;
qtree = parse_sub_analyze(sublink->subselect, pstate, NULL, false, true);
if (!IsA(qtree, Query) || qtree->commandType != CMD_SELECT || qtree->utilityStmt != NULL) {
ereport(ERROR, (errcode(ERRCODE_INVALID_OPERATION), errmsg("unexpected non-SELECT command in SubLink")));
}
sublink->subselect = (Node*)qtree;
if (list_length(qtree->targetList) != list_length(sis->userVarList)) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("number of variables must equal the number of columns"),
parser_errposition(pstate, sublink->location)));
}
return (Node *)sis;
}
static Node* transformSubLink(ParseState* pstate, SubLink* sublink)
{
Node* result = (Node*)sublink;
Query* qtree = NULL;
/* If we already transformed this node, do nothing */
if (IsA(sublink->subselect, Query)) {
return result;
}
pstate->p_hasSubLinks = true;
qtree = parse_sub_analyze(sublink->subselect, pstate, NULL, false, true);
/*
* Check that we got something reasonable. Many of these conditions are
* impossible given restrictions of the grammar, but check 'em anyway.
*/
if (!IsA(qtree, Query) || qtree->commandType != CMD_SELECT || qtree->utilityStmt != NULL) {
ereport(ERROR, (errcode(ERRCODE_INVALID_OPERATION), errmsg("unexpected non-SELECT command in SubLink")));
}
sublink->subselect = (Node*)qtree;
if (sublink->subLinkType == EXISTS_SUBLINK) {
/*
* EXISTS needs no test expression or combining operator. These fields
* should be null already, but make sure.
*/
sublink->testexpr = NULL;
sublink->operName = NIL;
} else if (sublink->subLinkType == EXPR_SUBLINK || sublink->subLinkType == ARRAY_SUBLINK) {
ListCell* tlist_item = list_head(qtree->targetList);
/*
* Make sure the subselect delivers a single column (ignoring resjunk
* targets).
*/
if (tlist_item == NULL || ((TargetEntry*)lfirst(tlist_item))->resjunk) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("subquery must return a column"),
parser_errposition(pstate, sublink->location)));
}
while ((tlist_item = lnext(tlist_item)) != NULL) {
if (!((TargetEntry*)lfirst(tlist_item))->resjunk) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("subquery must return only one column"),
parser_errposition(pstate, sublink->location)));
}
}
/*
* EXPR and ARRAY need no test expression or combining operator. These
* fields should be null already, but make sure.
*/
sublink->testexpr = NULL;
sublink->operName = NIL;
} else {
/* ALL, ANY, or ROWCOMPARE: generate row-comparing expression */
Node* lefthand = NULL;
List* left_list = NIL;
List* right_list = NIL;
ListCell* l = NULL;
/*
* Transform lefthand expression, and convert to a list
*/
lefthand = transformExpr(pstate, sublink->testexpr);
if (lefthand && IsA(lefthand, RowExpr)) {
left_list = ((RowExpr*)lefthand)->args;
} else {
left_list = list_make1(lefthand);
}
/*
* Build a list of PARAM_SUBLINK nodes representing the output columns
* of the subquery.
*/
right_list = NIL;
foreach (l, qtree->targetList) {
TargetEntry* tent = (TargetEntry*)lfirst(l);
Param* param = NULL;
if (tent->resjunk) {
continue;
}
param = makeNode(Param);
param->paramkind = PARAM_SUBLINK;
param->paramid = tent->resno;
param->paramtype = exprType((Node*)tent->expr);
param->paramtypmod = exprTypmod((Node*)tent->expr);
param->paramcollid = exprCollation((Node*)tent->expr);
param->location = -1;
param->tableOfIndexTypeList = NULL;
right_list = lappend(right_list, param);
}
/*
* We could rely on make_row_comparison_op to complain if the list
* lengths differ, but we prefer to generate a more specific error
* message.
*/
if (list_length(left_list) < list_length(right_list)) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("subquery has too many columns"),
parser_errposition(pstate, sublink->location)));
}
if (list_length(left_list) > list_length(right_list)) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("subquery has too few columns"),
parser_errposition(pstate, sublink->location)));
}
/*
* Identify the combining operator(s) and generate a suitable
* row-comparison expression.
*/
sublink->testexpr = make_row_comparison_op(pstate, sublink->operName, left_list, right_list, sublink->location);
}
return result;
}
/*
* transformArrayExpr
*
* If the caller specifies the target type, the resulting array will
* be of exactly that type. Otherwise we try to infer a common type
* for the elements using select_common_type().
*/
static Node* transformArrayExpr(ParseState* pstate, A_ArrayExpr* a, Oid array_type, Oid element_type, int32 typmod)
{
ArrayExpr* newa = makeNode(ArrayExpr);
List* newelems = NIL;
List* newcoercedelems = NIL;
ListCell* element = NULL;
Oid coerce_type;
bool coerce_hard = false;
/*
* Transform the element expressions
*
* Assume that the array is one-dimensional unless we find an array-type
* element expression.
*/
newa->multidims = false;
foreach (element, a->elements) {
Node* e = (Node*)lfirst(element);
Node* newe = NULL;
/*
* If an element is itself an A_ArrayExpr, recurse directly so that we
* can pass down any target type we were given.
*/
if (IsA(e, A_ArrayExpr)) {
newe = transformArrayExpr(pstate, (A_ArrayExpr*)e, array_type, element_type, typmod);
/* we certainly have an array here */
AssertEreport(array_type == InvalidOid || array_type == exprType(newe), MOD_OPT, "");
newa->multidims = true;
} else {
newe = transformExpr(pstate, e);
/*
* Check for sub-array expressions, if we haven't already found
* one.
*/
if (!newa->multidims && type_is_array(exprType(newe))) {
newa->multidims = true;
}
}
newelems = lappend(newelems, newe);
}
/*
* Select a target type for the elements.
*
* If we haven't been given a target array type, we must try to deduce a
* common type based on the types of the individual elements present.
*/
if (OidIsValid(array_type)) {
/* Caller must ensure array_type matches element_type */
AssertEreport(OidIsValid(element_type), MOD_OPT, "");
coerce_type = (newa->multidims ? array_type : element_type);
coerce_hard = true;
} else {
/* Can't handle an empty array without a target type */
if (newelems == NIL) {
ereport(ERROR,
(errcode(ERRCODE_INDETERMINATE_DATATYPE),
errmsg("cannot determine type of empty array"),
errhint("Explicitly cast to the desired type, "
"for example ARRAY[]::integer[]."),
parser_errposition(pstate, a->location)));
}
/* Select a common type for the elements */
coerce_type = select_common_type(pstate, newelems, "ARRAY", NULL);
if (newa->multidims) {
array_type = coerce_type;
element_type = get_element_type(array_type);
if (!OidIsValid(element_type)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find element type for data type %s", format_type_be(array_type)),
parser_errposition(pstate, a->location)));
}
} else {
element_type = coerce_type;
array_type = get_array_type(element_type);
if (!OidIsValid(array_type)) {
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find array type for data type %s", format_type_be(element_type)),
parser_errposition(pstate, a->location)));
}
}
coerce_hard = false;
}
/*
* Coerce elements to target type
*
* If the array has been explicitly cast, then the elements are in turn
* explicitly coerced.
*
* If the array's type was merely derived from the common type of its
* elements, then the elements are implicitly coerced to the common type.
* This is consistent with other uses of select_common_type().
*/
foreach (element, newelems) {
Node* e = (Node*)lfirst(element);
Node* newe = NULL;
if (coerce_hard) {
newe = coerce_to_target_type(
pstate, e, exprType(e), coerce_type, typmod, COERCION_EXPLICIT, COERCE_EXPLICIT_CAST, -1);
if (newe == NULL) {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s", format_type_be(exprType(e)), format_type_be(coerce_type)),
parser_errposition(pstate, exprLocation(e))));
}
} else {
newe = coerce_to_common_type(pstate, e, coerce_type, "ARRAY");
}
newcoercedelems = lappend(newcoercedelems, newe);
}
newa->array_typeid = array_type;
/* array_collid will be set by parse_collate.c */
newa->element_typeid = element_type;
newa->elements = newcoercedelems;
newa->location = a->location;
return (Node*)newa;
}
static Node* transformRowExpr(ParseState* pstate, RowExpr* r)
{
RowExpr* newr = NULL;
char fname[16];
int fnum;
ListCell* lc = NULL;
/* If we already transformed this node, do nothing */
if (OidIsValid(r->row_typeid)) {
return (Node*)r;
}
newr = makeNode(RowExpr);
/* Transform the field expressions */
newr->args = transformExpressionList(pstate, r->args);
/* Barring later casting, we consider the type RECORD */
newr->row_typeid = RECORDOID;
newr->row_format = COERCE_IMPLICIT_CAST;
/* ROW() has anonymous columns, so invent some field names */
newr->colnames = NIL;
fnum = 1;
foreach (lc, newr->args) {
int rcs;
rcs = snprintf_s(fname, sizeof(fname), sizeof(fname) - 1, "f%d", fnum++);
securec_check_ss_c(rcs, "\0", "\0");
newr->colnames = lappend(newr->colnames, makeString(pstrdup(fname)));
}
newr->location = r->location;
return (Node*)newr;
}
static Node* transformCoalesceExpr(ParseState* pstate, CoalesceExpr* c)
{
CoalesceExpr* newc = makeNode(CoalesceExpr);
List* newargs = NIL;
List* newcoercedargs = NIL;
ListCell* args = NULL;
foreach (args, c->args) {
Node* e = (Node*)lfirst(args);
Node* newe = NULL;
newe = transformExpr(pstate, e);
newargs = lappend(newargs, newe);
}
// supports implicit convert
if (c->isnvl) {
newc->coalescetype = select_common_type(pstate, newargs, "NVL", NULL);
} else {
newc->coalescetype = select_common_type(pstate, newargs, "COALESCE", NULL);
}
/* coalescecollid will be set by parse_collate.c */
/* Convert arguments if necessary */
foreach (args, newargs) {
Node* e = (Node*)lfirst(args);
Node* newe = NULL;
newe = coerce_to_common_type(pstate, e, newc->coalescetype, "COALESCE");
newcoercedargs = lappend(newcoercedargs, newe);
}
newc->args = newcoercedargs;
newc->location = c->location;
return (Node*)newc;
}
static Node* transformMinMaxExpr(ParseState* pstate, MinMaxExpr* m)
{
MinMaxExpr* newm = makeNode(MinMaxExpr);
List* newargs = NIL;
List* newcoercedargs = NIL;
const char* funcname = (m->op == IS_GREATEST) ? "GREATEST" : "LEAST";
ListCell* args = NULL;
newm->op = m->op;
foreach (args, m->args) {
Node* e = (Node*)lfirst(args);
Node* newe = NULL;
newe = transformExpr(pstate, e);
newargs = lappend(newargs, newe);
}
newm->minmaxtype = select_common_type(pstate, newargs, funcname, NULL);
/* minmaxcollid and inputcollid will be set by parse_collate.c */
/* Convert arguments if necessary */
foreach (args, newargs) {
Node* e = (Node*)lfirst(args);
Node* newe = NULL;
newe = coerce_to_common_type(pstate, e, newm->minmaxtype, funcname);
newcoercedargs = lappend(newcoercedargs, newe);
}
newm->args = newcoercedargs;
newm->location = m->location;
return (Node*)newm;
}
static Node* transformXmlExpr(ParseState* pstate, XmlExpr* x)
{
XmlExpr* newx = NULL;
ListCell* lc = NULL;
int i;
/* If we already transformed this node, do nothing */
if (OidIsValid(x->type)) {
return (Node*)x;
}
newx = makeNode(XmlExpr);
newx->op = x->op;
if (x->name) {
newx->name = map_sql_identifier_to_xml_name(x->name, false, false);
} else {
newx->name = NULL;
}
newx->xmloption = x->xmloption;
newx->type = XMLOID; /* this just marks the node as transformed */
newx->typmod = -1;
newx->location = x->location;
/*
* gram.y built the named args as a list of ResTarget. Transform each,
* and break the names out as a separate list.
*/
newx->named_args = NIL;
newx->arg_names = NIL;
foreach (lc, x->named_args) {
ResTarget* r = (ResTarget*)lfirst(lc);
Node* expr = NULL;
char* argname = NULL;
AssertEreport(IsA(r, ResTarget), MOD_OPT, "");
expr = transformExpr(pstate, r->val);
if (r->name) {
argname = map_sql_identifier_to_xml_name(r->name, false, false);
} else if (IsA(r->val, ColumnRef)) {
argname = map_sql_identifier_to_xml_name(FigureColname(r->val), true, false);
} else {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
x->op == IS_XMLELEMENT ? errmsg("unnamed XML attribute value must be a column reference")
: errmsg("unnamed XML element value must be a column reference"),
parser_errposition(pstate, r->location)));
argname = NULL; /* keep compiler quiet */
}
/* reject duplicate argnames in XMLELEMENT only */
if (x->op == IS_XMLELEMENT) {
ListCell* lc2 = NULL;
foreach (lc2, newx->arg_names) {
if (strcmp(argname, strVal(lfirst(lc2))) == 0) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("XML attribute name \"%s\" appears more than once", argname),
parser_errposition(pstate, r->location)));
}
}
}
newx->named_args = lappend(newx->named_args, expr);
newx->arg_names = lappend(newx->arg_names, makeString(argname));
}
/* The other arguments are of varying types depending on the function */
newx->args = NIL;
i = 0;
foreach (lc, x->args) {
Node* e = (Node*)lfirst(lc);
Node* newe = NULL;
newe = transformExpr(pstate, e);
switch (x->op) {
case IS_XMLCONCAT:
newe = coerce_to_specific_type(pstate, newe, XMLOID, "XMLCONCAT");
break;
case IS_XMLELEMENT:
/* no coercion necessary */
break;
case IS_XMLFOREST:
newe = coerce_to_specific_type(pstate, newe, XMLOID, "XMLFOREST");
break;
case IS_XMLPARSE:
if (i == 0) {
newe = coerce_to_specific_type(pstate, newe, TEXTOID, "XMLPARSE");
} else {
newe = coerce_to_boolean(pstate, newe, "XMLPARSE");
}
break;
case IS_XMLPI:
newe = coerce_to_specific_type(pstate, newe, TEXTOID, "XMLPI");
break;
case IS_XMLROOT:
if (i == 0) {
newe = coerce_to_specific_type(pstate, newe, XMLOID, "XMLROOT");
} else if (i == 1) {
newe = coerce_to_specific_type(pstate, newe, TEXTOID, "XMLROOT");
} else {
newe = coerce_to_specific_type(pstate, newe, INT4OID, "XMLROOT");
}
break;
case IS_XMLSERIALIZE:
/* not handled here */
Assert(false);
break;
case IS_DOCUMENT:
newe = coerce_to_specific_type(pstate, newe, XMLOID, "IS DOCUMENT");
break;
default:
break;
}
newx->args = lappend(newx->args, newe);
i++;
}
return (Node*)newx;
}
static Node* transformXmlSerialize(ParseState* pstate, XmlSerialize* xs)
{
Node* result = NULL;
XmlExpr* xexpr = NULL;
Oid targetType;
int32 targetTypmod;
xexpr = makeNode(XmlExpr);
xexpr->op = IS_XMLSERIALIZE;
xexpr->args = list_make1(coerce_to_specific_type(pstate, transformExpr(pstate, xs->expr), XMLOID, "XMLSERIALIZE"));
typenameTypeIdAndMod(pstate, xs->typname, &targetType, &targetTypmod);
xexpr->xmloption = xs->xmloption;
xexpr->location = xs->location;
/* We actually only need these to be able to parse back the expression. */
xexpr->type = targetType;
xexpr->typmod = targetTypmod;
/*
* The actual target type is determined this way. SQL allows char and
* varchar as target types. We allow anything that can be cast implicitly
* from text. This way, user-defined text-like data types automatically
* fit in.
*/
result = coerce_to_target_type(
pstate, (Node*)xexpr, TEXTOID, targetType, targetTypmod, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
if (result == NULL) {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast XMLSERIALIZE result to %s", format_type_be(targetType)),
parser_errposition(pstate, xexpr->location)));
}
return result;
}
static Node* transformBooleanTest(ParseState* pstate, BooleanTest* b)
{
const char* clausename = NULL;
switch (b->booltesttype) {
case IS_TRUE:
clausename = "IS TRUE";
break;
case IS_NOT_TRUE:
clausename = "IS NOT TRUE";
break;
case IS_FALSE:
clausename = "IS FALSE";
break;
case IS_NOT_FALSE:
clausename = "IS NOT FALSE";
break;
case IS_UNKNOWN:
clausename = "IS UNKNOWN";
break;
case IS_NOT_UNKNOWN:
clausename = "IS NOT UNKNOWN";
break;
default:
ereport(ERROR,
(errcode(ERRCODE_UNRECOGNIZED_NODE_TYPE),
errmsg("unrecognized booltesttype: %d", (int)b->booltesttype)));
clausename = NULL; /* keep compiler quiet */
}
b->arg = (Expr*)transformExpr(pstate, (Node*)b->arg);
b->arg = (Expr*)coerce_to_boolean(pstate, (Node*)b->arg, clausename);
return (Node*)b;
}
static Node* transformCurrentOfExpr(ParseState* pstate, CurrentOfExpr* cexpr)
{
int sublevels_up;
#ifdef PGXC
ereport(ERROR, (errcode(ERRCODE_STATEMENT_TOO_COMPLEX), (errmsg("WHERE CURRENT OF clause not yet supported"))));
#endif
/* CURRENT OF can only appear at top level of UPDATE/DELETE */
AssertEreport(pstate->p_target_rangetblentry != NULL, MOD_OPT, "");
cexpr->cvarno = RTERangeTablePosn(pstate, (RangeTblEntry*)linitial(pstate->p_target_rangetblentry), &sublevels_up);
AssertEreport(sublevels_up == 0, MOD_OPT, "");
/*
* Check to see if the cursor name matches a parameter of type REFCURSOR.
* If so, replace the raw name reference with a parameter reference. (This
* is a hack for the convenience of plpgsql.)
*/
if (cexpr->cursor_name != NULL) { /* in case already transformed */
ColumnRef* cref = makeNode(ColumnRef);
Node* node = NULL;
/* Build an unqualified ColumnRef with the given name */
cref->fields = list_make1(makeString(cexpr->cursor_name));
cref->location = -1;
/* See if there is a translation available from a parser hook */
if (pstate->p_pre_columnref_hook != NULL) {
node = (*pstate->p_pre_columnref_hook)(pstate, cref);
}
if (node == NULL && pstate->p_post_columnref_hook != NULL) {
node = (*pstate->p_post_columnref_hook)(pstate, cref, NULL);
}
/*
* XXX Should we throw an error if we get a translation that isn't a
* refcursor Param? For now it seems best to silently ignore false
* matches.
*/
if (node != NULL && IsA(node, Param)) {
Param* p = (Param*)node;
if (p->paramkind == PARAM_EXTERN && p->paramtype == REFCURSOROID) {
/* Matches, so convert CURRENT OF to a param reference */
cexpr->cursor_name = NULL;
cexpr->cursor_param = p->paramid;
}
}
}
return (Node*)cexpr;
}
// Locate in the system catalog the information for a model name
static char* select_prediction_function(const Model* model){
char* result;
switch(model->return_type){
case BOOLOID:
result = "db4ai_predict_by_bool";
break;
case FLOAT4OID:
result = "db4ai_predict_by_float4";
break;
case FLOAT8OID:
result = "db4ai_predict_by_float8";
break;
case FLOAT8ARRAYOID:
result = "db4ai_predict_by_float8_array";
break;
case INT1OID:
case INT2OID:
case INT4OID:
result = "db4ai_predict_by_int32";
break;
case INT8OID:
result = "db4ai_predict_by_int64";
break;
case NUMERICOID:
result = "db4ai_predict_by_numeric";
break;
case VARCHAROID:
case BPCHAROID:
case CHAROID:
case TEXTOID:
result = "db4ai_predict_by_text";
break;
default:
ereport(ERROR, (errmodule(MOD_DB4AI), errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("Cannot trigger prediction for model with oid %u", model->return_type)));
result = NULL;
break;
}
return result;
}
// Convert the PredictByFunction created during parsing phase into the function
// call that computes the prediction of the model. We cannot do this during parsing
// because at that moment we do not know the return type of the model, which is obtained
// from the catalog
static Node* transformPredictByFunction(ParseState* pstate, PredictByFunction* p)
{
FuncCall* n = makeNode(FuncCall);
if (p->model_name == NULL) {
ereport(ERROR, (errmodule(MOD_DB4AI), errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("Model name for prediction cannot be null")));
}
const Model* model = get_model(p->model_name, true);
if (model == NULL) {
ereport(ERROR, (errmsg(
"No model found with name %s", p->model_name)));
}
// Locate the proper function according to the model name
char* function_name = select_prediction_function(model);
ereport(DEBUG1, (errmsg(
"Selecting prediction function %s for model %s",
function_name, p->model_name)));
n->funcname = list_make1(makeString(function_name));
n->colname = p->model_name;
// Fill model name parameter
A_Const* model_name_aconst = makeNode(A_Const);
model_name_aconst->val.type = T_String;
model_name_aconst->val.val.str = p->model_name;
model_name_aconst->location = p->model_name_location;
// Copy other parameters
n->args = list_make1(model_name_aconst);
if (list_length(p->model_args) > 0) {
n->args = lappend3(n->args, p->model_args);
}else{
ereport(ERROR, (errmodule(MOD_DB4AI), errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("Innput features for the model not specified")));
}
n->agg_order = NULL;
n->agg_star = FALSE;
n->agg_distinct = FALSE;
n->func_variadic = FALSE;
n->over = NULL;
n->location = p->model_args_location;
n->call_func = false;
return transformExpr(pstate, (Node*)n);
}
/*
* Construct a whole-row reference to represent the notation "relation.*".
*/
static Node* transformWholeRowRef(ParseState* pstate, RangeTblEntry* rte, int location)
{
Var* result = NULL;
int vnum;
int sublevels_up;
/* Find the RTE's rangetable location */
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
/*
* Build the appropriate referencing node. Note that if the RTE is a
* function returning scalar, we create just a plain reference to the
* function value, not a composite containing a single column. This is
* pretty inconsistent at first sight, but it's what we've done
* historically. One argument for it is that "rel" and "rel.*" mean the
* same thing for composite relations, so why not for scalar functions...
*/
result = makeWholeRowVar(rte, vnum, sublevels_up, true);
if (result == NULL) {
ereport(ERROR,(errcode(ERRCODE_UNDEFINED_FILE),errmsg("Fail to build a referencing node.")));
return NULL;
}
/* location is not filled in by makeWholeRowVar */
result->location = location;
/* mark relation as requiring whole-row SELECT access */
markVarForSelectPriv(pstate, result, rte);
return (Node*)result;
}
/*
* Handle an explicit CAST construct.
*
* Transform the argument, then look up the type name and apply any necessary
* coercion function(s).
*/
static Node* transformTypeCast(ParseState* pstate, TypeCast* tc)
{
Node* result = NULL;
Node* expr = transformExpr(pstate, tc->arg);
Oid inputType = exprType(expr);
Oid targetType;
int32 targetTypmod;
int location;
typenameTypeIdAndMod(pstate, tc->typname, &targetType, &targetTypmod);
if (inputType == InvalidOid) {
return expr; /* do nothing if NULL input */
}
/*
* Location of the coercion is preferentially the location of the :: or
* CAST symbol, but if there is none then use the location of the type
* name (this can happen in TypeName 'string' syntax, for instance).
*/
location = tc->location;
if (location < 0) {
location = tc->typname->location;
}
result = coerce_to_target_type(
pstate, expr, inputType, targetType, targetTypmod, COERCION_EXPLICIT, COERCE_EXPLICIT_CAST, location);
if (result == NULL) {
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s", format_type_be(inputType), format_type_be(targetType)),
parser_coercion_errposition(pstate, location, expr)));
}
return result;
}
/*
* Handle an explicit COLLATE clause.
*
* Transform the argument, and look up the collation name.
*/
static Node* transformCollateClause(ParseState* pstate, CollateClause* c)
{
CollateExpr* newc = NULL;
Oid argtype;
newc = makeNode(CollateExpr);
newc->arg = (Expr*)transformExpr(pstate, c->arg);
argtype = exprType((Node*)newc->arg);
/*
* The unknown type is not collatable, but coerce_type() takes care of it
* separately, so we'll let it go here.
*/
if (!type_is_collatable(argtype) && argtype != UNKNOWNOID) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("collations are not supported by type %s", format_type_be(argtype)),
parser_errposition(pstate, c->location)));
}
newc->collOid = LookupCollation(pstate, c->collname, c->location);
newc->location = c->location;
return (Node*)newc;
}
static char *add_double_quotes(const char *src)
{
unsigned long max_len = strlen("\"") + strlen(src) + strlen("\"") + 1;
char *tmp_buffer = (char *)palloc0(max_len);
int rt = sprintf_s(tmp_buffer, max_len, "\"%s\"", src);
securec_check_ss(rt, "\0", "\0");
return tmp_buffer;
}
static Node* transformSequenceFuncCall(ParseState* pstate, Node* field1, Node* field2, Node* field3, int location)
{
Value* arg = NULL;
List* funcname = list_make1((Value*)field3);
if (field1 != NULL) {
StringInfoData buf;
initStringInfo(&buf);
appendStringInfo(&buf, "%s.%s", strVal(field1), strVal(field2));
arg = makeString(buf.data);
} else {
arg = (Value*)field2;
if (arg->type == T_String) {
char *new_str = add_double_quotes(arg->val.str);
arg->val.str = new_str;
}
}
List* args = list_make1(makeAConst(arg, location));
FuncCall* fn = makeFuncCall(funcname, args, location);
return transformFuncCall(pstate, fn);
}
/*
* Transform a "row compare-op row" construct
*
* The inputs are lists of already-transformed expressions.
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*
* The output may be a single OpExpr, an AND or OR combination of OpExprs,
* or a RowCompareExpr. In all cases it is guaranteed to return boolean.
* The AND, OR, and RowCompareExpr cases further imply things about the
* behavior of the operators (ie, they behave as =, <>, or < <= > >=).
*/
static Node* make_row_comparison_op(ParseState* pstate, List* opname, List* largs, List* rargs, int location)
{
RowCompareExpr* rcexpr = NULL;
RowCompareType rctype;
List* opexprs = NIL;
List* opnos = NIL;
List* opfamilies = NIL;
ListCell *l = NULL, *r = NULL;
List** opinfo_lists = NULL;
Bitmapset* strats = NULL;
int nopers;
int i;
nopers = list_length(largs);
if (nopers != list_length(rargs)) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("unequal number of entries in row expressions"),
parser_errposition(pstate, location)));
}
/*
* We can't compare zero-length rows because there is no principled basis
* for figuring out what the operator is.
*/
if (nopers == 0) {
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot compare rows of zero length"),
parser_errposition(pstate, location)));
}
/*
* Identify all the pairwise operators, using make_op so that behavior is
* the same as in the simple scalar case.
*/
opexprs = NIL;
forboth(l, largs, r, rargs) {
Node* larg = (Node*)lfirst(l);
Node* rarg = (Node*)lfirst(r);
OpExpr* cmp = NULL;
cmp = (OpExpr*)make_op(pstate, opname, larg, rarg, location);
AssertEreport(IsA(cmp, OpExpr), MOD_OPT, "");
/*
* We don't use coerce_to_boolean here because we insist on the
* operator yielding boolean directly, not via coercion. If it
* doesn't yield bool it won't be in any index opfamilies...
*/
if (cmp->opresulttype != BOOLOID) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("row comparison operator must yield type boolean, "
"not type %s",
format_type_be(cmp->opresulttype)),
parser_errposition(pstate, location)));
}
if (expression_returns_set((Node*)cmp)) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("row comparison operator must not return a set"),
parser_errposition(pstate, location)));
}
opexprs = lappend(opexprs, cmp);
}
/*
* If rows are length 1, just return the single operator. In this case we
* don't insist on identifying btree semantics for the operator (but we
* still require it to return boolean).
*/
if (nopers == 1) {
return (Node*)linitial(opexprs);
}
/*
* Now we must determine which row comparison semantics (= <> < <= > >=)
* apply to this set of operators. We look for btree opfamilies
* containing the operators, and see which interpretations (strategy
* numbers) exist for each operator.
*/
opinfo_lists = (List**)palloc(nopers * sizeof(List*));
strats = NULL;
i = 0;
foreach (l, opexprs) {
Oid opno = ((OpExpr*)lfirst(l))->opno;
Bitmapset* this_strats = NULL;
ListCell* j = NULL;
opinfo_lists[i] = get_op_btree_interpretation(opno);
/*
* convert strategy numbers into a Bitmapset to make the intersection
* calculation easy.
*/
this_strats = NULL;
foreach (j, opinfo_lists[i]) {
OpBtreeInterpretation* opinfo = (OpBtreeInterpretation*)lfirst(j);
this_strats = bms_add_member(this_strats, opinfo->strategy);
}
if (i == 0) {
strats = this_strats;
} else {
strats = bms_int_members(strats, this_strats);
bms_free_ext(this_strats);
}
i++;
}
/*
* If there are multiple common interpretations, we may use any one of
* them ... this coding arbitrarily picks the lowest btree strategy
* number.
*/
i = bms_first_member(strats);
if (i < 0) {
/* No common interpretation, so fail */
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not determine interpretation of row comparison operator %s", strVal(llast(opname))),
errhint("Row comparison operators must be associated with btree operator families."),
parser_errposition(pstate, location)));
}
rctype = (RowCompareType)i;
/*
* For = and <> cases, we just combine the pairwise operators with AND or
* OR respectively.
*
* Note: this is presently the only place where the parser generates
* BoolExpr with more than two arguments. Should be OK since the rest of
* the system thinks BoolExpr is N-argument anyway.
*/
if (rctype == ROWCOMPARE_EQ) {
return (Node*)makeBoolExpr(AND_EXPR, opexprs, location);
}
if (rctype == ROWCOMPARE_NE) {
return (Node*)makeBoolExpr(OR_EXPR, opexprs, location);
}
/*
* Otherwise we need to choose exactly which opfamily to associate with
* each operator.
*/
opfamilies = NIL;
for (i = 0; i < nopers; i++) {
Oid opfamily = InvalidOid;
ListCell* j = NULL;
foreach (j, opinfo_lists[i]) {
OpBtreeInterpretation* opinfo = (OpBtreeInterpretation*)lfirst(j);
if (opinfo->strategy == rctype) {
opfamily = opinfo->opfamily_id;
break;
}
}
if (OidIsValid(opfamily)) {
opfamilies = lappend_oid(opfamilies, opfamily);
} else { /* should not happen */
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not determine interpretation of row comparison operator %s", strVal(llast(opname))),
errdetail("There are multiple equally-plausible candidates."),
parser_errposition(pstate, location)));
}
}
/*
* Now deconstruct the OpExprs and create a RowCompareExpr.
*
* Note: can't just reuse the passed largs/rargs lists, because of
* possibility that make_op inserted coercion operations.
*/
opnos = NIL;
largs = NIL;
rargs = NIL;
foreach (l, opexprs) {
OpExpr* cmp = (OpExpr*)lfirst(l);
opnos = lappend_oid(opnos, cmp->opno);
largs = lappend(largs, linitial(cmp->args));
rargs = lappend(rargs, lsecond(cmp->args));
}
rcexpr = makeNode(RowCompareExpr);
rcexpr->rctype = rctype;
rcexpr->opnos = opnos;
rcexpr->opfamilies = opfamilies;
rcexpr->inputcollids = NIL; /* assign_expr_collations will fix this */
rcexpr->largs = largs;
rcexpr->rargs = rargs;
return (Node*)rcexpr;
}
/*
* Transform a "row IS DISTINCT FROM row" construct
*
* The input RowExprs are already transformed
*/
static Node* make_row_distinct_op(ParseState* pstate, List* opname, RowExpr* lrow, RowExpr* rrow, int location)
{
Node* result = NULL;
List* largs = lrow->args;
List* rargs = rrow->args;
ListCell *l = NULL, *r = NULL;
if (list_length(largs) != list_length(rargs)) {
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("unequal number of entries in row expressions"),
parser_errposition(pstate, location)));
}
forboth(l, largs, r, rargs) {
Node* larg = (Node*)lfirst(l);
Node* rarg = (Node*)lfirst(r);
Node* cmp = NULL;
cmp = (Node*)make_distinct_op(pstate, opname, larg, rarg, location);
if (result == NULL) {
result = cmp;
} else {
result = (Node*)makeBoolExpr(OR_EXPR, list_make2(result, cmp), location);
}
}
if (result == NULL) {
/* zero-length rows? Generate constant FALSE */
result = makeBoolConst(false, false);
}
return result;
}
/*
* make the node for an IS DISTINCT FROM operator
*/
Expr* make_distinct_op(ParseState* pstate, List* opname, Node* ltree, Node* rtree, int location)
{
Expr* result = NULL;
result = make_op(pstate, opname, ltree, rtree, location);
if (((OpExpr*)result)->opresulttype != BOOLOID) {
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("IS DISTINCT FROM requires = operator to yield boolean"),
parser_errposition(pstate, location)));
}
/*
* We rely on DistinctExpr and OpExpr being same struct
*/
NodeSetTag(result, T_DistinctExpr);
return result;
}
/*
* Convert table.* to table.col1, table.col2, ...., table.coln.
*
* Only the following three cases are considered
* A.* A is an unqualified table name; means whole-row value.
* A.B.* whole-row value of table B in schema A.
* A.B.C.* whole-row value of table C in schema B in catalog A.
*
* Currently, if a catalog name is given then it must equal the current
* database name; we check it here and then discard it.
*
*/
static Node* convertStarToCRef(RangeTblEntry* rte, char* catname, char* nspname, char* relname, int location)
{
RowExpr* re = makeNode(RowExpr);
ListCell* c = NULL;
foreach (c, rte->eref->colnames) {
ColumnRef* column = makeNode(ColumnRef);
char* theField = strVal(lfirst(c));
/* skip the dropped column */
if (NULL != theField && (*theField) == '\0') {
continue;
}
column->fields = list_make1(makeString(pstrdup(theField)));
/* deal with A.* */
if (relname != NULL) {
column->fields = lcons(makeString(relname), column->fields);
}
/* deal with A.B.* */
if (nspname != NULL) {
AssertEreport(relname, MOD_OPT, "");
column->fields = lcons(makeString(nspname), column->fields);
}
/* deal with A.B.C.* */
if (catname != NULL) {
AssertEreport(relname, MOD_OPT, "");
AssertEreport(nspname, MOD_OPT, "");
column->fields = lcons(makeString(catname), column->fields);
}
column->location = -1;
re->args = lappend(re->args, column);
}
re->row_typeid = InvalidOid; /* not analyzed yet */
re->colnames = NIL; /* to be filled in during analysis */
re->location = location;
return (Node*)re;
}
/*
* Check if the
*
*/
static bool IsSequenceFuncCall(Node* filed1, Node* filed2, Node* filed3)
{
if (!IsA(filed3, String)) {
return false;
}
char* relname = strVal(filed2);
char* funcname = strVal(filed3);
char* nspname = NULL;
Oid nspid = InvalidOid;
Assert(relname != NULL && funcname != NULL);
if (filed1 != NULL) {
nspname = strVal(filed1);
nspid = get_namespace_oid(nspname, true);
if (nspid == InvalidOid) {
return false;
}
}
if (strcmp(funcname, "nextval") == 0 || strcmp(funcname, "currval") == 0) {
if (filed1 != NULL && RELKIND_IS_SEQUENCE(get_rel_relkind(get_relname_relid(relname, nspid)))) {
return true;
} else if (filed1 == NULL && RELKIND_IS_SEQUENCE(get_rel_relkind(RelnameGetRelid(relname)))) {
return true;
}
}
return false;
}
/*
* start with transform support
*/
static Node *transformStartWithColumnRef(ParseState *pstate, ColumnRef *cref, char **colname)
{
Assert (*colname != NULL);
Node *field1 = NULL;
Node *field2 = NULL;
char *local_column_ref = *colname;
int len = list_length(cref->fields);
switch (len) {
case 1: {
field1 = (Node*)linitial(cref->fields);
if (pg_strcasecmp(local_column_ref, "connect_by_root") == 0 ) {
Node *funexpr = transformConnectByRootFuncCall(pstate, field1, cref);
/*
* Return function funexpr, otherwise process
* connect_by_root as regular case
*/
if (funexpr != NULL) {
return funexpr;
}
}
/* for pseudo column, we don't do column name replacement */
if (IsPseudoReturnColumn(local_column_ref) ||
pg_strcasecmp(local_column_ref, "connect_by_root") == 0) {
return NULL;
}
char *relname = ColumnRefFindRelname(pstate, local_column_ref);
if (relname == NULL) {
elog(LOG, "do not find colname %s in sw-aborted RTE, maybe it's a normal column", *colname);
return NULL;
}
*colname = makeStartWithDummayColname(relname, local_column_ref);
field1 = (Node*)makeString(pstrdup(*colname));
cref->fields = list_make1(field1);
break;
}
case 2: {
field1 = (Node*)linitial(cref->fields);
field2 = (Node*)lsecond(cref->fields);
char *relname = strVal(field1);
/* Already rewrite column once relname equal tmp_reuslt */
if (pg_strcasecmp(relname, "tmp_reuslt") == 0) {
return NULL;
}
*colname = makeStartWithDummayColname(relname, local_column_ref);
field1 = (Node *)makeString("tmp_reuslt");
field2 = (Node*)makeString(pstrdup(*colname));
cref->fields = list_make2(field1, field2);
break;
}
default:
break;
}
return NULL;
}
static Node* transformConnectByRootFuncCall(ParseState* pstate, Node* funcNameVal, ColumnRef *cref)
{
Assert (pg_strcasecmp(strVal(funcNameVal), "connect_by_root") == 0 &&
IsA(pstate->p_sw_selectstmt, SelectStmt));
/* find the targe column name */
List *targetlist = pstate->p_sw_selectstmt->targetList;
ListCell *lc = NULL;
char *relname = NULL;
char *colname = NULL;
/* scan SelectStmt's targetlist to find corresponding ColumnRef */
foreach (lc, targetlist) {
ResTarget *rt = (ResTarget *)lfirst(lc);
if (equal(rt->val, cref)) {
colname = rt->name;
/*
* Indicate we do not find a case "connect_by_root column", so return to
* transformColumnRef and treat conect_by_column as a regular RTE's entry
*/
if (colname == NULL) {
return NULL;
}
relname = ColumnRefFindRelname(pstate, colname);
if (relname == NULL) {
elog(ERROR, "do not find colname %s in sw-aborted RTE", colname);
return NULL;
}
colname = makeStartWithDummayColname(relname, colname);
break;
}
}
/* construct function call expr */
Value* argExpr = (Value *)makeColumnRef("tmp_reuslt", colname, -1);
List* args = list_make1(argExpr);
List* funcExpr = list_make1((Value*)funcNameVal);
FuncCall* fn = makeFuncCall(funcExpr, args, cref->location);
return transformFuncCall(pstate, fn);
}
/*
* Note, currently, only support 1 fild ColumnRef, will expand to support multiple case
*/
static char *ColumnRefFindRelname(ParseState *pstate, const char *colname)
{
ListCell *lc1 = NULL;
ListCell *lc2 = NULL;
char *relname = NULL;
int count = 0;
while (pstate != NULL) {
foreach(lc1, pstate->p_rtable) {
RangeTblEntry *rte = (RangeTblEntry *)lfirst(lc1);
if (!rte->swAborted) {
continue;
}
if (rte->rtekind == RTE_RELATION || rte->rtekind == RTE_SUBQUERY || rte->rtekind == RTE_CTE) {
List *colnames = rte->eref->colnames;
foreach(lc2, colnames) {
Value *col = (Value *)lfirst(lc2);
if (strcmp(colname, strVal(col)) == 0) {
if (rte->rtekind == RTE_RELATION) {
relname = (rte->alias && rte->alias->aliasname) ?
rte->alias->aliasname : rte->relname;
} else if (rte->rtekind == RTE_SUBQUERY) {
relname = rte->alias->aliasname;
} else if (rte->rtekind == RTE_CTE) {
relname = (rte->alias && rte->alias->aliasname) ?
rte->alias->aliasname : rte->ctename;
}
count++;
}
}
}
}
/* If we found just break */
if (count > 1) {
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_COLUMN),
errmsg("column reference \"%s\" is ambiguous", colname)));
}
if (count == 1) {
break;
}
pstate = pstate->parentParseState;
}
return relname;
}
/*
* Transform a PrefixKey.
*/
static Node* transformPrefixKey(ParseState* pstate, PrefixKey* pkey)
{
Node *argnode = (Node*)pkey->arg;
int maxlen;
int location = ((ColumnRef*)argnode)->location;
Assert(nodeTag(argnode) == T_ColumnRef);
if (pkey->length <= 0 || pkey->length > INDEX_KEY_MAX_PREFIX_LENGTH) {
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index key prefix length(%d) must be positive and cannot exceed %d",
pkey->length, INDEX_KEY_MAX_PREFIX_LENGTH),
parser_errposition(pstate, location)));
}
argnode = transformExpr(pstate, argnode);
Assert(nodeTag(argnode) == T_Var);
switch (((Var*)argnode)->vartype) {
case TEXTOID:
case CLOBOID:
case BPCHAROID:
case VARCHAROID:
case NVARCHAR2OID:
case BLOBOID:
case RAWOID:
case BYTEAOID:
pkey->arg = (Expr*)argnode;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("index prefix key are not supported by column type %s",
format_type_be(((Var*)argnode)->vartype)),
parser_errposition(pstate, location)));
}
maxlen = ((Var*)argnode)->vartypmod;
if (maxlen > 0) {
maxlen -= VARHDRSZ;
if (pkey->length > maxlen) {
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index key prefix length(%d) too long for type %s(%d)",
pkey->length, format_type_be(((Var*)argnode)->vartype), maxlen),
parser_errposition(pstate, location)));
}
}
return (Node*)pkey;
}