// Copyright 2017 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package statistics import ( "bytes" "fmt" "math" "sort" "strconv" "strings" "time" "unsafe" "github.com/pingcap/errors" "github.com/pingcap/failpoint" "github.com/pingcap/tidb/kv" "github.com/pingcap/tidb/parser/charset" "github.com/pingcap/tidb/parser/model" "github.com/pingcap/tidb/parser/mysql" "github.com/pingcap/tidb/parser/terror" "github.com/pingcap/tidb/sessionctx" "github.com/pingcap/tidb/sessionctx/stmtctx" "github.com/pingcap/tidb/sessionctx/variable" "github.com/pingcap/tidb/tablecodec" "github.com/pingcap/tidb/types" "github.com/pingcap/tidb/util/chunk" "github.com/pingcap/tidb/util/codec" "github.com/pingcap/tidb/util/collate" "github.com/pingcap/tidb/util/logutil" "github.com/pingcap/tidb/util/ranger" "github.com/pingcap/tipb/go-tipb" "github.com/twmb/murmur3" "go.uber.org/zap" ) // Histogram represents statistics for a column or index. type Histogram struct { ID int64 // Column ID. NDV int64 // Number of distinct values. NullCount int64 // Number of null values. // LastUpdateVersion is the version that this histogram updated last time. LastUpdateVersion uint64 Tp *types.FieldType // Histogram elements. // // A bucket bound is the smallest and greatest values stored in the bucket. The lower and upper bound // are stored in one column. // // A bucket count is the number of items stored in all previous buckets and the current bucket. // Bucket counts are always in increasing order. // // A bucket repeat is the number of repeats of the bucket value, it can be used to find popular values. Bounds *chunk.Chunk Buckets []Bucket // Used for estimating fraction of the interval [lower, upper] that lies within the [lower, value]. // For some types like `Int`, we do not build it because we can get them directly from `Bounds`. scalars []scalar // TotColSize is the total column size for the histogram. // For unfixed-len types, it includes LEN and BYTE. TotColSize int64 // Correlation is the statistical correlation between physical row ordering and logical ordering of // the column values. This ranges from -1 to +1, and it is only valid for Column histogram, not for // Index histogram. Correlation float64 } // Bucket store the bucket count and repeat. type Bucket struct { Count int64 Repeat int64 NDV int64 } type scalar struct { lower float64 upper float64 commonPfxLen int // commonPfxLen is the common prefix length of the lower bound and upper bound when the value type is KindString or KindBytes. } // NewHistogram creates a new histogram. func NewHistogram(id, ndv, nullCount int64, version uint64, tp *types.FieldType, bucketSize int, totColSize int64) *Histogram { if tp.EvalType() == types.ETString { // The histogram will store the string value's 'sort key' representation of its collation. // If we directly set the field type's collation to its original one. We would decode the Key representation using its collation. // This would cause panic. So we apply a little trick here to avoid decoding it by explicitly changing the collation to 'CollationBin'. tp = tp.Clone() tp.Collate = charset.CollationBin } return &Histogram{ ID: id, NDV: ndv, NullCount: nullCount, LastUpdateVersion: version, Tp: tp, Bounds: chunk.NewChunkWithCapacity([]*types.FieldType{tp}, 2*bucketSize), Buckets: make([]Bucket, 0, bucketSize), TotColSize: totColSize, } } // GetLower gets the lower bound of bucket `idx`. func (hg *Histogram) GetLower(idx int) *types.Datum { d := hg.Bounds.GetRow(2*idx).GetDatum(0, hg.Tp) return &d } // GetUpper gets the upper bound of bucket `idx`. func (hg *Histogram) GetUpper(idx int) *types.Datum { d := hg.Bounds.GetRow(2*idx+1).GetDatum(0, hg.Tp) return &d } // MemoryUsage returns the total memory usage of this Histogram. // everytime changed the Histogram of the table, it will cost O(n) // complexity so calculate the memoryUsage might cost little time. // We ignore the size of other metadata in Histogram. func (hg *Histogram) MemoryUsage() (sum int64) { if hg == nil { return } sum = hg.Bounds.MemoryUsage() + int64(cap(hg.Buckets)*int(unsafe.Sizeof(Bucket{}))) + int64(cap(hg.scalars)*int(unsafe.Sizeof(scalar{}))) return } // AvgColSize is the average column size of the histogram. These sizes are derived from function `encode` // and `Datum::ConvertTo`, so we need to update them if those 2 functions are changed. func (c *Column) AvgColSize(count int64, isKey bool) float64 { if count == 0 { return 0 } // Note that, if the handle column is encoded as value, instead of key, i.e, // when the handle column is in a unique index, the real column size may be // smaller than 8 because it is encoded using `EncodeVarint`. Since we don't // know the exact value size now, use 8 as approximation. if c.IsHandle { return 8 } histCount := c.TotalRowCount() notNullRatio := 1.0 if histCount > 0 { notNullRatio = 1.0 - float64(c.NullCount)/histCount } switch c.Histogram.Tp.Tp { case mysql.TypeFloat, mysql.TypeDouble, mysql.TypeDuration, mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp: return 8 * notNullRatio case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeYear, mysql.TypeEnum, mysql.TypeBit, mysql.TypeSet: if isKey { return 8 * notNullRatio } } // Keep two decimal place. return math.Round(float64(c.TotColSize)/float64(count)*100) / 100 } // AvgColSizeChunkFormat is the average column size of the histogram. These sizes are derived from function `Encode` // and `DecodeToChunk`, so we need to update them if those 2 functions are changed. func (c *Column) AvgColSizeChunkFormat(count int64) float64 { if count == 0 { return 0 } fixedLen := chunk.GetFixedLen(c.Histogram.Tp) if fixedLen != -1 { return float64(fixedLen) } // Keep two decimal place. // Add 8 bytes for unfixed-len type's offsets. // Minus Log2(avgSize) for unfixed-len type LEN. avgSize := float64(c.TotColSize) / float64(count) if avgSize < 1 { return math.Round(avgSize*100)/100 + 8 } return math.Round((avgSize-math.Log2(avgSize))*100)/100 + 8 } // AvgColSizeListInDisk is the average column size of the histogram. These sizes are derived // from `chunk.ListInDisk` so we need to update them if those 2 functions are changed. func (c *Column) AvgColSizeListInDisk(count int64) float64 { if count == 0 { return 0 } histCount := c.TotalRowCount() notNullRatio := 1.0 if histCount > 0 { notNullRatio = 1.0 - float64(c.NullCount)/histCount } size := chunk.GetFixedLen(c.Histogram.Tp) if size != -1 { return float64(size) * notNullRatio } // Keep two decimal place. // Minus Log2(avgSize) for unfixed-len type LEN. avgSize := float64(c.TotColSize) / float64(count) if avgSize < 1 { return math.Round((avgSize)*100) / 100 } return math.Round((avgSize-math.Log2(avgSize))*100) / 100 } // AppendBucket appends a bucket into `hg`. func (hg *Histogram) AppendBucket(lower *types.Datum, upper *types.Datum, count, repeat int64) { hg.AppendBucketWithNDV(lower, upper, count, repeat, 0) } // AppendBucketWithNDV appends a bucket into `hg` and set value for field `NDV`. func (hg *Histogram) AppendBucketWithNDV(lower *types.Datum, upper *types.Datum, count, repeat, ndv int64) { hg.Buckets = append(hg.Buckets, Bucket{Count: count, Repeat: repeat, NDV: ndv}) hg.Bounds.AppendDatum(0, lower) hg.Bounds.AppendDatum(0, upper) } func (hg *Histogram) updateLastBucket(upper *types.Datum, count, repeat int64, needBucketNDV bool) { l := hg.Len() hg.Bounds.TruncateTo(2*l - 1) hg.Bounds.AppendDatum(0, upper) // The sampling case doesn't hold NDV since the low sampling rate. So check the NDV here. if needBucketNDV && hg.Buckets[l-1].NDV > 0 { hg.Buckets[l-1].NDV++ } hg.Buckets[l-1].Count = count hg.Buckets[l-1].Repeat = repeat } // DecodeTo decodes the histogram bucket values into `Tp`. func (hg *Histogram) DecodeTo(tp *types.FieldType, timeZone *time.Location) error { oldIter := chunk.NewIterator4Chunk(hg.Bounds) hg.Bounds = chunk.NewChunkWithCapacity([]*types.FieldType{tp}, oldIter.Len()) hg.Tp = tp for row := oldIter.Begin(); row != oldIter.End(); row = oldIter.Next() { datum, err := tablecodec.DecodeColumnValue(row.GetBytes(0), tp, timeZone) if err != nil { return errors.Trace(err) } hg.Bounds.AppendDatum(0, &datum) } return nil } // ConvertTo converts the histogram bucket values into `Tp`. func (hg *Histogram) ConvertTo(sc *stmtctx.StatementContext, tp *types.FieldType) (*Histogram, error) { hist := NewHistogram(hg.ID, hg.NDV, hg.NullCount, hg.LastUpdateVersion, tp, hg.Len(), hg.TotColSize) hist.Correlation = hg.Correlation iter := chunk.NewIterator4Chunk(hg.Bounds) for row := iter.Begin(); row != iter.End(); row = iter.Next() { d := row.GetDatum(0, hg.Tp) d, err := d.ConvertTo(sc, tp) if err != nil { return nil, errors.Trace(err) } hist.Bounds.AppendDatum(0, &d) } hist.Buckets = hg.Buckets return hist, nil } // Len is the number of buckets in the histogram. func (hg *Histogram) Len() int { return len(hg.Buckets) } // HistogramEqual tests if two histograms are equal. func HistogramEqual(a, b *Histogram, ignoreID bool) bool { if ignoreID { old := b.ID b.ID = a.ID defer func() { b.ID = old }() } return bytes.Equal([]byte(a.ToString(0)), []byte(b.ToString(0))) } // constants for stats version. These const can be used for solving compatibility issue. const ( // Version0 is the state that no statistics is actually collected, only the meta info.(the total count and the average col size) Version0 = 0 // Version1 maintains the statistics in the following way. // Column stats: CM Sketch is built in TiKV using full data. Histogram is built from samples. TopN is extracted from CM Sketch. // TopN + CM Sketch represent all data. Histogram also represents all data. // Index stats: CM Sketch and Histogram is built in TiKV using full data. TopN is extracted from histogram. Then values covered by TopN is removed from CM Sketch. // TopN + CM Sketch represent all data. Histogram also represents all data. // Int PK column stats is always Version1 because it only has histogram built from full data. // Fast analyze is always Version1 currently. Version1 = 1 // Version2 maintains the statistics in the following way. // Column stats: CM Sketch is not used. TopN and Histogram are built from samples. TopN + Histogram represent all data. // Index stats: CM SKetch is not used. TopN and Histograms are built from samples. // Then values covered by TopN is removed from Histogram. TopN + Histogram represent all data. // Both Column and Index's NDVs are collected by full scan. Version2 = 2 ) // AnalyzeFlag is set when the statistics comes from analyze and has not been modified by feedback. const AnalyzeFlag = 1 // IsAnalyzed checks whether this flag contains AnalyzeFlag. func IsAnalyzed(flag int64) bool { return (flag & AnalyzeFlag) > 0 } // ResetAnalyzeFlag resets the AnalyzeFlag because it has been modified by feedback. func ResetAnalyzeFlag(flag int64) int64 { return flag &^ AnalyzeFlag } // ValueToString converts a possible encoded value to a formatted string. If the value is encoded, then // idxCols equals to number of origin values, else idxCols is 0. func ValueToString(vars *variable.SessionVars, value *types.Datum, idxCols int, idxColumnTypes []byte) (string, error) { if idxCols == 0 { return value.ToString() } var loc *time.Location if vars != nil { loc = vars.Location() } // Ignore the error and treat remaining part that cannot decode successfully as bytes. decodedVals, remained, err := codec.DecodeRange(value.GetBytes(), idxCols, idxColumnTypes, loc) // Ignore err explicit to pass errcheck. _ = err if len(remained) > 0 { decodedVals = append(decodedVals, types.NewBytesDatum(remained)) } str, err := types.DatumsToString(decodedVals, true) return str, err } // BucketToString change the given bucket to string format. func (hg *Histogram) BucketToString(bktID, idxCols int) string { upperVal, err := ValueToString(nil, hg.GetUpper(bktID), idxCols, nil) terror.Log(errors.Trace(err)) lowerVal, err := ValueToString(nil, hg.GetLower(bktID), idxCols, nil) terror.Log(errors.Trace(err)) return fmt.Sprintf("num: %d lower_bound: %s upper_bound: %s repeats: %d ndv: %d", hg.bucketCount(bktID), lowerVal, upperVal, hg.Buckets[bktID].Repeat, hg.Buckets[bktID].NDV) } // RemoveVals remove the given values from the histogram. // This function contains an **ASSUMPTION**: valCntPairs is sorted in ascending order. func (hg *Histogram) RemoveVals(valCntPairs []TopNMeta) { totalSubCnt := int64(0) var cmpResult int for bktIdx, pairIdx := 0, 0; bktIdx < hg.Len(); bktIdx++ { for pairIdx < len(valCntPairs) { // If the current val smaller than current bucket's lower bound, skip it. cmpResult = bytes.Compare(hg.Bounds.Column(0).GetRaw(bktIdx*2), valCntPairs[pairIdx].Encoded) if cmpResult > 0 { pairIdx++ continue } // If the current val bigger than current bucket's upper bound, break. cmpResult = bytes.Compare(hg.Bounds.Column(0).GetRaw(bktIdx*2+1), valCntPairs[pairIdx].Encoded) if cmpResult < 0 { break } totalSubCnt += int64(valCntPairs[pairIdx].Count) if hg.Buckets[bktIdx].NDV > 0 { hg.Buckets[bktIdx].NDV-- } pairIdx++ if cmpResult == 0 { hg.Buckets[bktIdx].Repeat = 0 break } } hg.Buckets[bktIdx].Count -= totalSubCnt if hg.Buckets[bktIdx].Count < 0 { hg.Buckets[bktIdx].Count = 0 } } } // AddIdxVals adds the given values to the histogram. func (hg *Histogram) AddIdxVals(idxValCntPairs []TopNMeta) { totalAddCnt := int64(0) sort.Slice(idxValCntPairs, func(i, j int) bool { return bytes.Compare(idxValCntPairs[i].Encoded, idxValCntPairs[j].Encoded) < 0 }) for bktIdx, pairIdx := 0, 0; bktIdx < hg.Len(); bktIdx++ { for pairIdx < len(idxValCntPairs) { // If the current val smaller than current bucket's lower bound, skip it. cmpResult := bytes.Compare(hg.Bounds.Column(0).GetBytes(bktIdx*2), idxValCntPairs[pairIdx].Encoded) if cmpResult > 0 { continue } // If the current val bigger than current bucket's upper bound, break. cmpResult = bytes.Compare(hg.Bounds.Column(0).GetBytes(bktIdx*2+1), idxValCntPairs[pairIdx].Encoded) if cmpResult < 0 { break } totalAddCnt += int64(idxValCntPairs[pairIdx].Count) hg.Buckets[bktIdx].NDV++ if cmpResult == 0 { hg.Buckets[bktIdx].Repeat = int64(idxValCntPairs[pairIdx].Count) pairIdx++ break } pairIdx++ } hg.Buckets[bktIdx].Count += totalAddCnt } } // ToString gets the string representation for the histogram. func (hg *Histogram) ToString(idxCols int) string { strs := make([]string, 0, hg.Len()+1) if idxCols > 0 { strs = append(strs, fmt.Sprintf("index:%d ndv:%d", hg.ID, hg.NDV)) } else { strs = append(strs, fmt.Sprintf("column:%d ndv:%d totColSize:%d", hg.ID, hg.NDV, hg.TotColSize)) } for i := 0; i < hg.Len(); i++ { strs = append(strs, hg.BucketToString(i, idxCols)) } return strings.Join(strs, "\n") } // equalRowCount estimates the row count where the column equals to value. // matched: return true if this returned row count is from Bucket.Repeat or bucket NDV, which is more accurate than if not. func (hg *Histogram) equalRowCount(value types.Datum, hasBucketNDV bool) (count float64, matched bool) { index, match := hg.Bounds.LowerBound(0, &value) // Since we store the lower and upper bound together, if the index is an odd number, then it points to a upper bound. if index%2 == 1 { if match { return float64(hg.Buckets[index/2].Repeat), true } if hasBucketNDV && hg.Buckets[index/2].NDV > 1 { return float64(hg.bucketCount(index/2)-hg.Buckets[index/2].Repeat) / float64(hg.Buckets[index/2].NDV-1), true } return hg.notNullCount() / float64(hg.NDV), false } if match { cmp := chunk.GetCompareFunc(hg.Tp) if cmp(hg.Bounds.GetRow(index), 0, hg.Bounds.GetRow(index+1), 0) == 0 { return float64(hg.Buckets[index/2].Repeat), true } if hasBucketNDV && hg.Buckets[index/2].NDV > 1 { return float64(hg.bucketCount(index/2)-hg.Buckets[index/2].Repeat) / float64(hg.Buckets[index/2].NDV-1), true } return hg.notNullCount() / float64(hg.NDV), false } return 0, false } // greaterRowCount estimates the row count where the column greater than value. // It's deprecated. Only used for test. func (hg *Histogram) greaterRowCount(value types.Datum) float64 { histRowCount, _ := hg.equalRowCount(value, false) gtCount := hg.notNullCount() - hg.lessRowCount(value) - histRowCount return math.Max(0, gtCount) } // LessRowCountWithBktIdx estimates the row count where the column less than value. func (hg *Histogram) LessRowCountWithBktIdx(value types.Datum) (float64, int) { // All the values are null. if hg.Bounds.NumRows() == 0 { return 0, 0 } index, match := hg.Bounds.LowerBound(0, &value) if index == hg.Bounds.NumRows() { return hg.notNullCount(), hg.Len() - 1 } // Since we store the lower and upper bound together, so dividing the index by 2 will get the bucket index. bucketIdx := index / 2 curCount, curRepeat := float64(hg.Buckets[bucketIdx].Count), float64(hg.Buckets[bucketIdx].Repeat) preCount := float64(0) if bucketIdx > 0 { preCount = float64(hg.Buckets[bucketIdx-1].Count) } if index%2 == 1 { if match { return curCount - curRepeat, bucketIdx } return preCount + hg.calcFraction(bucketIdx, &value)*(curCount-curRepeat-preCount), bucketIdx } return preCount, bucketIdx } func (hg *Histogram) lessRowCount(value types.Datum) float64 { result, _ := hg.LessRowCountWithBktIdx(value) return result } // BetweenRowCount estimates the row count where column greater or equal to a and less than b. func (hg *Histogram) BetweenRowCount(a, b types.Datum) float64 { lessCountA := hg.lessRowCount(a) lessCountB := hg.lessRowCount(b) // If lessCountA is not less than lessCountB, it may be that they fall to the same bucket and we cannot estimate // the fraction, so we use `totalCount / NDV` to estimate the row count, but the result should not greater than // lessCountB or notNullCount-lessCountA. if lessCountA >= lessCountB && hg.NDV > 0 { result := math.Min(lessCountB, hg.notNullCount()-lessCountA) return math.Min(result, hg.notNullCount()/float64(hg.NDV)) } return lessCountB - lessCountA } // BetweenRowCount estimates the row count for interval [l, r). func (c *Column) BetweenRowCount(sctx sessionctx.Context, l, r types.Datum, lowEncoded, highEncoded []byte) float64 { histBetweenCnt := c.Histogram.BetweenRowCount(l, r) if c.StatsVer <= Version1 { return histBetweenCnt } return float64(c.TopN.BetweenCount(lowEncoded, highEncoded)) + histBetweenCnt } // TotalRowCount returns the total count of this histogram. func (hg *Histogram) TotalRowCount() float64 { return hg.notNullCount() + float64(hg.NullCount) } // notNullCount indicates the count of non-null values in column histogram and single-column index histogram, // for multi-column index histogram, since we cannot define null for the row, we treat all rows as non-null, that means, // notNullCount would return same value as TotalRowCount for multi-column index histograms. func (hg *Histogram) notNullCount() float64 { if hg.Len() == 0 { return 0 } return float64(hg.Buckets[hg.Len()-1].Count) } // mergeBuckets is used to Merge every two neighbor buckets. func (hg *Histogram) mergeBuckets(bucketIdx int) { curBuck := 0 c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp}, bucketIdx) for i := 0; i+1 <= bucketIdx; i += 2 { hg.Buckets[curBuck].NDV = hg.Buckets[i+1].NDV + hg.Buckets[i].NDV hg.Buckets[curBuck].Count = hg.Buckets[i+1].Count hg.Buckets[curBuck].Repeat = hg.Buckets[i+1].Repeat c.AppendDatum(0, hg.GetLower(i)) c.AppendDatum(0, hg.GetUpper(i+1)) curBuck++ } if bucketIdx%2 == 0 { hg.Buckets[curBuck] = hg.Buckets[bucketIdx] c.AppendDatum(0, hg.GetLower(bucketIdx)) c.AppendDatum(0, hg.GetUpper(bucketIdx)) curBuck++ } hg.Bounds = c hg.Buckets = hg.Buckets[:curBuck] } // GetIncreaseFactor get the increase factor to adjust the final estimated count when the table is modified. func (idx *Index) GetIncreaseFactor(realtimeRowCount int64) float64 { columnCount := idx.TotalRowCount() if columnCount == 0 { return 1.0 } return float64(realtimeRowCount) / columnCount } // BetweenRowCount estimates the row count for interval [l, r). func (idx *Index) BetweenRowCount(l, r types.Datum) float64 { histBetweenCnt := idx.Histogram.BetweenRowCount(l, r) if idx.StatsVer == Version1 { return histBetweenCnt } return float64(idx.TopN.BetweenCount(l.GetBytes(), r.GetBytes())) + histBetweenCnt } // GetIncreaseFactor will return a factor of data increasing after the last analysis. func (hg *Histogram) GetIncreaseFactor(totalCount int64) float64 { columnCount := hg.TotalRowCount() if columnCount == 0 { // avoid dividing by 0 return 1.0 } return float64(totalCount) / columnCount } // validRange checks if the range is Valid, it is used by `SplitRange` to remove the invalid range, // the possible types of range are index key range and handle key range. func validRange(sc *stmtctx.StatementContext, ran *ranger.Range, encoded bool) bool { var low, high []byte if encoded { low, high = ran.LowVal[0].GetBytes(), ran.HighVal[0].GetBytes() } else { var err error low, err = codec.EncodeKey(sc, nil, ran.LowVal[0]) if err != nil { return false } high, err = codec.EncodeKey(sc, nil, ran.HighVal[0]) if err != nil { return false } } if ran.LowExclude { low = kv.Key(low).PrefixNext() } if !ran.HighExclude { high = kv.Key(high).PrefixNext() } return bytes.Compare(low, high) < 0 } func checkKind(vals []types.Datum, kind byte) bool { if kind == types.KindString { kind = types.KindBytes } for _, val := range vals { valKind := val.Kind() if valKind == types.KindNull || valKind == types.KindMinNotNull || valKind == types.KindMaxValue { continue } if valKind == types.KindString { valKind = types.KindBytes } if valKind != kind { return false } // Only check the first non-null value. break } return true } func (hg *Histogram) typeMatch(ranges []*ranger.Range) bool { kind := hg.GetLower(0).Kind() for _, ran := range ranges { if !checkKind(ran.LowVal, kind) || !checkKind(ran.HighVal, kind) { return false } } return true } // SplitRange splits the range according to the histogram lower bound. Note that we treat first bucket's lower bound // as -inf and last bucket's upper bound as +inf, so all the split ranges will totally fall in one of the (-inf, l(1)), // [l(1), l(2)),...[l(n-2), l(n-1)), [l(n-1), +inf), where n is the number of buckets, l(i) is the i-th bucket's lower bound. func (hg *Histogram) SplitRange(sc *stmtctx.StatementContext, oldRanges []*ranger.Range, encoded bool) ([]*ranger.Range, bool) { if !hg.typeMatch(oldRanges) { return oldRanges, false } // Treat the only buckets as (-inf, +inf), so we do not need split it. if hg.Len() == 1 { return oldRanges, true } ranges := make([]*ranger.Range, 0, len(oldRanges)) for _, ran := range oldRanges { ranges = append(ranges, ran.Clone()) } split := make([]*ranger.Range, 0, len(ranges)) for len(ranges) > 0 { // Find the first bound that greater than the LowVal. idx := hg.Bounds.UpperBound(0, &ranges[0].LowVal[0]) // Treat last bucket's upper bound as +inf, so we do not need split any more. if idx >= hg.Bounds.NumRows()-1 { split = append(split, ranges...) break } // Treat first buckets's lower bound as -inf, just increase it to the next lower bound. if idx == 0 { idx = 2 } // Get the next lower bound. if idx%2 == 1 { idx++ } lowerBound := hg.Bounds.GetRow(idx) var i int // Find the first range that need to be split by the lower bound. for ; i < len(ranges); i++ { if chunk.Compare(lowerBound, 0, &ranges[i].HighVal[0]) <= 0 { break } } split = append(split, ranges[:i]...) ranges = ranges[i:] if len(ranges) == 0 { break } // Split according to the lower bound. cmp := chunk.Compare(lowerBound, 0, &ranges[0].LowVal[0]) if cmp > 0 { lower := lowerBound.GetDatum(0, hg.Tp) newRange := &ranger.Range{ LowExclude: ranges[0].LowExclude, LowVal: []types.Datum{ranges[0].LowVal[0]}, HighVal: []types.Datum{lower}, HighExclude: true, Collators: ranges[0].Collators, } if validRange(sc, newRange, encoded) { split = append(split, newRange) } ranges[0].LowVal[0] = lower ranges[0].LowExclude = false if !validRange(sc, ranges[0], encoded) { ranges = ranges[1:] } } } return split, true } func (hg *Histogram) bucketCount(idx int) int64 { if idx == 0 { return hg.Buckets[0].Count } return hg.Buckets[idx].Count - hg.Buckets[idx-1].Count } // HistogramToProto converts Histogram to its protobuf representation. // Note that when this is used, the lower/upper bound in the bucket must be BytesDatum. func HistogramToProto(hg *Histogram) *tipb.Histogram { protoHg := &tipb.Histogram{ Ndv: hg.NDV, } for i := 0; i < hg.Len(); i++ { bkt := &tipb.Bucket{ Count: hg.Buckets[i].Count, LowerBound: hg.GetLower(i).GetBytes(), UpperBound: hg.GetUpper(i).GetBytes(), Repeats: hg.Buckets[i].Repeat, Ndv: &hg.Buckets[i].NDV, } protoHg.Buckets = append(protoHg.Buckets, bkt) } return protoHg } // HistogramFromProto converts Histogram from its protobuf representation. // Note that we will set BytesDatum for the lower/upper bound in the bucket, the decode will // be after all histograms merged. func HistogramFromProto(protoHg *tipb.Histogram) *Histogram { tp := types.NewFieldType(mysql.TypeBlob) hg := NewHistogram(0, protoHg.Ndv, 0, 0, tp, len(protoHg.Buckets), 0) for _, bucket := range protoHg.Buckets { lower, upper := types.NewBytesDatum(bucket.LowerBound), types.NewBytesDatum(bucket.UpperBound) if bucket.Ndv != nil { hg.AppendBucketWithNDV(&lower, &upper, bucket.Count, bucket.Repeats, *bucket.Ndv) } else { hg.AppendBucket(&lower, &upper, bucket.Count, bucket.Repeats) } } return hg } func (hg *Histogram) popFirstBucket() { hg.Buckets = hg.Buckets[1:] c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp, hg.Tp}, hg.Bounds.NumRows()-2) c.Append(hg.Bounds, 2, hg.Bounds.NumRows()) hg.Bounds = c } // IsIndexHist checks whether current histogram is one for index. func (hg *Histogram) IsIndexHist() bool { return hg.Tp.Tp == mysql.TypeBlob } // MergeHistograms merges two histograms. func MergeHistograms(sc *stmtctx.StatementContext, lh *Histogram, rh *Histogram, bucketSize int, statsVer int) (*Histogram, error) { if lh.Len() == 0 { return rh, nil } if rh.Len() == 0 { return lh, nil } lh.NDV += rh.NDV lLen := lh.Len() cmp, err := lh.GetUpper(lLen-1).Compare(sc, rh.GetLower(0), collate.GetBinaryCollator()) if err != nil { return nil, errors.Trace(err) } offset := int64(0) if cmp == 0 { lh.NDV-- lh.Buckets[lLen-1].NDV += rh.Buckets[0].NDV // There's an overlapped one. So we need to subtract it if needed. if rh.Buckets[0].NDV > 0 && lh.Buckets[lLen-1].Repeat > 0 { lh.Buckets[lLen-1].NDV-- } lh.updateLastBucket(rh.GetUpper(0), lh.Buckets[lLen-1].Count+rh.Buckets[0].Count, rh.Buckets[0].Repeat, false) offset = rh.Buckets[0].Count rh.popFirstBucket() } for lh.Len() > bucketSize { lh.mergeBuckets(lh.Len() - 1) } if rh.Len() == 0 { return lh, nil } for rh.Len() > bucketSize { rh.mergeBuckets(rh.Len() - 1) } lCount := lh.Buckets[lh.Len()-1].Count rCount := rh.Buckets[rh.Len()-1].Count - offset lAvg := float64(lCount) / float64(lh.Len()) rAvg := float64(rCount) / float64(rh.Len()) for lh.Len() > 1 && lAvg*2 <= rAvg { lh.mergeBuckets(lh.Len() - 1) lAvg *= 2 } for rh.Len() > 1 && rAvg*2 <= lAvg { rh.mergeBuckets(rh.Len() - 1) rAvg *= 2 } for i := 0; i < rh.Len(); i++ { if statsVer >= Version2 { lh.AppendBucketWithNDV(rh.GetLower(i), rh.GetUpper(i), rh.Buckets[i].Count+lCount-offset, rh.Buckets[i].Repeat, rh.Buckets[i].NDV) continue } lh.AppendBucket(rh.GetLower(i), rh.GetUpper(i), rh.Buckets[i].Count+lCount-offset, rh.Buckets[i].Repeat) } for lh.Len() > bucketSize { lh.mergeBuckets(lh.Len() - 1) } return lh, nil } // AvgCountPerNotNullValue gets the average row count per value by the data of histogram. func (hg *Histogram) AvgCountPerNotNullValue(totalCount int64) float64 { factor := hg.GetIncreaseFactor(totalCount) totalNotNull := hg.notNullCount() * factor curNDV := float64(hg.NDV) * factor curNDV = math.Max(curNDV, 1) return totalNotNull / curNDV } func (hg *Histogram) outOfRange(val types.Datum) bool { if hg.Len() == 0 { return false } return chunk.Compare(hg.Bounds.GetRow(0), 0, &val) > 0 || chunk.Compare(hg.Bounds.GetRow(hg.Bounds.NumRows()-1), 0, &val) < 0 } // outOfRangeRowCount estimate the row count of part of [lDatum, rDatum] which is out of range of the histogram. // Here we assume the density of data is decreasing from the lower/upper bound of the histogram toward outside. // The maximum row count it can get is the increaseCount. It reaches the maximum when out-of-range width reaches histogram range width. // As it shows below. To calculate the out-of-range row count, we need to calculate the percentage of the shaded area. // Note that we assume histL-boundL == histR-histL == boundR-histR here. // // /│ │\ // / │ │ \ // /x│ │◄─histogram─►│ \ // / xx│ │ range │ \ // / │xxx│ │ │ \ // / │xxx│ │ │ \ //────┴────┴───┴──┴─────────────┴───────────┴───── // ▲ ▲ ▲ ▲ ▲ ▲ // │ │ │ │ │ │ // boundL │ │histL histR boundR // │ │ // lDatum rDatum func (hg *Histogram) outOfRangeRowCount(lDatum, rDatum *types.Datum, increaseCount int64) float64 { if hg.Len() == 0 { return 0 } // For bytes and string type, we need to cut the common prefix when converting them to scalar value. // Here we calculate the length of common prefix. commonPrefix := 0 if hg.GetLower(0).Kind() == types.KindBytes || hg.GetLower(0).Kind() == types.KindString { // Calculate the common prefix length among the lower and upper bound of histogram and the range we want to estimate. commonPrefix = commonPrefixLength(hg.GetLower(0).GetBytes(), hg.GetUpper(hg.Len()-1).GetBytes(), lDatum.GetBytes(), rDatum.GetBytes()) } // Convert the range we want to estimate to scalar value(float64) l := convertDatumToScalar(lDatum, commonPrefix) r := convertDatumToScalar(rDatum, commonPrefix) // If this is an unsigned column, we need to make sure values are not negative. // Normal negative value should have become 0. But this still might happen when met MinNotNull here. // Maybe it's better to do this transformation in the ranger like the normal negative value. if mysql.HasUnsignedFlag(hg.Tp.Flag) { if l < 0 { l = 0 } if r < 0 { r = 0 } } // make sure l < r if l >= r { return 0 } // Convert the lower and upper bound of the histogram to scalar value(float64) histL := convertDatumToScalar(hg.GetLower(0), commonPrefix) histR := convertDatumToScalar(hg.GetUpper(hg.Len()-1), commonPrefix) histWidth := histR - histL if histWidth <= 0 { return 0 } boundL := histL - histWidth boundR := histR + histWidth leftPercent := float64(0) rightPercent := float64(0) // keep l and r unchanged, use actualL and actualR to calculate. actualL := l actualR := r // If the range overlaps with (boundL,histL), we need to handle the out-of-range part on the left of the histogram range if actualL < histL && actualR > boundL { // make sure boundL <= actualL < actualR <= histL if actualL < boundL { actualL = boundL } if actualR > histL { actualR = histL } // Calculate the percentage of "the shaded area" on the left side. leftPercent = (math.Pow(actualR-boundL, 2) - math.Pow(actualL-boundL, 2)) / math.Pow(histWidth, 2) } actualL = l actualR = r // If the range overlaps with (histR,boundR), we need to handle the out-of-range part on the right of the histogram range if actualL < boundR && actualR > histR { // make sure histR <= actualL < actualR <= boundR if actualL < histR { actualL = histR } if actualR > boundR { actualR = boundR } // Calculate the percentage of "the shaded area" on the right side. rightPercent = (math.Pow(boundR-actualL, 2) - math.Pow(boundR-actualR, 2)) / math.Pow(histWidth, 2) } totalPercent := leftPercent*0.5 + rightPercent*0.5 if totalPercent > 1 { totalPercent = 1 } rowCount := totalPercent * hg.notNullCount() if rowCount > float64(increaseCount) { return float64(increaseCount) } return rowCount } // Copy deep copies the histogram. func (hg *Histogram) Copy() *Histogram { newHist := *hg newHist.Bounds = hg.Bounds.CopyConstruct() newHist.Buckets = make([]Bucket, 0, len(hg.Buckets)) newHist.Buckets = append(newHist.Buckets, hg.Buckets...) return &newHist } // RemoveUpperBound removes the upper bound from histogram. // It is used when merge stats for incremental analyze. func (hg *Histogram) RemoveUpperBound() *Histogram { hg.Buckets[hg.Len()-1].Count -= hg.Buckets[hg.Len()-1].Repeat hg.Buckets[hg.Len()-1].Repeat = 0 if hg.NDV > 0 { hg.NDV-- } return hg } // TruncateHistogram truncates the histogram to `numBkt` buckets. func (hg *Histogram) TruncateHistogram(numBkt int) *Histogram { hist := hg.Copy() hist.Buckets = hist.Buckets[:numBkt] hist.Bounds.TruncateTo(numBkt * 2) return hist } // ErrorRate is the error rate of estimate row count by bucket and cm sketch. type ErrorRate struct { ErrorTotal float64 QueryTotal int64 } // MaxErrorRate is the max error rate of estimate row count of a not pseudo column. // If the table is pseudo, but the average error rate is less than MaxErrorRate, // then the column is not pseudo. const MaxErrorRate = 0.25 // NotAccurate is true when the total of query is zero or the average error // rate is greater than MaxErrorRate. func (e *ErrorRate) NotAccurate() bool { if e.QueryTotal == 0 { return true } return e.ErrorTotal/float64(e.QueryTotal) > MaxErrorRate } // Update updates the ErrorRate. func (e *ErrorRate) Update(rate float64) { e.QueryTotal++ e.ErrorTotal += rate } // Merge range merges two ErrorRate. func (e *ErrorRate) Merge(rate *ErrorRate) { e.QueryTotal += rate.QueryTotal e.ErrorTotal += rate.ErrorTotal } // Column represents a column histogram. type Column struct { Histogram *CMSketch *TopN *FMSketch PhysicalID int64 Count int64 Info *model.ColumnInfo IsHandle bool ErrorRate Flag int64 LastAnalyzePos types.Datum StatsVer int64 // StatsVer is the version of the current stats, used to maintain compatibility } func (c *Column) String() string { return c.Histogram.ToString(0) } // TotalRowCount returns the total count of this column. func (c *Column) TotalRowCount() float64 { if c.StatsVer >= Version2 { return c.Histogram.TotalRowCount() + float64(c.TopN.TotalCount()) } return c.Histogram.TotalRowCount() } func (c *Column) notNullCount() float64 { if c.StatsVer >= Version2 { return c.Histogram.notNullCount() + float64(c.TopN.TotalCount()) } return c.Histogram.notNullCount() } // GetIncreaseFactor get the increase factor to adjust the final estimated count when the table is modified. func (c *Column) GetIncreaseFactor(realtimeRowCount int64) float64 { columnCount := c.TotalRowCount() if columnCount == 0 { // avoid dividing by 0 return 1.0 } return float64(realtimeRowCount) / columnCount } // MemoryUsage returns the total memory usage of Histogram and CMSketch in Column. // We ignore the size of other metadata in Column func (c *Column) MemoryUsage() (sum int64) { sum = c.Histogram.MemoryUsage() if c.CMSketch != nil { sum += c.CMSketch.MemoryUsage() } if c.FMSketch != nil { sum += c.FMSketch.MemoryUsage() } return } // HistogramNeededColumns stores the columns whose Histograms need to be loaded from physical kv layer. // Currently, we only load index/pk's Histogram from kv automatically. Columns' are loaded by needs. var HistogramNeededColumns = neededColumnMap{cols: map[tableColumnID]struct{}{}} // IsInvalid checks if this column is invalid. If this column has histogram but not loaded yet, then we mark it // as need histogram. func (c *Column) IsInvalid(sctx sessionctx.Context, collPseudo bool) bool { if collPseudo && c.NotAccurate() { return true } if sctx != nil { stmtctx := sctx.GetSessionVars().StmtCtx if stmtctx != nil && stmtctx.StatsLoad.Fallback { return true } if c.Histogram.NDV > 0 && c.notNullCount() == 0 && stmtctx != nil { if stmtctx.StatsLoad.Timeout > 0 { logutil.BgLogger().Warn("Hist for column should already be loaded as sync but not found.", zap.String(strconv.FormatInt(c.Info.ID, 10), c.Info.Name.O)) } HistogramNeededColumns.insert(tableColumnID{TableID: c.PhysicalID, ColumnID: c.Info.ID}) } } return c.TotalRowCount() == 0 || (c.Histogram.NDV > 0 && c.notNullCount() == 0) } // IsHistNeeded checks if this column needs histogram to be loaded func (c *Column) IsHistNeeded(collPseudo bool) bool { return (!collPseudo || !c.NotAccurate()) && c.Histogram.NDV > 0 && c.notNullCount() == 0 } func (c *Column) equalRowCount(sctx sessionctx.Context, val types.Datum, encodedVal []byte, realtimeRowCount int64) (float64, error) { if val.IsNull() { return float64(c.NullCount), nil } if c.StatsVer < Version2 { // All the values are null. if c.Histogram.Bounds.NumRows() == 0 { return 0.0, nil } if c.Histogram.NDV > 0 && c.outOfRange(val) { return outOfRangeEQSelectivity(c.Histogram.NDV, realtimeRowCount, int64(c.TotalRowCount())) * c.TotalRowCount(), nil } if c.CMSketch != nil { count, err := queryValue(sctx.GetSessionVars().StmtCtx, c.CMSketch, c.TopN, val) return float64(count), errors.Trace(err) } histRowCount, _ := c.Histogram.equalRowCount(val, false) return histRowCount, nil } // Stats version == 2 // All the values are null. if c.Histogram.Bounds.NumRows() == 0 && c.TopN.Num() == 0 { return 0, nil } // 1. try to find this value in TopN if c.TopN != nil { rowcount, ok := c.QueryTopN(encodedVal) if ok { return float64(rowcount), nil } } // 2. try to find this value in bucket.Repeat(the last value in every bucket) histCnt, matched := c.Histogram.equalRowCount(val, true) if matched { return histCnt, nil } // 3. use uniform distribution assumption for the rest (even when this value is not covered by the range of stats) histNDV := float64(c.Histogram.NDV - int64(c.TopN.Num())) if histNDV <= 0 { return 0, nil } return c.Histogram.notNullCount() / histNDV, nil } // GetColumnRowCount estimates the row count by a slice of Range. func (c *Column) GetColumnRowCount(sctx sessionctx.Context, ranges []*ranger.Range, realtimeRowCount int64, pkIsHandle bool) (float64, error) { sc := sctx.GetSessionVars().StmtCtx var rowCount float64 for _, rg := range ranges { highVal := *rg.HighVal[0].Clone() lowVal := *rg.LowVal[0].Clone() if highVal.Kind() == types.KindString { highVal.SetBytes(collate.GetCollator(highVal.Collation()).Key(highVal.GetString())) } if lowVal.Kind() == types.KindString { lowVal.SetBytes(collate.GetCollator(lowVal.Collation()).Key(lowVal.GetString())) } cmp, err := lowVal.Compare(sc, &highVal, collate.GetBinaryCollator()) if err != nil { return 0, errors.Trace(err) } lowEncoded, err := codec.EncodeKey(sc, nil, lowVal) if err != nil { return 0, err } highEncoded, err := codec.EncodeKey(sc, nil, highVal) if err != nil { return 0, err } if cmp == 0 { // case 1: it's a point if !rg.LowExclude && !rg.HighExclude { // In this case, the row count is at most 1. if pkIsHandle { rowCount += 1 continue } var cnt float64 cnt, err = c.equalRowCount(sctx, lowVal, lowEncoded, realtimeRowCount) if err != nil { return 0, errors.Trace(err) } // If the current table row count has changed, we should scale the row count accordingly. cnt *= c.GetIncreaseFactor(realtimeRowCount) rowCount += cnt } continue } // In stats ver 1, we use CM Sketch to estimate row count for point condition, which is more accurate. // So for the small range, we convert it to points. if c.StatsVer < 2 { rangeVals := enumRangeValues(lowVal, highVal, rg.LowExclude, rg.HighExclude) // case 2: it's a small range && using ver1 stats if rangeVals != nil { for _, val := range rangeVals { cnt, err := c.equalRowCount(sctx, val, lowEncoded, realtimeRowCount) if err != nil { return 0, err } // If the current table row count has changed, we should scale the row count accordingly. cnt *= c.GetIncreaseFactor(realtimeRowCount) rowCount += cnt } continue } } // case 3: it's an interval cnt := c.BetweenRowCount(sctx, lowVal, highVal, lowEncoded, highEncoded) // `betweenRowCount` returns count for [l, h) range, we adjust cnt for boundaries here. // Note that, `cnt` does not include null values, we need specially handle cases // where null is the lower bound. if rg.LowExclude && !lowVal.IsNull() { lowCnt, err := c.equalRowCount(sctx, lowVal, lowEncoded, realtimeRowCount) if err != nil { return 0, errors.Trace(err) } cnt -= lowCnt } if !rg.LowExclude && lowVal.IsNull() { cnt += float64(c.NullCount) } if !rg.HighExclude { highCnt, err := c.equalRowCount(sctx, highVal, highEncoded, realtimeRowCount) if err != nil { return 0, errors.Trace(err) } cnt += highCnt } if cnt > c.TotalRowCount() { cnt = c.TotalRowCount() } else if cnt < 0 { cnt = 0 } // If the current table row count has changed, we should scale the row count accordingly. cnt *= c.GetIncreaseFactor(realtimeRowCount) // handling the out-of-range part if (c.outOfRange(lowVal) && !lowVal.IsNull()) || c.outOfRange(highVal) { increaseCount := realtimeRowCount - int64(c.TotalRowCount()) if increaseCount < 0 { increaseCount = 0 } cnt += c.Histogram.outOfRangeRowCount(&lowVal, &highVal, increaseCount) } rowCount += cnt } if rowCount > float64(realtimeRowCount) { rowCount = float64(realtimeRowCount) } else if rowCount < 0 { rowCount = 0 } return rowCount, nil } // Index represents an index histogram. type Index struct { Histogram *CMSketch *TopN FMSketch *FMSketch ErrorRate StatsVer int64 // StatsVer is the version of the current stats, used to maintain compatibility Info *model.IndexInfo Flag int64 LastAnalyzePos types.Datum } func (idx *Index) String() string { return idx.Histogram.ToString(len(idx.Info.Columns)) } // TotalRowCount returns the total count of this index. func (idx *Index) TotalRowCount() float64 { if idx.StatsVer >= Version2 { return idx.Histogram.TotalRowCount() + float64(idx.TopN.TotalCount()) } return idx.Histogram.TotalRowCount() } // IsInvalid checks if this index is invalid. func (idx *Index) IsInvalid(collPseudo bool) bool { return (collPseudo && idx.NotAccurate()) || idx.TotalRowCount() == 0 } // MemoryUsage returns the total memory usage of a Histogram and CMSketch in Index. // We ignore the size of other metadata in Index. func (idx *Index) MemoryUsage() (sum int64) { sum = idx.Histogram.MemoryUsage() if idx.CMSketch != nil { sum += idx.CMSketch.MemoryUsage() } return } var nullKeyBytes, _ = codec.EncodeKey(nil, nil, types.NewDatum(nil)) func (idx *Index) equalRowCount(b []byte, realtimeRowCount int64) float64 { if len(idx.Info.Columns) == 1 { if bytes.Equal(b, nullKeyBytes) { return float64(idx.NullCount) } } val := types.NewBytesDatum(b) if idx.StatsVer < Version2 { if idx.NDV > 0 && idx.outOfRange(val) { return outOfRangeEQSelectivity(idx.NDV, realtimeRowCount, int64(idx.TotalRowCount())) * idx.TotalRowCount() } if idx.CMSketch != nil { return float64(idx.QueryBytes(b)) } histRowCount, _ := idx.Histogram.equalRowCount(val, false) return histRowCount } // stats version == 2 // 1. try to find this value in TopN count, found := idx.TopN.QueryTopN(b) if found { return float64(count) } // 2. try to find this value in bucket.Repeat(the last value in every bucket) histCnt, matched := idx.Histogram.equalRowCount(val, true) if matched { return histCnt } // 3. use uniform distribution assumption for the rest (even when this value is not covered by the range of stats) histNDV := float64(idx.Histogram.NDV - int64(idx.TopN.Num())) if histNDV <= 0 { return 0 } return idx.Histogram.notNullCount() / histNDV } // QueryBytes is used to query the count of specified bytes. func (idx *Index) QueryBytes(d []byte) uint64 { h1, h2 := murmur3.Sum128(d) if count, ok := idx.TopN.QueryTopN(d); ok { return count } return idx.queryHashValue(h1, h2) } // GetRowCount returns the row count of the given ranges. // It uses the modifyCount to adjust the influence of modifications on the table. func (idx *Index) GetRowCount(sctx sessionctx.Context, coll *HistColl, indexRanges []*ranger.Range, realtimeRowCount int64) (float64, error) { sc := sctx.GetSessionVars().StmtCtx totalCount := float64(0) isSingleCol := len(idx.Info.Columns) == 1 for _, indexRange := range indexRanges { lb, err := codec.EncodeKey(sc, nil, indexRange.LowVal...) if err != nil { return 0, err } rb, err := codec.EncodeKey(sc, nil, indexRange.HighVal...) if err != nil { return 0, err } fullLen := len(indexRange.LowVal) == len(indexRange.HighVal) && len(indexRange.LowVal) == len(idx.Info.Columns) if bytes.Equal(lb, rb) { // case 1: it's a point if indexRange.LowExclude || indexRange.HighExclude { continue } if fullLen { // At most 1 in this case. if idx.Info.Unique { totalCount += 1 continue } count := idx.equalRowCount(lb, realtimeRowCount) // If the current table row count has changed, we should scale the row count accordingly. count *= idx.GetIncreaseFactor(realtimeRowCount) totalCount += count continue } } // case 2: it's an interval // The final interval is [low, high) if indexRange.LowExclude { lb = kv.Key(lb).PrefixNext() } if !indexRange.HighExclude { rb = kv.Key(rb).PrefixNext() } l := types.NewBytesDatum(lb) r := types.NewBytesDatum(rb) lowIsNull := bytes.Equal(lb, nullKeyBytes) if isSingleCol && lowIsNull { totalCount += float64(idx.NullCount) } expBackoffSuccess := false // Due to the limitation of calcFraction and convertDatumToScalar, the histogram actually won't estimate anything. // If the first column's range is point. if rangePosition := GetOrdinalOfRangeCond(sc, indexRange); rangePosition > 0 && idx.StatsVer >= Version2 && coll != nil { var expBackoffSel float64 expBackoffSel, expBackoffSuccess, err = idx.expBackoffEstimation(sctx, coll, indexRange) if err != nil { return 0, err } if expBackoffSuccess { totalCount += expBackoffSel * idx.TotalRowCount() } } if !expBackoffSuccess { totalCount += idx.BetweenRowCount(l, r) } // If the current table row count has changed, we should scale the row count accordingly. totalCount *= idx.GetIncreaseFactor(realtimeRowCount) // handling the out-of-range part if (idx.outOfRange(l) && !(isSingleCol && lowIsNull)) || idx.outOfRange(r) { increaseCount := realtimeRowCount - int64(idx.TotalRowCount()) if increaseCount < 0 { increaseCount = 0 } totalCount += idx.Histogram.outOfRangeRowCount(&l, &r, increaseCount) } } if totalCount > float64(realtimeRowCount) { totalCount = float64(realtimeRowCount) } return totalCount, nil } // expBackoffEstimation estimate the multi-col cases following the Exponential Backoff. See comment below for details. func (idx *Index) expBackoffEstimation(sctx sessionctx.Context, coll *HistColl, indexRange *ranger.Range) (float64, bool, error) { tmpRan := []*ranger.Range{ { LowVal: make([]types.Datum, 1), HighVal: make([]types.Datum, 1), Collators: make([]collate.Collator, 1), }, } colsIDs := coll.Idx2ColumnIDs[idx.ID] singleColumnEstResults := make([]float64, 0, len(indexRange.LowVal)) // The following codes uses Exponential Backoff to reduce the impact of independent assumption. It works like: // 1. Calc the selectivity of each column. // 2. Sort them and choose the first 4 most selective filter and the corresponding selectivity is sel_1, sel_2, sel_3, sel_4 where i < j => sel_i < sel_j. // 3. The final selectivity would be sel_1 * sel_2^{1/2} * sel_3^{1/4} * sel_4^{1/8}. // This calculation reduced the independence assumption and can work well better than it. for i := 0; i < len(indexRange.LowVal); i++ { tmpRan[0].LowVal[0] = indexRange.LowVal[i] tmpRan[0].HighVal[0] = indexRange.HighVal[i] tmpRan[0].Collators[0] = indexRange.Collators[0] if i == len(indexRange.LowVal)-1 { tmpRan[0].LowExclude = indexRange.LowExclude tmpRan[0].HighExclude = indexRange.HighExclude } colID := colsIDs[i] var ( count float64 err error ) if anotherIdxID, ok := coll.ColID2IdxID[colID]; ok && anotherIdxID != idx.ID { count, err = coll.GetRowCountByIndexRanges(sctx, anotherIdxID, tmpRan) } else if col, ok := coll.Columns[colID]; ok && !col.IsInvalid(sctx, coll.Pseudo) { count, err = coll.GetRowCountByColumnRanges(sctx, colID, tmpRan) } else { continue } if err != nil { return 0, false, err } singleColumnEstResults = append(singleColumnEstResults, count) } // Sort them. sort.Slice(singleColumnEstResults, func(i, j int) bool { return singleColumnEstResults[i] < singleColumnEstResults[j] }) l := len(singleColumnEstResults) // Convert the first 4 to selectivity results. for i := 0; i < l && i < 4; i++ { singleColumnEstResults[i] = singleColumnEstResults[i] / float64(coll.Count) } failpoint.Inject("cleanEstResults", func() { singleColumnEstResults = singleColumnEstResults[:0] l = 0 }) if l == 1 { return singleColumnEstResults[0], true, nil } else if l == 2 { return singleColumnEstResults[0] * math.Sqrt(singleColumnEstResults[1]), true, nil } else if l == 3 { return singleColumnEstResults[0] * math.Sqrt(singleColumnEstResults[1]) * math.Sqrt(math.Sqrt(singleColumnEstResults[2])), true, nil } else if l == 0 { return 0, false, nil } return singleColumnEstResults[0] * math.Sqrt(singleColumnEstResults[1]) * math.Sqrt(math.Sqrt(singleColumnEstResults[2])) * math.Sqrt(math.Sqrt(math.Sqrt(singleColumnEstResults[3]))), true, nil } type countByRangeFunc = func(sessionctx.Context, int64, []*ranger.Range) (float64, error) // newHistogramBySelectivity fulfills the content of new histogram by the given selectivity result. // TODO: Datum is not efficient, try to avoid using it here. // Also, there're redundant calculation with Selectivity(). We need to reduce it too. func newHistogramBySelectivity(sctx sessionctx.Context, histID int64, oldHist, newHist *Histogram, ranges []*ranger.Range, cntByRangeFunc countByRangeFunc) error { cntPerVal := int64(oldHist.AvgCountPerNotNullValue(int64(oldHist.TotalRowCount()))) var totCnt int64 for boundIdx, ranIdx, highRangeIdx := 0, 0, 0; boundIdx < oldHist.Bounds.NumRows() && ranIdx < len(ranges); boundIdx, ranIdx = boundIdx+2, highRangeIdx { for highRangeIdx < len(ranges) && chunk.Compare(oldHist.Bounds.GetRow(boundIdx+1), 0, &ranges[highRangeIdx].HighVal[0]) >= 0 { highRangeIdx++ } if boundIdx+2 >= oldHist.Bounds.NumRows() && highRangeIdx < len(ranges) && ranges[highRangeIdx].HighVal[0].Kind() == types.KindMaxValue { highRangeIdx++ } if ranIdx == highRangeIdx { continue } cnt, err := cntByRangeFunc(sctx, histID, ranges[ranIdx:highRangeIdx]) // This should not happen. if err != nil { return err } if cnt == 0 { continue } if int64(cnt) > oldHist.bucketCount(boundIdx/2) { cnt = float64(oldHist.bucketCount(boundIdx / 2)) } newHist.Bounds.AppendRow(oldHist.Bounds.GetRow(boundIdx)) newHist.Bounds.AppendRow(oldHist.Bounds.GetRow(boundIdx + 1)) totCnt += int64(cnt) bkt := Bucket{Count: totCnt} if chunk.Compare(oldHist.Bounds.GetRow(boundIdx+1), 0, &ranges[highRangeIdx-1].HighVal[0]) == 0 && !ranges[highRangeIdx-1].HighExclude { bkt.Repeat = cntPerVal } newHist.Buckets = append(newHist.Buckets, bkt) switch newHist.Tp.EvalType() { case types.ETString, types.ETDecimal, types.ETDatetime, types.ETTimestamp: newHist.scalars = append(newHist.scalars, oldHist.scalars[boundIdx/2]) } } return nil } func (idx *Index) newIndexBySelectivity(sc *stmtctx.StatementContext, statsNode *StatsNode) (*Index, error) { var ( ranLowEncode, ranHighEncode []byte err error ) newIndexHist := &Index{Info: idx.Info, StatsVer: idx.StatsVer, CMSketch: idx.CMSketch} newIndexHist.Histogram = *NewHistogram(idx.ID, int64(float64(idx.NDV)*statsNode.Selectivity), 0, 0, types.NewFieldType(mysql.TypeBlob), chunk.InitialCapacity, 0) lowBucketIdx, highBucketIdx := 0, 0 var totCnt int64 // Bucket bound of index is encoded one, so we need to decode it if we want to calculate the fraction accurately. // TODO: enhance its calculation. // Now just remove the bucket that no range fell in. for _, ran := range statsNode.Ranges { lowBucketIdx = highBucketIdx ranLowEncode, ranHighEncode, err = ran.Encode(sc, ranLowEncode, ranHighEncode) if err != nil { return nil, err } for ; highBucketIdx < idx.Len(); highBucketIdx++ { // Encoded value can only go to its next quickly. So ranHighEncode is actually range.HighVal's PrefixNext value. // So the Bound should also go to its PrefixNext. bucketLowerEncoded := idx.Bounds.GetRow(highBucketIdx * 2).GetBytes(0) if bytes.Compare(ranHighEncode, kv.Key(bucketLowerEncoded).PrefixNext()) < 0 { break } } for ; lowBucketIdx < highBucketIdx; lowBucketIdx++ { bucketUpperEncoded := idx.Bounds.GetRow(lowBucketIdx*2 + 1).GetBytes(0) if bytes.Compare(ranLowEncode, bucketUpperEncoded) <= 0 { break } } if lowBucketIdx >= idx.Len() { break } for i := lowBucketIdx; i < highBucketIdx; i++ { newIndexHist.Bounds.AppendRow(idx.Bounds.GetRow(i * 2)) newIndexHist.Bounds.AppendRow(idx.Bounds.GetRow(i*2 + 1)) totCnt += idx.bucketCount(i) newIndexHist.Buckets = append(newIndexHist.Buckets, Bucket{Repeat: idx.Buckets[i].Repeat, Count: totCnt}) newIndexHist.scalars = append(newIndexHist.scalars, idx.scalars[i]) } } return newIndexHist, nil } // NewHistCollBySelectivity creates new HistColl by the given statsNodes. func (coll *HistColl) NewHistCollBySelectivity(sctx sessionctx.Context, statsNodes []*StatsNode) *HistColl { newColl := &HistColl{ Columns: make(map[int64]*Column), Indices: make(map[int64]*Index), Idx2ColumnIDs: coll.Idx2ColumnIDs, ColID2IdxID: coll.ColID2IdxID, Count: coll.Count, } for _, node := range statsNodes { if node.Tp == IndexType { idxHist, ok := coll.Indices[node.ID] if !ok { continue } newIdxHist, err := idxHist.newIndexBySelectivity(sctx.GetSessionVars().StmtCtx, node) if err != nil { logutil.BgLogger().Warn("[Histogram-in-plan]: something wrong happened when calculating row count, "+ "failed to build histogram for index %v of table %v", zap.String("index", idxHist.Info.Name.O), zap.String("table", idxHist.Info.Table.O), zap.Error(err)) continue } newColl.Indices[node.ID] = newIdxHist continue } oldCol, ok := coll.Columns[node.ID] if !ok { continue } newCol := &Column{ PhysicalID: oldCol.PhysicalID, Info: oldCol.Info, IsHandle: oldCol.IsHandle, CMSketch: oldCol.CMSketch, } newCol.Histogram = *NewHistogram(oldCol.ID, int64(float64(oldCol.Histogram.NDV)*node.Selectivity), 0, 0, oldCol.Tp, chunk.InitialCapacity, 0) var err error splitRanges, ok := oldCol.Histogram.SplitRange(sctx.GetSessionVars().StmtCtx, node.Ranges, false) if !ok { logutil.BgLogger().Warn("[Histogram-in-plan]: the type of histogram and ranges mismatch") continue } // Deal with some corner case. if len(splitRanges) > 0 { // Deal with NULL values. if splitRanges[0].LowVal[0].IsNull() { newCol.NullCount = oldCol.NullCount if splitRanges[0].HighVal[0].IsNull() { splitRanges = splitRanges[1:] } else { splitRanges[0].LowVal[0].SetMinNotNull() } } } if oldCol.IsHandle { err = newHistogramBySelectivity(sctx, node.ID, &oldCol.Histogram, &newCol.Histogram, splitRanges, coll.GetRowCountByIntColumnRanges) } else { err = newHistogramBySelectivity(sctx, node.ID, &oldCol.Histogram, &newCol.Histogram, splitRanges, coll.GetRowCountByColumnRanges) } if err != nil { logutil.BgLogger().Warn("[Histogram-in-plan]: something wrong happened when calculating row count", zap.Error(err)) continue } newColl.Columns[node.ID] = newCol } for id, idx := range coll.Indices { _, ok := newColl.Indices[id] if !ok { newColl.Indices[id] = idx } } for id, col := range coll.Columns { _, ok := newColl.Columns[id] if !ok { newColl.Columns[id] = col } } return newColl } func (idx *Index) outOfRange(val types.Datum) bool { if !idx.Histogram.outOfRange(val) { return false } if idx.Histogram.Len() > 0 && matchPrefix(idx.Bounds.GetRow(0), 0, &val) { return false } return true } // matchPrefix checks whether ad is the prefix of value func matchPrefix(row chunk.Row, colIdx int, ad *types.Datum) bool { switch ad.Kind() { case types.KindString, types.KindBytes, types.KindBinaryLiteral, types.KindMysqlBit: return strings.HasPrefix(row.GetString(colIdx), ad.GetString()) } return false } type dataCnt struct { data []byte cnt uint64 } // GetIndexPrefixLens returns an array representing func GetIndexPrefixLens(data []byte, numCols int) (prefixLens []int, err error) { prefixLens = make([]int, 0, numCols) var colData []byte prefixLen := 0 for len(data) > 0 { colData, data, err = codec.CutOne(data) if err != nil { return nil, err } prefixLen += len(colData) prefixLens = append(prefixLens, prefixLen) } return prefixLens, nil } // ExtractTopN extracts topn from histogram. func (hg *Histogram) ExtractTopN(cms *CMSketch, topN *TopN, numCols int, numTopN uint32) error { if hg.Len() == 0 || cms == nil || numTopN == 0 { return nil } dataSet := make(map[string]struct{}, hg.Bounds.NumRows()) dataCnts := make([]dataCnt, 0, hg.Bounds.NumRows()) hg.PreCalculateScalar() // Set a limit on the frequency of boundary values to avoid extract values with low frequency. limit := hg.notNullCount() / float64(hg.Len()) // Since our histogram are equal depth, they must occurs on the boundaries of buckets. for i := 0; i < hg.Bounds.NumRows(); i++ { data := hg.Bounds.GetRow(i).GetBytes(0) prefixLens, err := GetIndexPrefixLens(data, numCols) if err != nil { return err } for _, prefixLen := range prefixLens { prefixColData := data[:prefixLen] _, ok := dataSet[string(prefixColData)] if ok { continue } dataSet[string(prefixColData)] = struct{}{} res := hg.BetweenRowCount(types.NewBytesDatum(prefixColData), types.NewBytesDatum(kv.Key(prefixColData).PrefixNext())) if res >= limit { dataCnts = append(dataCnts, dataCnt{prefixColData, uint64(res)}) } } } sort.SliceStable(dataCnts, func(i, j int) bool { return dataCnts[i].cnt >= dataCnts[j].cnt }) if len(dataCnts) > int(numTopN) { dataCnts = dataCnts[:numTopN] } topN.TopN = make([]TopNMeta, 0, len(dataCnts)) for _, dataCnt := range dataCnts { h1, h2 := murmur3.Sum128(dataCnt.data) realCnt := cms.queryHashValue(h1, h2) cms.SubValue(h1, h2, realCnt) topN.AppendTopN(dataCnt.data, realCnt) } topN.Sort() return nil } // bucket4Merging is only used for merging partition hists to global hist. type bucket4Merging struct { lower *types.Datum upper *types.Datum Bucket // disjointNDV is used for merging bucket NDV, see mergeBucketNDV for more details. disjointNDV int64 } func newBucket4Meging() *bucket4Merging { return &bucket4Merging{ lower: new(types.Datum), upper: new(types.Datum), Bucket: Bucket{ Repeat: 0, NDV: 0, Count: 0, }, disjointNDV: 0, } } // buildBucket4Merging builds bucket4Merging from Histogram // Notice: Count in Histogram.Buckets is prefix sum but in bucket4Merging is not. func (hg *Histogram) buildBucket4Merging() []*bucket4Merging { buckets := make([]*bucket4Merging, 0, hg.Len()) for i := 0; i < hg.Len(); i++ { b := newBucket4Meging() hg.GetLower(i).Copy(b.lower) hg.GetUpper(i).Copy(b.upper) b.Repeat = hg.Buckets[i].Repeat b.NDV = hg.Buckets[i].NDV b.Count = hg.Buckets[i].Count if i != 0 { b.Count -= hg.Buckets[i-1].Count } buckets = append(buckets, b) } return buckets } func (b *bucket4Merging) Clone() bucket4Merging { return bucket4Merging{ lower: b.lower.Clone(), upper: b.upper.Clone(), Bucket: Bucket{ Repeat: b.Repeat, NDV: b.NDV, Count: b.Count, }, disjointNDV: b.disjointNDV, } } // mergeBucketNDV merges bucket NDV from tow bucket `right` & `left`. // Before merging, you need to make sure that when using (upper, lower) as the comparison key, `right` is greater than `left` func mergeBucketNDV(sc *stmtctx.StatementContext, left *bucket4Merging, right *bucket4Merging) (*bucket4Merging, error) { res := right.Clone() if left.NDV == 0 { return &res, nil } if right.NDV == 0 { res.lower = left.lower.Clone() res.upper = left.upper.Clone() res.NDV = left.NDV return &res, nil } upperCompare, err := right.upper.Compare(sc, left.upper, collate.GetBinaryCollator()) if err != nil { return nil, err } // __right__| // _______left____| // illegal order. if upperCompare < 0 { return nil, errors.Errorf("illegal bucket order") } // ___right_| // ___left__| // They have the same upper. if upperCompare == 0 { lowerCompare, err := right.lower.Compare(sc, left.lower, collate.GetBinaryCollator()) if err != nil { return nil, err } // |____right____| // |__left____| // illegal order. if lowerCompare < 0 { return nil, errors.Errorf("illegal bucket order") } // |___right___| // |____left___| // ndv = max(right.ndv, left.ndv) if lowerCompare == 0 { if left.NDV > right.NDV { res.NDV = left.NDV } return &res, nil } // |_right_| // |_____left______| // |-ratio-| // ndv = ratio * left.ndv + max((1-ratio) * left.ndv, right.ndv) ratio := calcFraction4Datums(left.lower, left.upper, right.lower) res.NDV = int64(ratio*float64(left.NDV) + math.Max((1-ratio)*float64(left.NDV), float64(right.NDV))) res.lower = left.lower.Clone() return &res, nil } // ____right___| // ____left__| // right.upper > left.upper lowerCompareUpper, err := right.lower.Compare(sc, left.upper, collate.GetBinaryCollator()) if err != nil { return nil, err } // |_right_| // |___left____| // `left` and `right` do not intersect // We add right.ndv in `disjointNDV`, and let `right.ndv = left.ndv` be used for subsequent merge. // This is because, for the merging of many buckets, we merge them from back to front. if lowerCompareUpper >= 0 { res.upper = left.upper.Clone() res.lower = left.lower.Clone() res.disjointNDV += right.NDV res.NDV = left.NDV return &res, nil } upperRatio := calcFraction4Datums(right.lower, right.upper, left.upper) lowerCompare, err := right.lower.Compare(sc, left.lower, collate.GetBinaryCollator()) if err != nil { return nil, err } // |-upperRatio-| // |_______right_____| // |_______left______________| // |-lowerRatio-| // ndv = lowerRatio * left.ndv // + max((1-lowerRatio) * left.ndv, upperRatio * right.ndv) // + (1-upperRatio) * right.ndv if lowerCompare >= 0 { lowerRatio := calcFraction4Datums(left.lower, left.upper, right.lower) res.NDV = int64(lowerRatio*float64(left.NDV) + math.Max((1-lowerRatio)*float64(left.NDV), upperRatio*float64(right.NDV)) + (1-upperRatio)*float64(right.NDV)) res.lower = left.lower.Clone() return &res, nil } // |------upperRatio--------| // |-lowerRatio-| // |____________right______________| // |___left____| // ndv = lowerRatio * right.ndv // + max(left.ndv + (upperRatio - lowerRatio) * right.ndv) // + (1-upperRatio) * right.ndv lowerRatio := calcFraction4Datums(right.lower, right.upper, left.lower) res.NDV = int64(lowerRatio*float64(right.NDV) + math.Max(float64(left.NDV), (upperRatio-lowerRatio)*float64(right.NDV)) + (1-upperRatio)*float64(right.NDV)) return &res, nil } // mergeParitionBuckets merges buckets[l...r) to one global bucket. // global bucket: // upper = buckets[r-1].upper // count = sum of buckets[l...r).count // repeat = sum of buckets[i] (buckets[i].upper == global bucket.upper && i in [l...r)) // ndv = merge bucket ndv from r-1 to l by mergeBucketNDV // Notice: lower is not calculated here. func mergePartitionBuckets(sc *stmtctx.StatementContext, buckets []*bucket4Merging) (*bucket4Merging, error) { if len(buckets) == 0 { return nil, errors.Errorf("not enough buckets to merge") } res := bucket4Merging{} res.upper = buckets[len(buckets)-1].upper.Clone() right := buckets[len(buckets)-1].Clone() totNDV := int64(0) for i := len(buckets) - 1; i >= 0; i-- { totNDV += buckets[i].NDV res.Count += buckets[i].Count compare, err := buckets[i].upper.Compare(sc, res.upper, collate.GetBinaryCollator()) if err != nil { return nil, err } if compare == 0 { res.Repeat += buckets[i].Repeat } if i != len(buckets)-1 { tmp, err := mergeBucketNDV(sc, buckets[i], &right) if err != nil { return nil, err } right = *tmp } } res.NDV = right.NDV + right.disjointNDV // since `mergeBucketNDV` is based on uniform and inclusion assumptions, it has the trend to under-estimate, // and as the number of buckets increases, these assumptions become weak, // so to mitigate this problem, a damping factor based on the number of buckets is introduced. res.NDV = int64(float64(res.NDV) * math.Pow(1.15, float64(len(buckets)-1))) if res.NDV > totNDV { res.NDV = totNDV } return &res, nil } func (t *TopNMeta) buildBucket4Merging(d *types.Datum) *bucket4Merging { res := newBucket4Meging() res.lower = d.Clone() res.upper = d.Clone() res.Count = int64(t.Count) res.Repeat = int64(t.Count) res.NDV = int64(1) return res } // MergePartitionHist2GlobalHist merges hists (partition-level Histogram) to a global-level Histogram func MergePartitionHist2GlobalHist(sc *stmtctx.StatementContext, hists []*Histogram, popedTopN []TopNMeta, expBucketNumber int64, isIndex bool) (*Histogram, error) { var totCount, totNull, bucketNumber, totColSize int64 if expBucketNumber == 0 { return nil, errors.Errorf("expBucketNumber can not be zero") } // minValue is used to calc the bucket lower. var minValue *types.Datum for _, hist := range hists { totColSize += hist.TotColSize totNull += hist.NullCount bucketNumber += int64(hist.Len()) if hist.Len() > 0 { totCount += hist.Buckets[hist.Len()-1].Count if minValue == nil { minValue = hist.GetLower(0).Clone() continue } res, err := hist.GetLower(0).Compare(sc, minValue, collate.GetBinaryCollator()) if err != nil { return nil, err } if res < 0 { minValue = hist.GetLower(0).Clone() } } } bucketNumber += int64(len(popedTopN)) buckets := make([]*bucket4Merging, 0, bucketNumber) globalBuckets := make([]*bucket4Merging, 0, expBucketNumber) // init `buckets`. for _, hist := range hists { buckets = append(buckets, hist.buildBucket4Merging()...) } for _, meta := range popedTopN { totCount += int64(meta.Count) var d types.Datum if isIndex { d.SetBytes(meta.Encoded) } else { var err error if types.IsTypeTime(hists[0].Tp.Tp) { // handle datetime values specially since they are encoded to int and we'll get int values if using DecodeOne. _, d, err = codec.DecodeAsDateTime(meta.Encoded, hists[0].Tp.Tp, sc.TimeZone) } else { _, d, err = codec.DecodeOne(meta.Encoded) } if err != nil { return nil, err } } if minValue == nil { minValue = d.Clone() continue } res, err := d.Compare(sc, minValue, collate.GetBinaryCollator()) if err != nil { return nil, err } if res < 0 { minValue = d.Clone() } buckets = append(buckets, meta.buildBucket4Merging(&d)) } // Remove empty buckets tail := 0 for i := range buckets { if buckets[i].Count != 0 { buckets[tail] = buckets[i] tail++ } } buckets = buckets[:tail] var sortError error sort.Slice(buckets, func(i, j int) bool { res, err := buckets[i].upper.Compare(sc, buckets[j].upper, collate.GetBinaryCollator()) if err != nil { sortError = err } if res != 0 { return res < 0 } res, err = buckets[i].lower.Compare(sc, buckets[j].lower, collate.GetBinaryCollator()) if err != nil { sortError = err } return res < 0 }) if sortError != nil { return nil, sortError } var sum, prevSum int64 r, prevR := len(buckets), 0 bucketCount := int64(1) gBucketCountThreshold := (totCount / expBucketNumber) * 80 / 100 // expectedBucketSize * 0.8 var bucketNDV int64 for i := len(buckets) - 1; i >= 0; i-- { sum += buckets[i].Count bucketNDV += buckets[i].NDV if sum >= totCount*bucketCount/expBucketNumber && sum-prevSum >= gBucketCountThreshold { for ; i > 0; i-- { // if the buckets have the same upper, we merge them into the same new buckets. res, err := buckets[i-1].upper.Compare(sc, buckets[i].upper, collate.GetBinaryCollator()) if err != nil { return nil, err } if res != 0 { break } sum += buckets[i-1].Count bucketNDV += buckets[i-1].NDV } merged, err := mergePartitionBuckets(sc, buckets[i:r]) if err != nil { return nil, err } globalBuckets = append(globalBuckets, merged) prevR = r r = i bucketCount++ prevSum = sum bucketNDV = 0 } } if r > 0 { bucketSum := int64(0) for _, b := range buckets[:r] { bucketSum += b.Count } if len(globalBuckets) > 0 && bucketSum < gBucketCountThreshold { // merge them into the previous global bucket r = prevR globalBuckets = globalBuckets[:len(globalBuckets)-1] } merged, err := mergePartitionBuckets(sc, buckets[:r]) if err != nil { return nil, err } globalBuckets = append(globalBuckets, merged) } // Because we merge backwards, we need to flip the slices. for i, j := 0, len(globalBuckets)-1; i < j; i, j = i+1, j-1 { globalBuckets[i], globalBuckets[j] = globalBuckets[j], globalBuckets[i] } // Calc the bucket lower. if minValue == nil || len(globalBuckets) == 0 { // both hists and popedTopN are empty, returns an empty hist in this case return NewHistogram(hists[0].ID, 0, totNull, hists[0].LastUpdateVersion, hists[0].Tp, len(globalBuckets), totColSize), nil } globalBuckets[0].lower = minValue.Clone() for i := 1; i < len(globalBuckets); i++ { if globalBuckets[i].NDV == 1 { // there is only 1 value so lower = upper globalBuckets[i].lower = globalBuckets[i].upper.Clone() } else { globalBuckets[i].lower = globalBuckets[i-1].upper.Clone() } globalBuckets[i].Count = globalBuckets[i].Count + globalBuckets[i-1].Count } // Recalculate repeats // TODO: optimize it later since it's a simple but not the fastest implementation whose complexity is O(nBkt * nHist * log(nBkt)) for _, bucket := range globalBuckets { var repeat float64 for _, hist := range hists { histRowCount, _ := hist.equalRowCount(*bucket.upper, isIndex) repeat += histRowCount // only hists of indexes have bucket.NDV } if int64(repeat) > bucket.Repeat { bucket.Repeat = int64(repeat) } } globalHist := NewHistogram(hists[0].ID, 0, totNull, hists[0].LastUpdateVersion, hists[0].Tp, len(globalBuckets), totColSize) for _, bucket := range globalBuckets { if !isIndex { bucket.NDV = 0 // bucket.NDV is not maintained for column histograms } globalHist.AppendBucketWithNDV(bucket.lower, bucket.upper, bucket.Count, bucket.Repeat, bucket.NDV) } return globalHist, nil }