Offering: openGaussDev More detail: 修复删除分区表报错 # Conflicts: # src/common/backend/utils/init/globals.cpp # src/include/access/xlogproc.h Match-id-978d16029c7f5ac4681e6191b78392f89718edba
1236 lines
54 KiB
C
1236 lines
54 KiB
C
/* -------------------------------------------------------------------------
|
|
*
|
|
* htup.h
|
|
* openGauss heap tuple definitions.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd.
|
|
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* src/include/access/htup.h
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
#ifndef HTUP_H
|
|
#define HTUP_H
|
|
|
|
#include "access/tupdesc.h"
|
|
#include "access/tupmacs.h"
|
|
#include "access/xlogreader.h"
|
|
#include "storage/buf/buf.h"
|
|
#include "storage/buf/bufpage.h"
|
|
#include "storage/item/itemptr.h"
|
|
#include "storage/smgr/relfilenode.h"
|
|
#include "utils/relcache.h"
|
|
|
|
/* Number of internal columns added by Redis during scale-in/scale-out. */
|
|
#define REDIS_NUM_INTERNAL_COLUMNS (4)
|
|
|
|
#define InvalidTransactionId ((TransactionId)0)
|
|
#define BootstrapTransactionId ((TransactionId)1)
|
|
#define FrozenTransactionId ((TransactionId)2)
|
|
#define FirstNormalTransactionId ((TransactionId)3)
|
|
#define MaxTransactionId ((TransactionId)0xFFFFFFFFFFFFFFF) /* First four bits reserved */
|
|
#define MaxShortTransactionId ((TransactionId)0xFFFFFFFF)
|
|
|
|
#define TransactionIdIsValid(xid) ((xid) != InvalidTransactionId)
|
|
#define TransactionIdIsNormal(xid) ((xid) >= FirstNormalTransactionId)
|
|
#define TransactionIdEquals(id1, id2) ((id1) == (id2))
|
|
#define TransactionIdStore(xid, dest) (*(dest) = (xid))
|
|
|
|
#define StoreInvalidTransactionId(dest) (*(dest) = InvalidTransactionId)
|
|
|
|
#define ShortTransactionIdToNormal(base, xid) \
|
|
(TransactionIdIsNormal(xid) ? (TransactionId)(xid) + (base) : (TransactionId)(xid))
|
|
#define NormalTransactionIdToShort(base, xid) \
|
|
(TransactionIdIsNormal(xid) ? (ShortTransactionId)(AssertMacro((xid) >= (base) + FirstNormalTransactionId), \
|
|
AssertMacro((xid) <= (base) + MaxShortTransactionId), \
|
|
(xid) - (base)) \
|
|
: (ShortTransactionId)(xid))
|
|
|
|
/*
|
|
* MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
|
|
* The key limit on this value is that the size of the fixed overhead for
|
|
* a tuple, plus the size of the null-values bitmap (at 1 bit per column),
|
|
* plus MAXALIGN alignment, must fit into t_hoff which is uint8. On most
|
|
* machines the upper limit without making t_hoff wider would be a little
|
|
* over 1700. We use round numbers here and for MaxHeapAttributeNumber
|
|
* so that alterations in HeapTupleHeaderData layout won't change the
|
|
* supported max number of columns.
|
|
*/
|
|
#define MaxTupleAttributeNumber 1664 /* 8 * 208 */
|
|
|
|
/*
|
|
* MaxHeapAttributeNumber limits the number of (user) columns in a table.
|
|
* This should be somewhat less than MaxTupleAttributeNumber. It must be
|
|
* at least one less, else we will fail to do UPDATEs on a maximal-width
|
|
* table (because UPDATE has to form working tuples that include CTID).
|
|
* In practice we want some additional daylight so that we can gracefully
|
|
* support operations that add hidden "resjunk" columns, for example
|
|
* SELECT * FROM wide_table ORDER BY foo, bar, baz.
|
|
* In any case, depending on column data types you will likely be running
|
|
* into the disk-block-based limit on overall tuple size if you have more
|
|
* than a thousand or so columns. TOAST won't help.
|
|
*/
|
|
#define MaxHeapAttributeNumber 1600 /* 8 * 200 */
|
|
|
|
/*
|
|
* Heap tuple header. To avoid wasting space, the fields should be
|
|
* laid out in such a way as to avoid structure padding.
|
|
*
|
|
* Datums of composite types (row types) share the same general structure
|
|
* as on-disk tuples, so that the same routines can be used to build and
|
|
* examine them. However the requirements are slightly different: a Datum
|
|
* does not need any transaction visibility information, and it does need
|
|
* a length word and some embedded type information. We can achieve this
|
|
* by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
|
|
* with the fields needed in the Datum case. Typically, all tuples built
|
|
* in-memory will be initialized with the Datum fields; but when a tuple is
|
|
* about to be inserted in a table, the transaction fields will be filled,
|
|
* overwriting the datum fields.
|
|
*
|
|
* The overall structure of a heap tuple looks like:
|
|
* fixed fields (HeapTupleHeaderData struct)
|
|
* nulls bitmap (if HEAP_HASNULL is set in t_infomask)
|
|
* alignment padding (as needed to make user data MAXALIGN'd)
|
|
* object ID (if HEAP_HASOID is set in t_infomask)
|
|
* user data fields
|
|
*
|
|
* We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
|
|
* physical fields. Xmin and Xmax are always really stored, but Cmin, Cmax
|
|
* and Xvac share a field. This works because we know that Cmin and Cmax
|
|
* are only interesting for the lifetime of the inserting and deleting
|
|
* transaction respectively. If a tuple is inserted and deleted in the same
|
|
* transaction, we store a "combo" command id that can be mapped to the real
|
|
* cmin and cmax, but only by use of local state within the originating
|
|
* backend. See combocid.c for more details. Meanwhile, Xvac is only set by
|
|
* old-style VACUUM FULL, which does not have any command sub-structure and so
|
|
* does not need either Cmin or Cmax. (This requires that old-style VACUUM
|
|
* FULL never try to move a tuple whose Cmin or Cmax is still interesting,
|
|
* ie, an insert-in-progress or delete-in-progress tuple.)
|
|
*
|
|
* A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
|
|
* is initialized with its own TID (location). If the tuple is ever updated,
|
|
* its t_ctid is changed to point to the replacement version of the tuple.
|
|
* Thus, a tuple is the latest version of its row iff XMAX is invalid or
|
|
* t_ctid points to itself (in which case, if XMAX is valid, the tuple is
|
|
* either locked or deleted). One can follow the chain of t_ctid links
|
|
* to find the newest version of the row. Beware however that VACUUM might
|
|
* erase the pointed-to (newer) tuple before erasing the pointing (older)
|
|
* tuple. Hence, when following a t_ctid link, it is necessary to check
|
|
* to see if the referenced slot is empty or contains an unrelated tuple.
|
|
* Check that the referenced tuple has XMIN equal to the referencing tuple's
|
|
* XMAX to verify that it is actually the descendant version and not an
|
|
* unrelated tuple stored into a slot recently freed by VACUUM. If either
|
|
* check fails, one may assume that there is no live descendant version.
|
|
*
|
|
* Following the fixed header fields, the nulls bitmap is stored (beginning
|
|
* at t_bits). The bitmap is *not* stored if t_infomask shows that there
|
|
* are no nulls in the tuple. If an OID field is present (as indicated by
|
|
* t_infomask), then it is stored just before the user data, which begins at
|
|
* the offset shown by t_hoff. Note that t_hoff must be a multiple of
|
|
* MAXALIGN.
|
|
*/
|
|
|
|
typedef struct HeapTupleFields {
|
|
ShortTransactionId t_xmin; /* inserting xact ID */
|
|
ShortTransactionId t_xmax; /* deleting or locking xact ID */
|
|
|
|
union {
|
|
CommandId t_cid; /* inserting or deleting command ID, or both */
|
|
ShortTransactionId t_xvac; /* old-style VACUUM FULL xact ID */
|
|
} t_field3;
|
|
} HeapTupleFields;
|
|
|
|
typedef struct DatumTupleFields {
|
|
int32 datum_len_; /* varlena header (do not touch directly!) */
|
|
|
|
int32 datum_typmod; /* -1, or identifier of a record type */
|
|
|
|
Oid datum_typeid; /* composite type OID, or RECORDOID */
|
|
|
|
/*
|
|
* Note: field ordering is chosen with thought that Oid might someday
|
|
* widen to 64 bits.
|
|
*/
|
|
} DatumTupleFields;
|
|
|
|
typedef struct HeapTupleHeaderData {
|
|
union {
|
|
HeapTupleFields t_heap;
|
|
DatumTupleFields t_datum;
|
|
} t_choice;
|
|
|
|
ItemPointerData t_ctid; /* current TID of this or newer tuple */
|
|
|
|
/* Fields below here must match MinimalTupleData! */
|
|
|
|
uint16 t_infomask2; /* number of attributes + various flags */
|
|
|
|
uint16 t_infomask; /* various flag bits, see below */
|
|
|
|
uint8 t_hoff; /* sizeof header incl. bitmap, padding */
|
|
|
|
/* ^ - 23 bytes - ^ */
|
|
|
|
bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs -- VARIABLE LENGTH */
|
|
|
|
/* MORE DATA FOLLOWS AT END OF STRUCT */
|
|
} HeapTupleHeaderData;
|
|
typedef HeapTupleHeaderData* HeapTupleHeader;
|
|
|
|
#define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
|
|
#define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
|
|
|
|
/*
|
|
* information stored in t_infomask:
|
|
*/
|
|
#define HEAP_HASNULL 0x0001 /* has null attribute(s) */
|
|
#define HEAP_HASVARWIDTH 0x0002 /* has variable-width attribute(s) */
|
|
#define HEAP_HASEXTERNAL 0x0004 /* has external stored attribute(s) */
|
|
#define HEAP_HASOID 0x0008 /* has an object-id field */
|
|
#define HEAP_COMPRESSED 0x0010 /* has compressed data */
|
|
#define HEAP_COMBOCID 0x0020 /* t_cid is a combo cid */
|
|
#define HEAP_XMAX_EXCL_LOCK 0x0040 /* xmax is exclusive locker */
|
|
#define HEAP_XMAX_SHARED_LOCK 0x0080 /* xmax is shared locker */
|
|
/* xmax is a key-shared locker */
|
|
#define HEAP_XMAX_KEYSHR_LOCK (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_SHARED_LOCK)
|
|
#define HEAP_LOCK_MASK (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_SHARED_LOCK | HEAP_XMAX_KEYSHR_LOCK)
|
|
#define HEAP_XMIN_COMMITTED 0x0100 /* t_xmin committed */
|
|
#define HEAP_XMIN_INVALID 0x0200 /* t_xmin invalid/aborted */
|
|
#define HEAP_XMIN_FROZEN (HEAP_XMIN_INVALID | HEAP_XMIN_COMMITTED)
|
|
#define HEAP_XMAX_COMMITTED 0x0400 /* t_xmax committed */
|
|
#define HEAP_XMAX_INVALID 0x0800 /* t_xmax invalid/aborted */
|
|
#define HEAP_XMAX_IS_MULTI 0x1000 /* t_xmax is a MultiXactId */
|
|
#define HEAP_UPDATED 0x2000 /* this is UPDATEd version of row */
|
|
|
|
#define HEAP_HAS_8BYTE_UID (0x4000) /* tuple has 8 bytes uid */
|
|
#define HEAP_UID_MASK (0x4000)
|
|
#define HEAP_RESERVED_BIT (0x8000) /* tuple uid related bits */
|
|
|
|
#define HEAP_XACT_MASK (0x3FE0) /* visibility-related bits */
|
|
|
|
/*
|
|
* information stored in t_infomask2:
|
|
*/
|
|
#define HEAP_NATTS_MASK 0x07FF /* 11 bits for number of attributes */
|
|
#define HEAP_XMAX_LOCK_ONLY 0x0800 /* xmax, if valid, is only a locker */
|
|
#define HEAP_KEYS_UPDATED 0x1000 /* tuple was updated and key cols modified, or tuple deleted */
|
|
#define HEAP_HAS_REDIS_COLUMNS 0x2000 /* tuple has hidden columns added by redis */
|
|
#define HEAP_HOT_UPDATED 0x4000 /* tuple was HOT-updated */
|
|
#define HEAP_ONLY_TUPLE 0x8000 /* this is heap-only tuple */
|
|
|
|
#define HEAP2_XACT_MASK 0xD800 /* visibility-related bits */
|
|
|
|
/*
|
|
* HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins. It is
|
|
* only used in tuples that are in the hash table, and those don't need
|
|
* any visibility information, so we can overlay it on a visibility flag
|
|
* instead of using up a dedicated bit.
|
|
*/
|
|
#define HEAP_TUPLE_HAS_MATCH HEAP_ONLY_TUPLE /* tuple has a join match */
|
|
|
|
/*
|
|
* A tuple is only locked (i.e. not updated by its Xmax) if it the
|
|
* HEAP_XMAX_LOCK_ONLY bit is set.
|
|
*
|
|
* See also HeapTupleIsOnlyLocked, which also checks for a possible
|
|
* aborted updater transaction.
|
|
*/
|
|
#define HEAP_XMAX_IS_LOCKED_ONLY(infomask, infomask2) \
|
|
(((infomask2) & HEAP_XMAX_LOCK_ONLY) || \
|
|
((infomask) & HEAP_XMAX_SHARED_LOCK) || \
|
|
(((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK))
|
|
|
|
/*
|
|
* Use these to test whether a particular lock is applied to a tuple
|
|
*/
|
|
#define HEAP_XMAX_IS_SHR_LOCKED(infomask) (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHARED_LOCK)
|
|
#define HEAP_XMAX_IS_EXCL_LOCKED(infomask) (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK)
|
|
#define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK)
|
|
|
|
/* turn these all off when Xmax is to change */
|
|
#define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)
|
|
|
|
/*
|
|
* HeapTupleHeader accessor macros
|
|
*
|
|
* Note: beware of multiple evaluations of "tup" argument. But the Set
|
|
* macros evaluate their other argument only once.
|
|
*/
|
|
/*
|
|
* HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
|
|
* originally used to insert the tuple. However, the tuple might actually
|
|
* be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
|
|
* is visible to every snapshot. Prior to PostgreSQL 9.4, we actually changed
|
|
* the xmin to FrozenTransactionId, and that value may still be encountered
|
|
* on disk.
|
|
*/
|
|
|
|
#define HeapTupleCopyBaseFromPage(tup, page) \
|
|
do { \
|
|
(tup)->t_xid_base = ((HeapPageHeader)(page))->pd_xid_base; \
|
|
(tup)->t_multi_base = ((HeapPageHeader)(page))->pd_multi_base; \
|
|
} while (0)
|
|
|
|
#define HeapTupleCopyBase(dest, src) \
|
|
do { \
|
|
(dest)->t_xid_base = (src)->t_xid_base; \
|
|
(dest)->t_multi_base = (src)->t_multi_base; \
|
|
} while (0)
|
|
|
|
#define HeapTupleSetZeroBase(tup) \
|
|
{ \
|
|
(tup)->t_xid_base = InvalidTransactionId; \
|
|
(tup)->t_multi_base = InvalidTransactionId; \
|
|
}
|
|
#define HeapTupleHeaderXminCommitted(tup) ((tup)->t_infomask & HEAP_XMIN_COMMITTED)
|
|
|
|
#define HeapTupleHeaderXminInvalid(tup) \
|
|
(((tup)->t_infomask & (HEAP_XMIN_COMMITTED | HEAP_XMIN_INVALID)) == HEAP_XMIN_INVALID)
|
|
#define HeapTupleHeaderGetXmin(page, tup) \
|
|
(ShortTransactionIdToNormal( \
|
|
((HeapPageHeader)(page))->pd_xid_base, (tup)->t_choice.t_heap.t_xmin))
|
|
#define HeapTupleHeaderGetRawXmax(page, tup) HeapTupleHeaderGetXmax(page, tup)
|
|
#define HeapTupleGetRawXmin(tup) (ShortTransactionIdToNormal((tup)->t_xid_base, (tup)->t_data->t_choice.t_heap.t_xmin))
|
|
|
|
#define HeapTupleHeaderXminInvalid(tup) \
|
|
(((tup)->t_infomask & (HEAP_XMIN_COMMITTED | HEAP_XMIN_INVALID)) == HEAP_XMIN_INVALID)
|
|
|
|
#define HeapTupleHeaderXminFrozen(tup) (((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN)
|
|
|
|
#define HeapTupleHeaderSetXminCommitted(tup) \
|
|
(AssertMacro(!HeapTupleHeaderXminInvalid(tup)), ((tup)->t_infomask |= HEAP_XMIN_COMMITTED))
|
|
|
|
#define HeapTupleHeaderSetXminInvalid(tup) \
|
|
(AssertMacro(!HeapTupleHeaderXminCommitted(tup)), ((tup)->t_infomask |= HEAP_XMIN_INVALID))
|
|
|
|
#define HeapTupleHeaderSetXminFrozen(tup) \
|
|
(AssertMacro(!HeapTupleHeaderXminInvalid(tup)), ((tup)->t_infomask |= HEAP_XMIN_FROZEN))
|
|
|
|
#define HeapTupleGetRawXmax(tup) \
|
|
(ShortTransactionIdToNormal( \
|
|
((tup)->t_data->t_infomask & HEAP_XMAX_IS_MULTI ? (tup)->t_multi_base: (tup)->t_xid_base), \
|
|
((tup)->t_data->t_choice.t_heap.t_xmax) \
|
|
))
|
|
|
|
/*
|
|
* HeapTupleGetRawXmax gets you the raw Xmax field. To find out the Xid
|
|
* that updated a tuple, you might need to resolve the MultiXactId if certain
|
|
* bits are set. HeapTupleGetUpdateXid checks those bits and takes care
|
|
* to resolve the MultiXactId if necessary. This might involve multixact I/O,
|
|
* so it should only be used if absolutely necessary.
|
|
*/
|
|
#define HeapTupleGetUpdateXid(tup) \
|
|
((!((tup)->t_data->t_infomask & HEAP_XMAX_INVALID) && \
|
|
((tup)->t_data->t_infomask & HEAP_XMAX_IS_MULTI) && \
|
|
!((tup)->t_data->t_infomask2 & HEAP_XMAX_LOCK_ONLY)) ? \
|
|
HeapTupleMultiXactGetUpdateXid(tup) : \
|
|
HeapTupleGetRawXmax(tup))
|
|
|
|
#define HeapTupleHeaderGetUpdateXid(page, tup) \
|
|
((!((tup)->t_infomask & HEAP_XMAX_INVALID) && \
|
|
((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \
|
|
!((tup)->t_infomask2 & HEAP_XMAX_LOCK_ONLY)) ? \
|
|
HeapTupleHeaderMultiXactGetUpdateXid(page, tup) : \
|
|
HeapTupleHeaderGetRawXmax(page, tup))
|
|
|
|
#define HeapTupleHeaderGetXmax(page, tup) \
|
|
(ShortTransactionIdToNormal(((tup)->t_infomask & HEAP_XMAX_IS_MULTI) \
|
|
? (((HeapPageHeader)(page))->pd_multi_base) \
|
|
: (((HeapPageHeader)(page))->pd_xid_base), \
|
|
((tup)->t_choice.t_heap.t_xmax)))
|
|
|
|
#define HeapTupleHeaderSetXmax(page, tup, xid) \
|
|
((tup)->t_choice.t_heap.t_xmax = NormalTransactionIdToShort( \
|
|
(((tup)->t_infomask & HEAP_XMAX_IS_MULTI) \
|
|
? (((HeapPageHeader)(page))->pd_multi_base) \
|
|
: (((HeapPageHeader)(page))->pd_xid_base)), \
|
|
(xid)))
|
|
#define HeapTupleHeaderSetXmin(page, tup, xid) \
|
|
((tup)->t_choice.t_heap.t_xmin = NormalTransactionIdToShort( \
|
|
(((HeapPageHeader)(page))->pd_xid_base), (xid)))
|
|
|
|
#define HeapTupleSetXmax(tup, xid) \
|
|
((tup)->t_data->t_choice.t_heap.t_xmax = NormalTransactionIdToShort( \
|
|
((tup)->t_data->t_infomask & HEAP_XMAX_IS_MULTI) ? (tup)->t_multi_base : (tup)->t_xid_base, (xid)))
|
|
|
|
#define HeapTupleSetXmin(tup, xid) \
|
|
((tup)->t_data->t_choice.t_heap.t_xmin = NormalTransactionIdToShort((tup)->t_xid_base, (xid)))
|
|
|
|
/*
|
|
* HeapTupleHeaderGetRawCommandId will give you what's in the header whether
|
|
* it is useful or not. Most code should use HeapTupleHeaderGetCmin or
|
|
* HeapTupleHeaderGetCmax instead, but note that those Assert that you can
|
|
* get a legitimate result, ie you are in the originating transaction!
|
|
*/
|
|
#define HeapTupleHeaderGetRawCommandId(tup) ((tup)->t_choice.t_heap.t_field3.t_cid)
|
|
|
|
/* SetCmin is reasonably simple since we never need a combo CID */
|
|
#define HeapTupleHeaderSetCmin(tup, cid) \
|
|
do { \
|
|
(tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
|
|
(tup)->t_infomask &= ~HEAP_COMBOCID; \
|
|
} while (0)
|
|
|
|
/* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
|
|
#define HeapTupleHeaderSetCmax(tup, cid, iscombo) \
|
|
do { \
|
|
(tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
|
|
if (iscombo) \
|
|
(tup)->t_infomask |= HEAP_COMBOCID; \
|
|
else \
|
|
(tup)->t_infomask &= ~HEAP_COMBOCID; \
|
|
} while (0)
|
|
|
|
#define HeapTupleHeaderGetDatumLength(tup) VARSIZE(tup)
|
|
|
|
#define HeapTupleHeaderSetDatumLength(tup, len) SET_VARSIZE(tup, len)
|
|
|
|
#define HeapTupleHeaderGetTypeId(tup) ((tup)->t_choice.t_datum.datum_typeid)
|
|
|
|
#define HeapTupleHeaderSetTypeId(tup, typeid) ((tup)->t_choice.t_datum.datum_typeid = (typeid))
|
|
|
|
#define HeapTupleHeaderGetTypMod(tup) ((tup)->t_choice.t_datum.datum_typmod)
|
|
|
|
#define HeapTupleHeaderSetTypMod(tup, typmod) ((tup)->t_choice.t_datum.datum_typmod = (typmod))
|
|
|
|
#define HeapTupleHeaderGetOid(tup) \
|
|
(((tup)->t_infomask & HEAP_HASOID) ? *((Oid*)((char*)(tup) + (tup)->t_hoff - sizeof(Oid))) : InvalidOid)
|
|
|
|
#define HeapTupleHeaderSetOid(tup, oid) \
|
|
do { \
|
|
Assert((tup)->t_infomask& HEAP_HASOID); \
|
|
*((Oid*)((char*)(tup) + (tup)->t_hoff - sizeof(Oid))) = (oid); \
|
|
} while (0)
|
|
|
|
#define HeapTupleHeaderHasOid(tup) (((tup)->t_infomask & HEAP_HASOID) != 0)
|
|
|
|
#define HeapTupleHeaderHasUid(tup) (((tup)->t_infomask & HEAP_HAS_8BYTE_UID) != 0)
|
|
#define GetUidByteLen(uid) (sizeof(uint64))
|
|
#define HeapUidMask ()
|
|
#define GetUidByteLenInfomask(uid) (HEAP_HAS_8BYTE_UID)
|
|
#define HeapTupleHeaderSetUid(tup, uid, uidLen) \
|
|
do { \
|
|
Assert((tup)->t_infomask & HEAP_HAS_8BYTE_UID); \
|
|
Assert(!HeapTupleHeaderHasOid(tup)); \
|
|
*((uint64*)((char*)(tup) + (tup)->t_hoff - uidLen)) = (uid); \
|
|
} while (0)
|
|
|
|
extern uint64 HeapTupleGetUid(HeapTuple tup);
|
|
extern void HeapTupleSetUid(HeapTuple tup, uint64 uid, int nattrs);
|
|
|
|
/*
|
|
* Note that we stop considering a tuple HOT-updated as soon as it is known
|
|
* aborted or the would-be updating transaction is known aborted. For best
|
|
* efficiency, check tuple visibility before using this macro, so that the
|
|
* INVALID bits will be as up to date as possible.
|
|
*/
|
|
#define HeapTupleHeaderIsHotUpdated(tup) \
|
|
(((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && ((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \
|
|
!HeapTupleHeaderXminInvalid(tup))
|
|
|
|
#define HeapTupleHeaderSetHotUpdated(tup) ((tup)->t_infomask2 |= HEAP_HOT_UPDATED)
|
|
|
|
#define HeapTupleHeaderClearHotUpdated(tup) ((tup)->t_infomask2 &= ~HEAP_HOT_UPDATED)
|
|
|
|
#define HeapTupleHeaderIsHeapOnly(tup) (((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0)
|
|
|
|
#define HeapTupleHeaderSetHeapOnly(tup) ((tup)->t_infomask2 |= HEAP_ONLY_TUPLE)
|
|
|
|
#define HeapTupleHeaderClearHeapOnly(tup) ((tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE)
|
|
|
|
#define HeapTupleHeaderHasRedisColumns(tup) (((tup)->t_infomask2 & HEAP_HAS_REDIS_COLUMNS) != 0)
|
|
|
|
#define HeapTupleHeaderSetRedisColumns(tup) ((tup)->t_infomask2 |= HEAP_HAS_REDIS_COLUMNS)
|
|
|
|
#define HeapTupleHeaderUnsetRedisColumns(tup) ((tup)->t_infomask2 &= ~HEAP_HAS_REDIS_COLUMNS)
|
|
|
|
#define HeapTupleHeaderHasMatch(tup) (((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0)
|
|
|
|
#define HeapTupleHeaderSetMatch(tup) ((tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH)
|
|
|
|
#define HeapTupleHeaderClearMatch(tup) ((tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH)
|
|
|
|
/*
|
|
* Tuple Descriptor is added to ignore the hidden columns added by redis (if any)
|
|
* from the tuple.
|
|
*/
|
|
static inline uint32 HeapTupleHeaderGetNatts(HeapTupleHeader tup, TupleDesc tup_desc)
|
|
{
|
|
Assert(tup != NULL);
|
|
uint32 natts = (tup->t_infomask2 & HEAP_NATTS_MASK);
|
|
|
|
/*
|
|
* If the tuple header has HEAP_HAS_REDIS_COLUMNS bit set, it means that the
|
|
* tuple has values for the REDIS_NUM_INTERNAL_COLUMNS added by redis.
|
|
* These column values are valid only for the duration of table redistribution.
|
|
* Once the table redistribution is completed (the relation is not
|
|
* REDIS_REL_DESTINATION anymore), these column values must be ignored from
|
|
* the tuple.
|
|
*/
|
|
if (HeapTupleHeaderHasRedisColumns(tup) && tup_desc && !tup_desc->tdisredistable) {
|
|
Assert(natts >= REDIS_NUM_INTERNAL_COLUMNS);
|
|
natts -= REDIS_NUM_INTERNAL_COLUMNS;
|
|
}
|
|
|
|
return natts;
|
|
}
|
|
|
|
#define HeapTupleHeaderSetNatts(tup, natts) ((tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts))
|
|
|
|
/* tuple' compression macro */
|
|
#define HEAP_TUPLE_SET_COMPRESSED(tup) ((tup)->t_infomask |= HEAP_COMPRESSED)
|
|
|
|
#define HEAP_TUPLE_IS_COMPRESSED(tup) (((tup)->t_infomask & HEAP_COMPRESSED) != 0)
|
|
|
|
#define HEAP_TUPLE_CLEAR_COMPRESSED(tup) ((tup)->t_infomask &= ~HEAP_COMPRESSED)
|
|
|
|
/* Struct for forming compressed tuple.
|
|
*
|
|
* compressed: comppressed flag for each attribute in one tuple.
|
|
* delta/prefix/dict values are mixed in values of heapFormTuple(desc, values, isnulls, void*)
|
|
* delta compression: --> char* delta, whose size is in valsize[]
|
|
* prefix compression: --> char* ended with '\0', whose size is in valsize[]
|
|
* dict compression: --> the index of dict item, whose size is in valsize[]
|
|
*/
|
|
typedef struct {
|
|
bool* isnulls;
|
|
bool* compressed;
|
|
Datum* values;
|
|
int* valsize;
|
|
} FormCmprTupleData;
|
|
|
|
/*
|
|
* BITMAPLEN(NATTS) -
|
|
* Computes size of null bitmap given number of data columns.
|
|
*/
|
|
#define BITMAPLEN(NATTS) (((int)(NATTS) + 7) / 8)
|
|
|
|
/*
|
|
* MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
|
|
* header and MAXALIGN alignment padding. Basically it's BLCKSZ minus the
|
|
* other stuff that has to be on a disk page. Since heap pages use no
|
|
* "special space", there's no deduction for that.
|
|
*
|
|
* NOTE: we allow for the ItemId that must point to the tuple, ensuring that
|
|
* an otherwise-empty page can indeed hold a tuple of this size. Because
|
|
* ItemIds and tuples have different alignment requirements, don't assume that
|
|
* you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
|
|
*/
|
|
#define MaxHeapTupleSize (BLCKSZ - MAXALIGN(SizeOfHeapPageHeaderData + sizeof(ItemIdData)))
|
|
#define MinHeapTupleSize MAXALIGN(offsetof(HeapTupleHeaderData, t_bits))
|
|
|
|
/*
|
|
* MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
|
|
* fit on one heap page. (Note that indexes could have more, because they
|
|
* use a smaller tuple header.) We arrive at the divisor because each tuple
|
|
* must be maxaligned, and it must have an associated item pointer.
|
|
*
|
|
* Note: with HOT, there could theoretically be more line pointers (not actual
|
|
* tuples) than this on a heap page. However we constrain the number of line
|
|
* pointers to this anyway, to avoid excessive line-pointer bloat and not
|
|
* require increases in the size of work arrays.
|
|
*/
|
|
#define MaxHeapTuplesPerPage \
|
|
((int)((BLCKSZ - SizeOfHeapPageHeaderData) / \
|
|
(MAXALIGN(offsetof(HeapTupleHeaderData, t_bits)) + sizeof(ItemIdData))))
|
|
|
|
/*
|
|
* MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
|
|
* data fields of char(n) and similar types. It need not have anything
|
|
* directly to do with the *actual* upper limit of varlena values, which
|
|
* is currently 1Gb (see TOAST structures in postgres.h). I've set it
|
|
* at 10Mb which seems like a reasonable number --- tgl 8/6/00.
|
|
*/
|
|
#define MaxAttrSize (10 * 1024 * 1024)
|
|
|
|
/*
|
|
* MinimalTuple is an alternative representation that is used for transient
|
|
* tuples inside the executor, in places where transaction status information
|
|
* is not required, the tuple rowtype is known, and shaving off a few bytes
|
|
* is worthwhile because we need to store many tuples. The representation
|
|
* is chosen so that tuple access routines can work with either full or
|
|
* minimal tuples via a HeapTupleData pointer structure. The access routines
|
|
* see no difference, except that they must not access the transaction status
|
|
* or t_ctid fields because those aren't there.
|
|
*
|
|
* For the most part, MinimalTuples should be accessed via TupleTableSlot
|
|
* routines. These routines will prevent access to the "system columns"
|
|
* and thereby prevent accidental use of the nonexistent fields.
|
|
*
|
|
* MinimalTupleData contains a length word, some padding, and fields matching
|
|
* HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
|
|
* that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
|
|
* structs. This makes data alignment rules equivalent in both cases.
|
|
*
|
|
* When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
|
|
* set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
|
|
* minimal tuple --- that is, where a full tuple matching the minimal tuple's
|
|
* data would start. This trick is what makes the structs seem equivalent.
|
|
*
|
|
* Note that t_hoff is computed the same as in a full tuple, hence it includes
|
|
* the MINIMAL_TUPLE_OFFSET distance. t_len does not include that, however.
|
|
*
|
|
* MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
|
|
* other than the length word. tuplesort.c and tuplestore.c use this to avoid
|
|
* writing the padding to disk.
|
|
*/
|
|
#define MINIMAL_TUPLE_OFFSET \
|
|
((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
|
|
#define MINIMAL_TUPLE_PADDING ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
|
|
#define MINIMAL_TUPLE_DATA_OFFSET offsetof(MinimalTupleData, t_infomask2)
|
|
|
|
typedef struct MinimalTupleData {
|
|
uint32 t_len; /* actual length of minimal tuple */
|
|
char mt_padding[MINIMAL_TUPLE_PADDING];
|
|
|
|
/* Fields below here must match HeapTupleHeaderData! */
|
|
uint16 t_infomask2; /* number of attributes + various flags */
|
|
|
|
uint16 t_infomask; /* various flag bits, see below */
|
|
|
|
uint8 t_hoff; /* sizeof header incl. bitmap, padding */
|
|
|
|
/* ^ - 23 bytes - ^ */
|
|
|
|
bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs -- VARIABLE LENGTH */
|
|
|
|
/* MORE DATA FOLLOWS AT END OF STRUCT */
|
|
} MinimalTupleData;
|
|
|
|
typedef MinimalTupleData* MinimalTuple;
|
|
|
|
/*
|
|
* HeapTupleData is an in-memory data structure that points to a tuple.
|
|
*
|
|
* There are several ways in which this data structure is used:
|
|
*
|
|
* * Pointer to a tuple in a disk buffer: t_data points directly into the
|
|
* buffer (which the code had better be holding a pin on, but this is not
|
|
* reflected in HeapTupleData itself).
|
|
*
|
|
* * Pointer to nothing: t_data is NULL. This is used as a failure indication
|
|
* in some functions.
|
|
*
|
|
* * Part of a palloc'd tuple: the HeapTupleData itself and the tuple
|
|
* form a single palloc'd chunk. t_data points to the memory location
|
|
* immediately following the HeapTupleData struct (at offset HEAPTUPLESIZE).
|
|
* This is the output format of heap_form_tuple and related routines.
|
|
*
|
|
* * Separately allocated tuple: t_data points to a palloc'd chunk that
|
|
* is not adjacent to the HeapTupleData. (This case is deprecated since
|
|
* it's difficult to tell apart from case #1. It should be used only in
|
|
* limited contexts where the code knows that case #1 will never apply.)
|
|
*
|
|
* * Separately allocated minimal tuple: t_data points MINIMAL_TUPLE_OFFSET
|
|
* bytes before the start of a MinimalTuple. As with the previous case,
|
|
* this can't be told apart from case #1 by inspection; code setting up
|
|
* or destroying this representation has to know what it's doing.
|
|
*
|
|
* t_len should always be valid, except in the pointer-to-nothing case.
|
|
* t_self and t_tableOid should be valid if the HeapTupleData points to
|
|
* a disk buffer, or if it represents a copy of a tuple on disk. They
|
|
* should be explicitly set invalid in manufactured tuples.
|
|
*/
|
|
typedef struct HeapTupleData {
|
|
uint32 t_len; /* length of *t_data */
|
|
uint1 tupTableType = HEAP_TUPLE;
|
|
uint1 tupInfo;
|
|
int2 t_bucketId;
|
|
ItemPointerData t_self; /* SelfItemPointer */
|
|
Oid t_tableOid; /* table the tuple came from */
|
|
TransactionId t_xid_base;
|
|
TransactionId t_multi_base;
|
|
#ifdef PGXC
|
|
uint32 t_xc_node_id; /* Data node the tuple came from */
|
|
#endif
|
|
HeapTupleHeader t_data; /* -> tuple header and data */
|
|
} HeapTupleData;
|
|
|
|
typedef HeapTupleData* HeapTuple;
|
|
typedef void* Tuple;
|
|
|
|
inline HeapTuple heaptup_alloc(Size size)
|
|
{
|
|
HeapTuple tup = (HeapTuple)palloc0(size);
|
|
tup->tupTableType = HEAP_TUPLE;
|
|
return tup;
|
|
}
|
|
|
|
#define HEAPTUPLESIZE MAXALIGN(sizeof(HeapTupleData))
|
|
|
|
/*
|
|
* GETSTRUCT - given a HeapTuple pointer, return address of the user data
|
|
*/
|
|
#define GETSTRUCT(TUP) ((char*)((TUP)->t_data) + (TUP)->t_data->t_hoff)
|
|
|
|
/*
|
|
* Accessor macros to be used with HeapTuple pointers.
|
|
*/
|
|
#define HeapTupleIsValid(tuple) PointerIsValid(tuple)
|
|
|
|
#define HeapTupleHasNulls(tuple) (((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0)
|
|
|
|
#define HeapTupleNoNulls(tuple) (!((tuple)->t_data->t_infomask & HEAP_HASNULL))
|
|
|
|
#define HeapTupleHasVarWidth(tuple) (((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0)
|
|
|
|
#define HeapTupleAllFixed(tuple) (!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH))
|
|
|
|
#define HeapTupleHasExternal(tuple) (((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0)
|
|
|
|
#define HeapTupleIsHotUpdated(tuple) HeapTupleHeaderIsHotUpdated((tuple)->t_data)
|
|
|
|
#define HeapTupleSetHotUpdated(tuple) HeapTupleHeaderSetHotUpdated((tuple)->t_data)
|
|
|
|
#define HeapTupleClearHotUpdated(tuple) HeapTupleHeaderClearHotUpdated((tuple)->t_data)
|
|
|
|
#define HeapTupleIsHeapOnly(tuple) HeapTupleHeaderIsHeapOnly((tuple)->t_data)
|
|
|
|
#define HeapTupleSetHeapOnly(tuple) HeapTupleHeaderSetHeapOnly((tuple)->t_data)
|
|
|
|
#define HeapTupleClearHeapOnly(tuple) HeapTupleHeaderClearHeapOnly((tuple)->t_data)
|
|
|
|
#define HeapTupleGetOid(tuple) HeapTupleHeaderGetOid((tuple)->t_data)
|
|
|
|
#define HeapTupleSetOid(tuple, oid) HeapTupleHeaderSetOid((tuple)->t_data, (oid))
|
|
|
|
/*
|
|
* WAL record definitions for heapam.c's WAL operations
|
|
*
|
|
* XLOG allows to store some information in high 4 bits of log
|
|
* record xl_info field. We use 3 for opcode and one for init bit.
|
|
*/
|
|
#define XLOG_HEAP_INSERT 0x00
|
|
#define XLOG_HEAP_DELETE 0x10
|
|
#define XLOG_HEAP_UPDATE 0x20
|
|
#define XLOG_HEAP_BASE_SHIFT 0x30
|
|
#define XLOG_HEAP_HOT_UPDATE 0x40
|
|
#define XLOG_HEAP_NEWPAGE 0x50
|
|
#define XLOG_HEAP_LOCK 0x60
|
|
#define XLOG_HEAP_INPLACE 0x70
|
|
|
|
#define XLOG_HEAP_OPMASK 0x70
|
|
/*
|
|
* When we insert 1st item on new page in INSERT, UPDATE, HOT_UPDATE,
|
|
* or MULTI_INSERT, we can (and we do) restore entire page in redo
|
|
*/
|
|
#define XLOG_HEAP_INIT_PAGE 0x80
|
|
|
|
/* Upgrade support for enhanced tupl lock mode */
|
|
#define XLOG_TUPLE_LOCK_UPGRADE_FLAG 0x01
|
|
|
|
/*
|
|
* We ran out of opcodes, so heapam.c now has a second RmgrId. These opcodes
|
|
* are associated with RM_HEAP2_ID, but are not logically different from
|
|
* the ones above associated with RM_HEAP_ID. XLOG_HEAP_OPMASK applies to
|
|
* these, too.
|
|
*/
|
|
#define XLOG_HEAP2_FREEZE 0x00
|
|
#define XLOG_HEAP2_CLEAN 0x10
|
|
/* 0x20 is free, was XLOG_HEAP2_PAGE_UPGRADE */
|
|
#define XLOG_HEAP2_PAGE_UPGRADE 0x20
|
|
#define XLOG_HEAP2_CLEANUP_INFO 0x30
|
|
#define XLOG_HEAP2_VISIBLE 0x40
|
|
#define XLOG_HEAP2_MULTI_INSERT 0x50
|
|
#define XLOG_HEAP2_BCM 0x60
|
|
|
|
#define XLOG_HEAP2_LOGICAL_NEWPAGE 0x70
|
|
|
|
/*
|
|
* When we prune page, sometimes not call PageRepairFragmentation (e.g freeze_single_heap_page),
|
|
* so need a flag to notify the standby DN the PageRepairFragmentation is not required.
|
|
*/
|
|
#define XLOG_HEAP2_NO_REPAIR_PAGE 0x80
|
|
|
|
/* XLOG_HEAP_NEW_CID with 0x30 in heap is XLOGHEAP2_NEW_CID with 0x70 in heap2 in PG9.4 */
|
|
#define XLOG_HEAP3_NEW_CID 0x00
|
|
#define XLOG_HEAP3_REWRITE 0x10
|
|
#define XLOG_HEAP3_INVALID 0x20
|
|
|
|
/* we used to put all xl_heap_* together, which made us run out of opcodes (quickly)
|
|
* when trying to add a DELETE_IS_SUPER operation. Thus we split the codes carefully
|
|
* for INSERT, UPDATE, DELETE individually. each has 8 bits available to use.
|
|
*/
|
|
/*
|
|
* xl_heap_insert/xl_heap_multi_insert flag values, 8 bits are available
|
|
*/
|
|
/* PD_ALL_VISIBLE was cleared */
|
|
#define XLH_INSERT_ALL_VISIBLE_CLEARED (1<<0)
|
|
#define XLH_INSERT_CONTAINS_NEW_TUPLE (1<<4)
|
|
#define XLH_INSERT_LAST_IN_MULTI (1<<7)
|
|
|
|
/*
|
|
* xl_heap_update flag values, 8 bits are available.
|
|
*/
|
|
/* PD_ALL_VISIBLE was cleared */
|
|
#define XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED (1<<0)
|
|
/* PD_ALL_VISIBLE was cleared in the 2nd page */
|
|
#define XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED (1<<1)
|
|
#define XLH_UPDATE_CONTAINS_OLD_TUPLE (1<<2)
|
|
#define XLH_UPDATE_CONTAINS_OLD_KEY (1<<3)
|
|
#define XLH_UPDATE_CONTAINS_NEW_TUPLE (1<<4)
|
|
#define XLH_UPDATE_PREFIX_FROM_OLD (1<<5)
|
|
#define XLH_UPDATE_SUFFIX_FROM_OLD (1<<6)
|
|
|
|
/* convenience macro for checking whether any form of old tuple was logged */
|
|
#define XLH_UPDATE_CONTAINS_OLD \
|
|
(XLH_UPDATE_CONTAINS_OLD_TUPLE | XLH_UPDATE_CONTAINS_OLD_KEY)
|
|
|
|
/*
|
|
* xl_heap_delete flag values, 8 bits are available.
|
|
*/
|
|
/* PD_ALL_VISIBLE was cleared */
|
|
#define XLH_DELETE_ALL_VISIBLE_CLEARED (1<<0)
|
|
#define XLH_DELETE_IS_SUPER (1<<1)
|
|
#define XLH_DELETE_CONTAINS_OLD_TUPLE (1<<2)
|
|
#define XLH_DELETE_CONTAINS_OLD_KEY (1<<3)
|
|
|
|
/* convenience macro for checking whether any form of old tuple was logged */
|
|
#define XLH_DELETE_CONTAINS_OLD \
|
|
(XLH_DELETE_CONTAINS_OLD_TUPLE | XLH_DELETE_CONTAINS_OLD_KEY)
|
|
|
|
/* This is what we need to know about delete */
|
|
typedef struct xl_heap_delete {
|
|
OffsetNumber offnum; /* deleted tuple's offset */
|
|
uint8 flags;
|
|
TransactionId xmax; /* xmax of the deleted tuple */
|
|
uint8 infobits_set; /* infomask bits */
|
|
} xl_heap_delete;
|
|
|
|
#define SizeOfOldHeapDelete (offsetof(xl_heap_delete, flags) + sizeof(uint8))
|
|
#define SizeOfHeapDelete (offsetof(xl_heap_delete, infobits_set) + sizeof(uint8))
|
|
|
|
/*
|
|
* We don't store the whole fixed part (HeapTupleHeaderData) of an inserted
|
|
* or updated tuple in WAL; we can save a few bytes by reconstructing the
|
|
* fields that are available elsewhere in the WAL record, or perhaps just
|
|
* plain needn't be reconstructed. These are the fields we must store.
|
|
* NOTE: t_hoff could be recomputed, but we may as well store it because
|
|
* it will come for free due to alignment considerations.
|
|
*/
|
|
typedef struct xl_heap_header {
|
|
uint16 t_infomask2;
|
|
uint16 t_infomask;
|
|
uint8 t_hoff;
|
|
} xl_heap_header;
|
|
|
|
#define SizeOfHeapHeader (offsetof(xl_heap_header, t_hoff) + sizeof(uint8))
|
|
|
|
/* This is what we need to know about insert */
|
|
typedef struct xl_heap_insert {
|
|
OffsetNumber offnum; /* inserted tuple's offset */
|
|
uint8 flags;
|
|
|
|
/* xl_heap_header & TUPLE DATA in backup block 0 */
|
|
} xl_heap_insert;
|
|
|
|
#define SizeOfHeapInsert (offsetof(xl_heap_insert, flags) + sizeof(uint8))
|
|
|
|
/*
|
|
* This is what we need to know about a multi-insert.
|
|
*
|
|
* The main data of the record consists of this xl_heap_multi_insert header.
|
|
* 'offsets' array is omitted if the whole page is reinitialized
|
|
* (XLOG_HEAP_INIT_PAGE).
|
|
*
|
|
* If this block is compressed with dictionary, then this dictionary will follow
|
|
* <xl_heap_multi_insert> header, but before <xl_multi_insert_tuple> tuples and
|
|
* tuples' data. <isCompressed> indicates whether there is a dictionary.
|
|
*
|
|
* In block 0's data portion, there is an xl_multi_insert_tuple struct,
|
|
* followed by the tuple data for each tuple. There is padding to align
|
|
* each xl_multi_insert struct.
|
|
*/
|
|
typedef struct xl_heap_multi_insert {
|
|
uint8 flags;
|
|
bool isCompressed;
|
|
uint16 ntuples;
|
|
OffsetNumber offsets[FLEXIBLE_ARRAY_MEMBER];
|
|
} xl_heap_multi_insert;
|
|
|
|
#define SizeOfHeapMultiInsert offsetof(xl_heap_multi_insert, offsets)
|
|
|
|
typedef struct xl_multi_insert_tuple {
|
|
uint16 datalen; /* size of tuple data that follows */
|
|
uint16 t_infomask2;
|
|
uint16 t_infomask;
|
|
uint8 t_hoff;
|
|
/* TUPLE DATA FOLLOWS AT END OF STRUCT */
|
|
} xl_multi_insert_tuple;
|
|
|
|
#define SizeOfMultiInsertTuple (offsetof(xl_multi_insert_tuple, t_hoff) + sizeof(uint8))
|
|
|
|
/*
|
|
* This is what we need to know about update|hot_update
|
|
*
|
|
* Backup blk 0: new page
|
|
*
|
|
* If XLOG_HEAP_PREFIX_FROM_OLD or XLOG_HEAP_SUFFIX_FROM_OLD flags are set,
|
|
* the prefix and/or suffix come first, as one or two uint16s.
|
|
*
|
|
* After that, xl_heap_header and new tuple data follow. The new tuple
|
|
* data doesn't include the prefix and suffix, which are copied from the
|
|
* old tuple on replay.
|
|
*
|
|
* If HEAP_CONTAINS_NEW_TUPLE_DATA flag is given, the tuple data is
|
|
* included even if a full-page image was taken.
|
|
*
|
|
* Backup blk 1: old page, if different. (no data, just a reference to the blk)
|
|
*/
|
|
typedef struct xl_heap_update {
|
|
OffsetNumber old_offnum; /* old tuple's offset */
|
|
OffsetNumber new_offnum; /* new tuple's offset */
|
|
uint8 flags; /* NEW TUPLE xl_heap_header AND TUPLE DATA FOLLOWS AT END OF STRUCT */
|
|
TransactionId old_xmax; /* xmax of the old tuple */
|
|
TransactionId new_xmax; /* xmax of the new tuple */
|
|
uint8 old_infobits_set; /* infomask bits to set on old tuple */
|
|
} xl_heap_update;
|
|
|
|
#define SizeOfOldHeapUpdate (offsetof(xl_heap_update, flags) + sizeof(uint8))
|
|
#define SizeOfHeapUpdate (offsetof(xl_heap_update, old_infobits_set) + sizeof(uint8))
|
|
/*
|
|
* This is what we need to know about vacuum page cleanup/redirect
|
|
*
|
|
* The array of OffsetNumbers following the fixed part of the record contains:
|
|
* * for each redirected item: the item offset, then the offset redirected to
|
|
* * for each now-dead item: the item offset
|
|
* * for each now-unused item: the item offset
|
|
* The total number of OffsetNumbers is therefore 2*nredirected+ndead+nunused.
|
|
* Note that nunused is not explicitly stored, but may be found by reference
|
|
* to the total record length.
|
|
*/
|
|
typedef struct xl_heap_clean {
|
|
TransactionId latestRemovedXid;
|
|
uint16 nredirected;
|
|
uint16 ndead;
|
|
/* OFFSET NUMBERS are in the block reference 0 */
|
|
} xl_heap_clean;
|
|
|
|
#define SizeOfHeapClean (offsetof(xl_heap_clean, ndead) + sizeof(uint16))
|
|
|
|
/*
|
|
* Cleanup_info is required in some cases during a lazy VACUUM.
|
|
* Used for reporting the results of HeapTupleHeaderAdvanceLatestRemovedXid()
|
|
* see vacuumlazy.c for full explanation
|
|
*/
|
|
typedef struct xl_heap_cleanup_info {
|
|
RelFileNodeOld node;
|
|
TransactionId latestRemovedXid;
|
|
} xl_heap_cleanup_info;
|
|
|
|
#define SizeOfHeapCleanupInfo (sizeof(xl_heap_cleanup_info))
|
|
|
|
/* Logical xlog for multi_insert or new index when data replication store is row*/
|
|
typedef struct xl_heap_logical_newpage {
|
|
RelFileNodeOld node; // relfilenode
|
|
BlockNumber blkno; // block number
|
|
ForkNumber forknum;
|
|
StorageEngine type;
|
|
bool hasdata; // flag of save cu xlog
|
|
int attid; // column id
|
|
Size offset; // CU offset
|
|
int32 blockSize;
|
|
/* Other infos?: offset datalen Row or column store */
|
|
} xl_heap_logical_newpage;
|
|
|
|
#define SizeOfHeapLogicalNewPage (offsetof(xl_heap_logical_newpage, blockSize) + sizeof(int32))
|
|
|
|
/* flags for infobits_set */
|
|
#define XLHL_XMAX_IS_MULTI 0x01
|
|
#define XLHL_XMAX_LOCK_ONLY 0x02
|
|
#define XLHL_XMAX_EXCL_LOCK 0x04
|
|
#define XLHL_XMAX_KEYSHR_LOCK 0x08
|
|
#define XLHL_KEYS_UPDATED 0x10
|
|
|
|
/* This is what we need to know about lock */
|
|
typedef struct xl_heap_lock {
|
|
TransactionId locking_xid; /* might be a MultiXactId not xid */
|
|
OffsetNumber offnum; /* locked tuple's offset on page */
|
|
bool xid_is_mxact; /* is it? */
|
|
bool shared_lock; /* shared or exclusive row lock? */
|
|
uint8 infobits_set; /* infomask and infomask2 bits to set */
|
|
bool lock_updated; /* lock an updated version of a row */
|
|
} xl_heap_lock;
|
|
|
|
#define SizeOfOldHeapLock (offsetof(xl_heap_lock, shared_lock) + sizeof(bool))
|
|
#define SizeOfHeapLock (offsetof(xl_heap_lock, lock_updated) + sizeof(bool))
|
|
|
|
/* This is what we need to know about in-place update */
|
|
typedef struct xl_heap_inplace {
|
|
OffsetNumber offnum; /* updated tuple's offset on page */
|
|
/* TUPLE DATA FOLLOWS AT END OF STRUCT */
|
|
} xl_heap_inplace;
|
|
|
|
#define SizeOfHeapInplace (offsetof(xl_heap_inplace, offnum) + sizeof(OffsetNumber))
|
|
|
|
/*
|
|
* This is what we need to know about a block being frozen during vacuum
|
|
*
|
|
* Backup block 0's data contains an array of xl_heap_freeze structs,
|
|
* one for each tuple.
|
|
*/
|
|
typedef struct xl_heap_freeze {
|
|
TransactionId cutoff_xid;
|
|
MultiXactId cutoff_multi;
|
|
/* TUPLE OFFSET NUMBERS FOLLOW AT THE END */
|
|
} xl_heap_freeze;
|
|
|
|
#define SizeOfOldHeapFreeze (offsetof(xl_heap_freeze, cutoff_xid) + sizeof(TransactionId))
|
|
#define SizeOfHeapFreeze (offsetof(xl_heap_freeze, cutoff_multi) + sizeof(MultiXactId))
|
|
|
|
typedef struct xl_heap_invalid {
|
|
TransactionId cutoff_xid;
|
|
/* TUPLE OFFSET NUMBERS FOLLOW AT THE END */
|
|
} xl_heap_invalid;
|
|
#define SizeOfHeapInvalid (offsetof(xl_heap_invalid, cutoff_xid) + sizeof(TransactionId))
|
|
|
|
typedef struct xl_heap_freeze_tuple {
|
|
TransactionId xmax;
|
|
OffsetNumber offset;
|
|
uint16 t_infomask2;
|
|
uint16 t_infomask;
|
|
uint8 frzflags;
|
|
} xl_heap_freeze_tuple;
|
|
|
|
/*
|
|
* This is what we need to know about setting a visibility map bit
|
|
*
|
|
* Backup blk 0: visibility map buffer
|
|
* Backup blk 1: heap buffer if exists (except partition merge)
|
|
*/
|
|
typedef struct xl_heap_visible {
|
|
BlockNumber block;
|
|
TransactionId cutoff_xid;
|
|
bool free_dict; /* dick will be checked and freed when switching visibility. */
|
|
} xl_heap_visible;
|
|
|
|
#define SizeOfHeapVisible (offsetof(xl_heap_visible, free_dict) + sizeof(bool))
|
|
|
|
/* This is what we need to know about setting a bcm map bit */
|
|
typedef struct xl_heap_bcm {
|
|
RelFileNodeOld node;
|
|
uint32 col;
|
|
uint64 block;
|
|
int count;
|
|
int status;
|
|
} xl_heap_bcm;
|
|
|
|
#define SizeOfHeapBcm (offsetof(xl_heap_bcm, status) + sizeof(int))
|
|
|
|
/* shift the base of xids on heap page */
|
|
typedef struct xl_heap_base_shift {
|
|
int64 delta; /* delta value to shift the base */
|
|
bool multi; /* true to shift multixact base */
|
|
} xl_heap_base_shift;
|
|
|
|
#define SizeOfHeapBaseShift (offsetof(xl_heap_base_shift, multi) + sizeof(bool))
|
|
|
|
typedef struct xl_heap_new_cid {
|
|
/*
|
|
* store toplevel xid so we don't have to merge cids from different
|
|
* transactions
|
|
*/
|
|
TransactionId top_xid;
|
|
CommandId cmin;
|
|
CommandId cmax;
|
|
CommandId combocid; /* just for debugging */
|
|
|
|
/*
|
|
* Store the relfilenode/ctid pair to facilitate lookups.
|
|
*/
|
|
RelFileNodeOld target_node;
|
|
ItemPointerData target_tid;
|
|
} xl_heap_new_cid;
|
|
|
|
#define SizeOfHeapNewCid (offsetof(xl_heap_new_cid, target_tid) + sizeof(ItemPointerData))
|
|
|
|
/* logical rewrite xlog record header */
|
|
typedef struct xl_heap_rewrite_mapping {
|
|
TransactionId mapped_xid; /* xid that might need to see the row */
|
|
Oid mapped_db; /* DbOid or InvalidOid for shared rels */
|
|
Oid mapped_rel; /* Oid of the mapped relation */
|
|
off_t offset; /* How far have we written so far */
|
|
uint32 num_mappings; /* Number of in-memory mappings */
|
|
XLogRecPtr start_lsn; /* Insert LSN at begin of rewrite */
|
|
} xl_heap_rewrite_mapping;
|
|
extern void HeapTupleHeaderAdvanceLatestRemovedXid(HeapTuple tuple, TransactionId* latestRemovedXid);
|
|
|
|
/* HeapTupleHeader functions implemented in utils/time/combocid.c */
|
|
extern CommandId HeapTupleGetCmin(HeapTuple tup);
|
|
extern CommandId HeapTupleGetCmax(HeapTuple tup);
|
|
extern CommandId HeapTupleHeaderGetCmin(HeapTupleHeader tup, Page page);
|
|
extern CommandId HeapTupleHeaderGetCmax(HeapTupleHeader tup, Page page);
|
|
extern bool CheckStreamCombocid(HeapTupleHeader tup, CommandId current_cid, Page page);
|
|
extern void HeapTupleHeaderAdjustCmax(HeapTupleHeader tup, CommandId* cmax, bool* iscombo, Buffer buffer);
|
|
extern TransactionId HeapTupleMultiXactGetUpdateXid(HeapTuple tuple);
|
|
extern TransactionId HeapTupleHeaderMultiXactGetUpdateXid(Page page, HeapTupleHeader tuple);
|
|
|
|
/* ----------------
|
|
* fastgetattr && fastgetattr_with_dict
|
|
*
|
|
* Fetch a user attribute's value as a Datum (might be either a
|
|
* value, or a pointer into the data area of the tuple).
|
|
*
|
|
* This must not be used when a system attribute might be requested.
|
|
* Furthermore, the passed attnum MUST be valid. Use heap_getattr()
|
|
* instead, if in doubt.
|
|
*
|
|
* This gets called many times, so we macro the cacheable and NULL
|
|
* lookups, and call nocachegetattr() for the rest.
|
|
* ----------------
|
|
*/
|
|
|
|
#if !defined(DISABLE_COMPLEX_MACRO)
|
|
|
|
#define fastgetattr(tup, attnum, tuple_desc, isnull) \
|
|
(AssertMacro(!HEAP_TUPLE_IS_COMPRESSED((tup)->t_data)), \
|
|
AssertMacro((attnum) > 0), \
|
|
(*(isnull) = false), \
|
|
HeapTupleNoNulls(tup) \
|
|
? ((tuple_desc)->attrs[(attnum)-1]->attcacheoff >= 0 \
|
|
? (fetchatt((tuple_desc)->attrs[(attnum)-1], \
|
|
(char*)(tup)->t_data + (tup)->t_data->t_hoff + \
|
|
(tuple_desc)->attrs[(attnum)-1]->attcacheoff)) \
|
|
: nocachegetattr((tup), (attnum), (tuple_desc))) \
|
|
: (att_isnull((attnum)-1, (tup)->t_data->t_bits) ? ((*(isnull) = true), (Datum)NULL) \
|
|
: (nocachegetattr((tup), (attnum), (tuple_desc)))))
|
|
|
|
#define fastgetattr_with_dict(tup, attnum, tuple_desc, isnull, page_dict) \
|
|
(AssertMacro(HEAP_TUPLE_IS_COMPRESSED((tup)->t_data)), \
|
|
AssertMacro((attnum) > 0), \
|
|
(*(isnull) = false), \
|
|
(HeapTupleHasNulls(tup) && att_isnull((attnum)-1, (tup)->t_data->t_bits)) \
|
|
? ((*(isnull) = true), (Datum)NULL) \
|
|
: nocache_cmprs_get_attr(tup, attnum, tuple_desc, page_dict))
|
|
|
|
#else /* defined(DISABLE_COMPLEX_MACRO) */
|
|
|
|
extern Datum fastgetattr_with_dict(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool* isnull, char* pageDict);
|
|
extern Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool* isnull);
|
|
#endif /* defined(DISABLE_COMPLEX_MACRO) */
|
|
|
|
/* ----------------
|
|
* heap_getattr
|
|
*
|
|
* Extract an attribute of a heap tuple and return it as a Datum.
|
|
* This works for either system or user attributes. The given attnum
|
|
* is properly range-checked.
|
|
*
|
|
* If the field in question has a NULL value, we return a zero Datum
|
|
* and set *isnull == true. Otherwise, we set *isnull == false.
|
|
*
|
|
* <tup> is the pointer to the heap tuple. <attnum> is the attribute
|
|
* number of the column (field) caller wants. <tupleDesc> is a
|
|
* pointer to the structure describing the row and all its fields.
|
|
* ----------------
|
|
*/
|
|
#define heap_getattr_with_dict(tup, attnum, tuple_desc, isnull, pagedict) \
|
|
(((int)(attnum) > 0) ? (((int)(attnum) > (int)HeapTupleHeaderGetNatts((tup)->t_data, tuple_desc)) \
|
|
? (/* get init default value from tupleDesc.*/ \
|
|
heapGetInitDefVal((attnum), (tuple_desc), (isnull))) \
|
|
: (HEAP_TUPLE_IS_COMPRESSED((tup)->t_data) \
|
|
? (fastgetattr_with_dict((tup), (attnum), (tuple_desc), (isnull), (pagedict))) \
|
|
: (fastgetattr((tup), (attnum), (tuple_desc), (isnull))))) \
|
|
: heap_getsysattr((tup), (attnum), (tuple_desc), (isnull)))
|
|
|
|
#define heap_getattr(tup, attnum, tuple_desc, isnull) heap_getattr_with_dict(tup, attnum, tuple_desc, isnull, NULL)
|
|
|
|
/* prototypes for functions in common/heaptuple.c */
|
|
extern Size heap_compute_data_size(TupleDesc tuple_desc, Datum* values, const bool* isnull);
|
|
|
|
extern void heap_fill_tuple(
|
|
TupleDesc tuple_desc, Datum* values, const bool* isnull, char* data, Size data_size, uint16* infomask, bits8* bit);
|
|
extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tuple_desc);
|
|
extern Datum nocache_cmprs_get_attr(HeapTuple tuple, uint32 attnum, TupleDesc tuple_desc, char* page_dict);
|
|
extern Datum nocachegetattr(HeapTuple tup, uint32 attnum, TupleDesc att);
|
|
extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tuple_desc, bool* isnull);
|
|
|
|
extern HeapTuple heap_copytuple(HeapTuple tuple);
|
|
extern HeapTuple heapCopyCompressedTuple(HeapTuple tuple, TupleDesc tup_desc, Page dict_page, HeapTuple dest = NULL);
|
|
extern HeapTuple heapCopyTuple(HeapTuple tuple, TupleDesc tup_desc, Page page);
|
|
|
|
#define COPY_TUPLE_HEADERINFO(_dest_tup, _src_tup) \
|
|
do { \
|
|
(_dest_tup)->t_choice = (_src_tup)->t_choice; \
|
|
(_dest_tup)->t_ctid = (_src_tup)->t_ctid; \
|
|
(_dest_tup)->t_infomask2 = (_src_tup)->t_infomask2; \
|
|
(_dest_tup)->t_infomask = (_src_tup)->t_infomask; \
|
|
} while (0)
|
|
|
|
#define COPY_TUPLE_HEADER_XACT_INFO(_dest_tuple, _src_tuple) \
|
|
do { \
|
|
HeapTupleHeader _dest = (_dest_tuple)->t_data; \
|
|
HeapTupleHeader _src = (_src_tuple)->t_data; \
|
|
(_dest)->t_choice = (_src)->t_choice; \
|
|
(_dest)->t_ctid = (_src)->t_ctid; \
|
|
(_dest)->t_infomask2 = (((_dest)->t_infomask2 & ~HEAP2_XACT_MASK) | ((_src)->t_infomask2 & HEAP2_XACT_MASK)); \
|
|
(_dest)->t_infomask = (((_dest)->t_infomask & ~HEAP_XACT_MASK) | ((_src)->t_infomask & HEAP_XACT_MASK)); \
|
|
} while (0)
|
|
|
|
extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
|
|
|
|
extern HeapTuple heap_form_tuple(TupleDesc tuple_descriptor, Datum* values, bool* isnull);
|
|
extern HeapTuple heap_form_cmprs_tuple(TupleDesc tuple_descriptor, FormCmprTupleData* cmprs_info);
|
|
|
|
extern HeapTuple heap_modify_tuple(
|
|
HeapTuple tuple, TupleDesc tuple_desc, Datum* repl_values, const bool* repl_isnull, const bool* do_replace);
|
|
|
|
extern void heap_deform_cmprs_tuple(HeapTuple tuple, TupleDesc tuple_desc, Datum* values, bool* isnull, char* cmprs_info);
|
|
extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tuple_desc, Datum* values, bool* isnull);
|
|
extern void heap_deform_tuple2(HeapTuple tuple, TupleDesc tuple_desc, Datum* values, bool* isnull, Buffer buffer);
|
|
extern void heap_deform_tuple3(HeapTuple tuple, TupleDesc tuple_desc, Datum* values, bool* isnull, Page page);
|
|
|
|
/* these three are deprecated versions of the three above: */
|
|
extern HeapTuple heap_formtuple(TupleDesc tuple_descriptor, Datum* values, const char* nulls);
|
|
extern HeapTuple heap_modifytuple(
|
|
HeapTuple tuple, TupleDesc tuple_desc, Datum* repl_values, const char* repl_nulls, const char* repl_actions);
|
|
extern void heap_deformtuple(HeapTuple tuple, TupleDesc tuple_desc, Datum* values, char* nulls);
|
|
extern void heap_freetuple(HeapTuple htup);
|
|
|
|
#define heap_freetuple_ext(htup) \
|
|
do { \
|
|
if ((htup) != NULL) { \
|
|
heap_freetuple((HeapTuple)htup); \
|
|
htup = NULL; \
|
|
} \
|
|
} while (0)
|
|
|
|
extern MinimalTuple heap_form_minimal_tuple(
|
|
TupleDesc tuple_descriptor, Datum* values, const bool* isnull, MinimalTuple in_tuple = NULL);
|
|
extern void heap_free_minimal_tuple(MinimalTuple mtup);
|
|
extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
|
|
extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
|
|
extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
|
|
|
|
extern Datum heapGetInitDefVal(int att_num, TupleDesc tuple_desc, bool* is_null);
|
|
extern bool relationAttIsNull(HeapTuple tup, int att_num, TupleDesc tuple_desc);
|
|
extern MinimalTuple heapFormMinimalTuple(HeapTuple tuple, TupleDesc tuple_desc);
|
|
|
|
extern MinimalTuple heapFormMinimalTuple(HeapTuple tuple, TupleDesc tuple_desc, Page page);
|
|
|
|
/* for GPI clean up metadata */
|
|
typedef bool (*KeepInvisbleTupleFunc)(Datum checkDatum);
|
|
typedef struct KeepInvisbleOpt {
|
|
Oid tableOid;
|
|
int checkAttnum;
|
|
KeepInvisbleTupleFunc checkKeepFunc;
|
|
} KeepInvisbleOpt;
|
|
|
|
bool HeapKeepInvisibleTuple(HeapTuple tuple, TupleDesc tupleDesc, KeepInvisbleTupleFunc checkKeepFunc = NULL);
|
|
void HeapCopyTupleNoAlloc(HeapTuple dest, HeapTuple src);
|
|
|
|
// for ut test
|
|
extern HeapTuple test_HeapUncompressTup2(HeapTuple tuple, TupleDesc tuple_desc, Page dict_page);
|
|
|
|
/*
|
|
* Prefix for delete delta table name used in redis.
|
|
* There is no other suitable common header file included in pg_redis.cpp, so defining it here.
|
|
*/
|
|
#define REDIS_DELETE_DELTA_TABLE_PREFIX "pg_delete_delta_"
|
|
#define REDIS_MULTI_CATCHUP_DELETE_DELTA_TABLE_PREFIX "pg_delete_delta_x_"
|
|
|
|
#endif /* HTUP_H */
|