1. alter large sequence
2. subpartition
2.1 split subpartition
2.2 truncate subpartition
3. 支持load
4. 支持start-with/connect-by
5. ...
314 lines
9.4 KiB
C
314 lines
9.4 KiB
C
/* ---------------------------------------------------------------------------------------
|
|
*
|
|
* int.h
|
|
* Routines to perform integer math, while checking for overflows.
|
|
*
|
|
* The routines in this file are intended to be well defined C, without
|
|
* relying on compiler flags like -fwrapv.
|
|
*
|
|
* To reduce the overhead of these routines try to use compiler intrinsics
|
|
* where available. That's not that important for the 16, 32 bit cases, but
|
|
* the 64 bit cases can be considerably faster with intrinsics. In case no
|
|
* intrinsics are available 128 bit math is used where available.
|
|
*
|
|
* Copyright (c) 2017-2019, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 2021, openGauss Contributors
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/include/common/int.h
|
|
*
|
|
* ---------------------------------------------------------------------------------------
|
|
*/
|
|
#ifndef COMMON_INT_H
|
|
#define COMMON_INT_H
|
|
|
|
/*
|
|
* If a + b overflows, return true, otherwise store the result of a + b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_add_s16_overflow(int16 a, int16 b, int16* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_add_overflow(a, b, result);
|
|
#else
|
|
int32 res = (int32)a + (int32)b;
|
|
|
|
if (res > PG_INT16_MAX || res < PG_INT16_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int16)res;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a - b overflows, return true, otherwise store the result of a - b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_sub_s16_overflow(int16 a, int16 b, int16* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_sub_overflow(a, b, result);
|
|
#else
|
|
int32 res = (int32)a - (int32)b;
|
|
|
|
if (res > PG_INT16_MAX || res < PG_INT16_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int16)res;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a * b overflows, return true, otherwise store the result of a * b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_mul_s16_overflow(int16 a, int16 b, int16* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_mul_overflow(a, b, result);
|
|
#else
|
|
int32 res = (int32)a * (int32)b;
|
|
|
|
if (res > PG_INT16_MAX || res < PG_INT16_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int16)res;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a + b overflows, return true, otherwise store the result of a + b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_add_s32_overflow(int32 a, int32 b, int32* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_add_overflow(a, b, result);
|
|
#else
|
|
int64 res = (int64)a + (int64)b;
|
|
|
|
if (res > PG_INT32_MAX || res < PG_INT32_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int32)res;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a - b overflows, return true, otherwise store the result of a - b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_sub_s32_overflow(int32 a, int32 b, int32* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_sub_overflow(a, b, result);
|
|
#else
|
|
int64 res = (int64)a - (int64)b;
|
|
|
|
if (res > PG_INT32_MAX || res < PG_INT32_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int32)res;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a * b overflows, return true, otherwise store the result of a * b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_mul_s32_overflow(int32 a, int32 b, int32* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_mul_overflow(a, b, result);
|
|
#else
|
|
int64 res = (int64)a * (int64)b;
|
|
|
|
if (res > PG_INT32_MAX || res < PG_INT32_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int32)res;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a + b overflows, return true, otherwise store the result of a + b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_add_s64_overflow(int64 a, int64 b, int64* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_add_overflow(a, b, result);
|
|
#elif defined(HAVE_INT128)
|
|
int128 res = (int128)a + (int128)b;
|
|
|
|
if (res > PG_INT64_MAX || res < PG_INT64_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int64)res;
|
|
return false;
|
|
#else
|
|
if ((a > 0 && b > 0 && a > PG_INT64_MAX - b) || (a < 0 && b < 0 && a < PG_INT64_MIN - b)) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = a + b;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline bool pg_add_s128_overflow(int128 a, int128 b, int128* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_add_overflow(a, b, result);
|
|
#else
|
|
if ((a > 0 && b > 0 && a > PG_INT128_MAX - b) || (a < 0 && b < 0 && a < PG_INT128_MIN - b)) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = a + b;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a - b overflows, return true, otherwise store the result of a - b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_sub_s64_overflow(int64 a, int64 b, int64* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_sub_overflow(a, b, result);
|
|
#elif defined(HAVE_INT128)
|
|
int128 res = (int128)a - (int128)b;
|
|
|
|
if (res > PG_INT64_MAX || res < PG_INT64_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int64)res;
|
|
return false;
|
|
#else
|
|
if ((a < 0 && b > 0 && a < PG_INT64_MIN + b) || (a > 0 && b < 0 && a > PG_INT64_MAX + b)) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = a - b;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline bool pg_sub_s128_overflow(int128 a, int128 b, int128* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_sub_overflow(a, b, result);
|
|
#else
|
|
if ((a < 0 && b > 0 && a < PG_INT128_MIN + b) || (a > 0 && b < 0 && a > PG_INT128_MAX + b)) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = a - b;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If a * b overflows, return true, otherwise store the result of a * b into
|
|
* *result. The content of *result is implementation defined in case of
|
|
* overflow.
|
|
*/
|
|
static inline bool pg_mul_s64_overflow(int64 a, int64 b, int64* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_mul_overflow(a, b, result);
|
|
#elif defined(HAVE_INT128)
|
|
int128 res = (int128)a * (int128)b;
|
|
|
|
if (res > PG_INT64_MAX || res < PG_INT64_MIN) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = (int64)res;
|
|
return false;
|
|
#else
|
|
/*
|
|
* Overflow can only happen if at least one value is outside the range
|
|
* sqrt(min)..sqrt(max) so check that first as the division can be quite a
|
|
* bit more expensive than the multiplication.
|
|
*
|
|
* Multiplying by 0 or 1 can't overflow of course and checking for 0
|
|
* separately avoids any risk of dividing by 0. Be careful about dividing
|
|
* INT_MIN by -1 also, note reversing the a and b to ensure we're always
|
|
* dividing it by a positive value.
|
|
*
|
|
*/
|
|
if ((a > PG_INT32_MAX || a < PG_INT32_MIN || b > PG_INT32_MAX || b < PG_INT32_MIN) && a != 0 && a != 1 && b != 0 &&
|
|
b != 1 &&
|
|
((a > 0 && b > 0 && a > PG_INT64_MAX / b) || (a > 0 && b < 0 && b < PG_INT64_MIN / a) ||
|
|
(a < 0 && b > 0 && a < PG_INT64_MIN / b) || (a < 0 && b < 0 && a < PG_INT64_MAX / b))) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = a * b;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline bool check_sqrroot_overflow(int128 a, int128 b)
|
|
{
|
|
return a > PG_INT64_MAX || a < PG_INT64_MIN || b > PG_INT64_MAX || b < PG_INT64_MIN;
|
|
}
|
|
|
|
static inline bool pg_mul_s128_overflow(int128 a, int128 b, int128* result)
|
|
{
|
|
#if defined(HAVE__BUILTIN_OP_OVERFLOW)
|
|
return __builtin_mul_overflow(a, b, result);
|
|
#else
|
|
/*
|
|
* Overflow can only happen if at least one value is outside the range
|
|
* sqrt(min)..sqrt(max) so check that first as the division can be quite a
|
|
* bit more expensive than the multiplication.
|
|
*
|
|
* Multiplying by 0 or 1 can't overflow of course and checking for 0
|
|
* separately avoids any risk of dividing by 0. Be careful about dividing
|
|
* INT_MIN by -1 also, note reversing the a and b to ensure we're always
|
|
* dividing it by a positive value.
|
|
*
|
|
*/
|
|
if (check_sqrroot_overflow(a, b) && a != 0 && a != 1 && b != 0 && b != 1 &&
|
|
((a > 0 && b > 0 && a > PG_INT128_MAX / b) || (a > 0 && b < 0 && b < PG_INT128_MIN / a) ||
|
|
(a < 0 && b > 0 && a < PG_INT128_MIN / b) || (a < 0 && b < 0 && a < PG_INT128_MAX / b))) {
|
|
*result = 0x5EED; /* to avoid spurious warnings */
|
|
return true;
|
|
}
|
|
*result = a * b;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
#endif /* COMMON_INT_H */
|
|
|