// Copyright 2016 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tablecodec import ( "bytes" "encoding/binary" "math" "strings" "time" "unicode/utf8" "github.com/pingcap/errors" "github.com/pingcap/tidb/errno" "github.com/pingcap/tidb/kv" "github.com/pingcap/tidb/parser/charset" "github.com/pingcap/tidb/parser/model" "github.com/pingcap/tidb/parser/mysql" "github.com/pingcap/tidb/parser/terror" "github.com/pingcap/tidb/sessionctx/stmtctx" "github.com/pingcap/tidb/structure" "github.com/pingcap/tidb/types" "github.com/pingcap/tidb/util/codec" "github.com/pingcap/tidb/util/collate" "github.com/pingcap/tidb/util/dbterror" "github.com/pingcap/tidb/util/rowcodec" "github.com/pingcap/tidb/util/stringutil" ) var ( errInvalidKey = dbterror.ClassXEval.NewStd(errno.ErrInvalidKey) errInvalidRecordKey = dbterror.ClassXEval.NewStd(errno.ErrInvalidRecordKey) errInvalidIndexKey = dbterror.ClassXEval.NewStd(errno.ErrInvalidIndexKey) ) var ( tablePrefix = []byte{'t'} recordPrefixSep = []byte("_r") indexPrefixSep = []byte("_i") metaPrefix = []byte{'m'} ) const ( idLen = 8 prefixLen = 1 + idLen /*tableID*/ + 2 // RecordRowKeyLen is public for calculating avgerage row size. RecordRowKeyLen = prefixLen + idLen /*handle*/ tablePrefixLength = 1 recordPrefixSepLength = 2 metaPrefixLength = 1 // MaxOldEncodeValueLen is the maximum len of the old encoding of index value. MaxOldEncodeValueLen = 9 // CommonHandleFlag is the flag used to decode the common handle in an unique index value. CommonHandleFlag byte = 127 // PartitionIDFlag is the flag used to decode the partition ID in global index value. PartitionIDFlag byte = 126 // IndexVersionFlag is the flag used to decode the index's version info. IndexVersionFlag byte = 125 // RestoreDataFlag is the flag that RestoreData begin with. // See rowcodec.Encoder.Encode and rowcodec.row.toBytes RestoreDataFlag byte = rowcodec.CodecVer ) // TableSplitKeyLen is the length of key 't{table_id}' which is used for table split. const TableSplitKeyLen = 1 + idLen // TablePrefix returns table's prefix 't'. func TablePrefix() []byte { return tablePrefix } // EncodeRowKey encodes the table id and record handle into a kv.Key func EncodeRowKey(tableID int64, encodedHandle []byte) kv.Key { buf := make([]byte, 0, prefixLen+len(encodedHandle)) buf = appendTableRecordPrefix(buf, tableID) buf = append(buf, encodedHandle...) return buf } // EncodeRowKeyWithHandle encodes the table id, row handle into a kv.Key func EncodeRowKeyWithHandle(tableID int64, handle kv.Handle) kv.Key { return EncodeRowKey(tableID, handle.Encoded()) } // CutRowKeyPrefix cuts the row key prefix. func CutRowKeyPrefix(key kv.Key) []byte { return key[prefixLen:] } // EncodeRecordKey encodes the recordPrefix, row handle into a kv.Key. func EncodeRecordKey(recordPrefix kv.Key, h kv.Handle) kv.Key { buf := make([]byte, 0, len(recordPrefix)+h.Len()) buf = append(buf, recordPrefix...) buf = append(buf, h.Encoded()...) return buf } func hasTablePrefix(key kv.Key) bool { return key[0] == tablePrefix[0] } func hasRecordPrefixSep(key kv.Key) bool { return key[0] == recordPrefixSep[0] && key[1] == recordPrefixSep[1] } // DecodeRecordKey decodes the key and gets the tableID, handle. func DecodeRecordKey(key kv.Key) (tableID int64, handle kv.Handle, err error) { if len(key) <= prefixLen { return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q", key) } k := key if !hasTablePrefix(key) { return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q", k) } key = key[tablePrefixLength:] key, tableID, err = codec.DecodeInt(key) if err != nil { return 0, nil, errors.Trace(err) } if !hasRecordPrefixSep(key) { return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q", k) } key = key[recordPrefixSepLength:] if len(key) == 8 { var intHandle int64 key, intHandle, err = codec.DecodeInt(key) if err != nil { return 0, nil, errors.Trace(err) } return tableID, kv.IntHandle(intHandle), nil } h, err := kv.NewCommonHandle(key) if err != nil { return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q %v", k, err) } return tableID, h, nil } // DecodeIndexKey decodes the key and gets the tableID, indexID, indexValues. func DecodeIndexKey(key kv.Key) (tableID int64, indexID int64, indexValues []string, err error) { k := key tableID, indexID, isRecord, err := DecodeKeyHead(key) if err != nil { return 0, 0, nil, errors.Trace(err) } if isRecord { err = errInvalidIndexKey.GenWithStack("invalid index key - %q", k) return 0, 0, nil, err } indexKey := key[prefixLen+idLen:] indexValues, err = DecodeValuesBytesToStrings(indexKey) if err != nil { err = errInvalidIndexKey.GenWithStack("invalid index key - %q %v", k, err) return 0, 0, nil, err } return tableID, indexID, indexValues, nil } // DecodeValuesBytesToStrings decode the raw bytes to strings for each columns. // FIXME: Without the schema information, we can only decode the raw kind of // the column. For instance, MysqlTime is internally saved as uint64. func DecodeValuesBytesToStrings(b []byte) ([]string, error) { var datumValues []string for len(b) > 0 { remain, d, e := codec.DecodeOne(b) if e != nil { return nil, e } str, e1 := d.ToString() if e1 != nil { return nil, e } datumValues = append(datumValues, str) b = remain } return datumValues, nil } // DecodeMetaKey decodes the key and get the meta key and meta field. func DecodeMetaKey(ek kv.Key) (key []byte, field []byte, err error) { var tp uint64 if !bytes.HasPrefix(ek, metaPrefix) { return nil, nil, errors.New("invalid encoded hash data key prefix") } ek = ek[metaPrefixLength:] ek, key, err = codec.DecodeBytes(ek, nil) if err != nil { return nil, nil, errors.Trace(err) } ek, tp, err = codec.DecodeUint(ek) if err != nil { return nil, nil, errors.Trace(err) } else if structure.TypeFlag(tp) != structure.HashData { return nil, nil, errors.Errorf("invalid encoded hash data key flag %c", byte(tp)) } _, field, err = codec.DecodeBytes(ek, nil) return key, field, errors.Trace(err) } // DecodeKeyHead decodes the key's head and gets the tableID, indexID. isRecordKey is true when is a record key. func DecodeKeyHead(key kv.Key) (tableID int64, indexID int64, isRecordKey bool, err error) { isRecordKey = false k := key if !key.HasPrefix(tablePrefix) { err = errInvalidKey.GenWithStack("invalid key - %q", k) return } key = key[len(tablePrefix):] key, tableID, err = codec.DecodeInt(key) if err != nil { err = errors.Trace(err) return } if key.HasPrefix(recordPrefixSep) { isRecordKey = true return } if !key.HasPrefix(indexPrefixSep) { err = errInvalidKey.GenWithStack("invalid key - %q", k) return } key = key[len(indexPrefixSep):] key, indexID, err = codec.DecodeInt(key) if err != nil { err = errors.Trace(err) return } return } // DecodeTableID decodes the table ID of the key, if the key is not table key, returns 0. func DecodeTableID(key kv.Key) int64 { if !key.HasPrefix(tablePrefix) { return 0 } key = key[len(tablePrefix):] _, tableID, err := codec.DecodeInt(key) // TODO: return error. terror.Log(errors.Trace(err)) return tableID } // DecodeRowKey decodes the key and gets the handle. func DecodeRowKey(key kv.Key) (kv.Handle, error) { if len(key) < RecordRowKeyLen || !hasTablePrefix(key) || !hasRecordPrefixSep(key[prefixLen-2:]) { return kv.IntHandle(0), errInvalidKey.GenWithStack("invalid key - %q", key) } if len(key) == RecordRowKeyLen { u := binary.BigEndian.Uint64(key[prefixLen:]) return kv.IntHandle(codec.DecodeCmpUintToInt(u)), nil } return kv.NewCommonHandle(key[prefixLen:]) } // EncodeValue encodes a go value to bytes. func EncodeValue(sc *stmtctx.StatementContext, b []byte, raw types.Datum) ([]byte, error) { var v types.Datum err := flatten(sc, raw, &v) if err != nil { return nil, err } return codec.EncodeValue(sc, b, v) } // EncodeRow encode row data and column ids into a slice of byte. // valBuf and values pass by caller, for reducing EncodeRow allocates temporary bufs. If you pass valBuf and values as nil, // EncodeRow will allocate it. func EncodeRow(sc *stmtctx.StatementContext, row []types.Datum, colIDs []int64, valBuf []byte, values []types.Datum, e *rowcodec.Encoder) ([]byte, error) { if len(row) != len(colIDs) { return nil, errors.Errorf("EncodeRow error: data and columnID count not match %d vs %d", len(row), len(colIDs)) } if e.Enable { return e.Encode(sc, colIDs, row, valBuf) } return EncodeOldRow(sc, row, colIDs, valBuf, values) } // EncodeOldRow encode row data and column ids into a slice of byte. // Row layout: colID1, value1, colID2, value2, ..... // valBuf and values pass by caller, for reducing EncodeOldRow allocates temporary bufs. If you pass valBuf and values as nil, // EncodeOldRow will allocate it. func EncodeOldRow(sc *stmtctx.StatementContext, row []types.Datum, colIDs []int64, valBuf []byte, values []types.Datum) ([]byte, error) { if len(row) != len(colIDs) { return nil, errors.Errorf("EncodeRow error: data and columnID count not match %d vs %d", len(row), len(colIDs)) } valBuf = valBuf[:0] if values == nil { values = make([]types.Datum, len(row)*2) } for i, c := range row { id := colIDs[i] values[2*i].SetInt64(id) err := flatten(sc, c, &values[2*i+1]) if err != nil { return valBuf, errors.Trace(err) } } if len(values) == 0 { // We could not set nil value into kv. return append(valBuf, codec.NilFlag), nil } return codec.EncodeValue(sc, valBuf, values...) } func flatten(sc *stmtctx.StatementContext, data types.Datum, ret *types.Datum) error { switch data.Kind() { case types.KindMysqlTime: // for mysql datetime, timestamp and date type t := data.GetMysqlTime() if t.Type() == mysql.TypeTimestamp && sc.TimeZone != time.UTC { err := t.ConvertTimeZone(sc.TimeZone, time.UTC) if err != nil { return errors.Trace(err) } } v, err := t.ToPackedUint() ret.SetUint64(v) return errors.Trace(err) case types.KindMysqlDuration: // for mysql time type ret.SetInt64(int64(data.GetMysqlDuration().Duration)) return nil case types.KindMysqlEnum: ret.SetUint64(data.GetMysqlEnum().Value) return nil case types.KindMysqlSet: ret.SetUint64(data.GetMysqlSet().Value) return nil case types.KindBinaryLiteral, types.KindMysqlBit: // We don't need to handle errors here since the literal is ensured to be able to store in uint64 in convertToMysqlBit. val, err := data.GetBinaryLiteral().ToInt(sc) if err != nil { return errors.Trace(err) } ret.SetUint64(val) return nil default: *ret = data return nil } } // DecodeColumnValue decodes data to a Datum according to the column info. func DecodeColumnValue(data []byte, ft *types.FieldType, loc *time.Location) (types.Datum, error) { _, d, err := codec.DecodeOne(data) if err != nil { return types.Datum{}, errors.Trace(err) } colDatum, err := Unflatten(d, ft, loc) if err != nil { return types.Datum{}, errors.Trace(err) } return colDatum, nil } // DecodeColumnValueWithDatum decodes data to an existing Datum according to the column info. func DecodeColumnValueWithDatum(data []byte, ft *types.FieldType, loc *time.Location, result *types.Datum) error { var err error _, *result, err = codec.DecodeOne(data) if err != nil { return errors.Trace(err) } *result, err = Unflatten(*result, ft, loc) if err != nil { return errors.Trace(err) } return nil } // DecodeRowWithMapNew decode a row to datum map. func DecodeRowWithMapNew(b []byte, cols map[int64]*types.FieldType, loc *time.Location, row map[int64]types.Datum) (map[int64]types.Datum, error) { if row == nil { row = make(map[int64]types.Datum, len(cols)) } if b == nil { return row, nil } if len(b) == 1 && b[0] == codec.NilFlag { return row, nil } reqCols := make([]rowcodec.ColInfo, len(cols)) var idx int for id, tp := range cols { reqCols[idx] = rowcodec.ColInfo{ ID: id, Ft: tp, } idx++ } rd := rowcodec.NewDatumMapDecoder(reqCols, loc) return rd.DecodeToDatumMap(b, row) } // DecodeRowWithMap decodes a byte slice into datums with an existing row map. // Row layout: colID1, value1, colID2, value2, ..... func DecodeRowWithMap(b []byte, cols map[int64]*types.FieldType, loc *time.Location, row map[int64]types.Datum) (map[int64]types.Datum, error) { if row == nil { row = make(map[int64]types.Datum, len(cols)) } if b == nil { return row, nil } if len(b) == 1 && b[0] == codec.NilFlag { return row, nil } cnt := 0 var ( data []byte err error ) for len(b) > 0 { // Get col id. data, b, err = codec.CutOne(b) if err != nil { return nil, errors.Trace(err) } _, cid, err := codec.DecodeOne(data) if err != nil { return nil, errors.Trace(err) } // Get col value. data, b, err = codec.CutOne(b) if err != nil { return nil, errors.Trace(err) } id := cid.GetInt64() ft, ok := cols[id] if ok { _, v, err := codec.DecodeOne(data) if err != nil { return nil, errors.Trace(err) } v, err = Unflatten(v, ft, loc) if err != nil { return nil, errors.Trace(err) } row[id] = v cnt++ if cnt == len(cols) { // Get enough data. break } } } return row, nil } // DecodeRowToDatumMap decodes a byte slice into datums. // Row layout: colID1, value1, colID2, value2, ..... // Default value columns, generated columns and handle columns are unprocessed. func DecodeRowToDatumMap(b []byte, cols map[int64]*types.FieldType, loc *time.Location) (map[int64]types.Datum, error) { if !rowcodec.IsNewFormat(b) { return DecodeRowWithMap(b, cols, loc, nil) } return DecodeRowWithMapNew(b, cols, loc, nil) } // DecodeHandleToDatumMap decodes a handle into datum map. func DecodeHandleToDatumMap(handle kv.Handle, handleColIDs []int64, cols map[int64]*types.FieldType, loc *time.Location, row map[int64]types.Datum) (map[int64]types.Datum, error) { if handle == nil || len(handleColIDs) == 0 { return row, nil } if row == nil { row = make(map[int64]types.Datum, len(cols)) } for id, ft := range cols { for idx, hid := range handleColIDs { if id != hid { continue } if types.NeedRestoredData(ft) { continue } d, err := decodeHandleToDatum(handle, ft, idx) if err != nil { return row, err } d, err = Unflatten(d, ft, loc) if err != nil { return row, err } if _, exists := row[id]; !exists { row[id] = d } break } } return row, nil } // decodeHandleToDatum decodes a handle to a specific column datum. func decodeHandleToDatum(handle kv.Handle, ft *types.FieldType, idx int) (types.Datum, error) { var d types.Datum var err error if handle.IsInt() { if mysql.HasUnsignedFlag(ft.Flag) { d = types.NewUintDatum(uint64(handle.IntValue())) } else { d = types.NewIntDatum(handle.IntValue()) } return d, nil } // Decode common handle to Datum. _, d, err = codec.DecodeOne(handle.EncodedCol(idx)) return d, err } // CutRowNew cuts encoded row into byte slices and return columns' byte slice. // Row layout: colID1, value1, colID2, value2, ..... func CutRowNew(data []byte, colIDs map[int64]int) ([][]byte, error) { if data == nil { return nil, nil } if len(data) == 1 && data[0] == codec.NilFlag { return nil, nil } var ( cnt int b []byte err error cid int64 ) row := make([][]byte, len(colIDs)) for len(data) > 0 && cnt < len(colIDs) { // Get col id. data, cid, err = codec.CutColumnID(data) if err != nil { return nil, errors.Trace(err) } // Get col value. b, data, err = codec.CutOne(data) if err != nil { return nil, errors.Trace(err) } offset, ok := colIDs[cid] if ok { row[offset] = b cnt++ } } return row, nil } // UnflattenDatums converts raw datums to column datums. func UnflattenDatums(datums []types.Datum, fts []*types.FieldType, loc *time.Location) ([]types.Datum, error) { for i, datum := range datums { ft := fts[i] uDatum, err := Unflatten(datum, ft, loc) if err != nil { return datums, errors.Trace(err) } datums[i] = uDatum } return datums, nil } // Unflatten converts a raw datum to a column datum. func Unflatten(datum types.Datum, ft *types.FieldType, loc *time.Location) (types.Datum, error) { if datum.IsNull() { return datum, nil } switch ft.Tp { case mysql.TypeFloat: datum.SetFloat32(float32(datum.GetFloat64())) return datum, nil case mysql.TypeVarchar, mysql.TypeString, mysql.TypeVarString, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeBlob, mysql.TypeLongBlob: datum.SetString(datum.GetString(), ft.Collate) case mysql.TypeTiny, mysql.TypeShort, mysql.TypeYear, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeDouble: return datum, nil case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp: t := types.NewTime(types.ZeroCoreTime, ft.Tp, ft.Decimal) var err error err = t.FromPackedUint(datum.GetUint64()) if err != nil { return datum, errors.Trace(err) } if ft.Tp == mysql.TypeTimestamp && !t.IsZero() { err = t.ConvertTimeZone(time.UTC, loc) if err != nil { return datum, errors.Trace(err) } } datum.SetUint64(0) datum.SetMysqlTime(t) return datum, nil case mysql.TypeDuration: // duration should read fsp from column meta data dur := types.Duration{Duration: time.Duration(datum.GetInt64()), Fsp: ft.Decimal} datum.SetMysqlDuration(dur) return datum, nil case mysql.TypeEnum: // ignore error deliberately, to read empty enum value. enum, err := types.ParseEnumValue(ft.Elems, datum.GetUint64()) if err != nil { enum = types.Enum{} } datum.SetMysqlEnum(enum, ft.Collate) return datum, nil case mysql.TypeSet: set, err := types.ParseSetValue(ft.Elems, datum.GetUint64()) if err != nil { return datum, errors.Trace(err) } datum.SetMysqlSet(set, ft.Collate) return datum, nil case mysql.TypeBit: val := datum.GetUint64() byteSize := (ft.Flen + 7) >> 3 datum.SetUint64(0) datum.SetMysqlBit(types.NewBinaryLiteralFromUint(val, byteSize)) } return datum, nil } // EncodeIndexSeekKey encodes an index value to kv.Key. func EncodeIndexSeekKey(tableID int64, idxID int64, encodedValue []byte) kv.Key { key := make([]byte, 0, RecordRowKeyLen+len(encodedValue)) key = appendTableIndexPrefix(key, tableID) key = codec.EncodeInt(key, idxID) key = append(key, encodedValue...) return key } // CutIndexKey cuts encoded index key into colIDs to bytes slices map. // The returned value b is the remaining bytes of the key which would be empty if it is unique index or handle data // if it is non-unique index. func CutIndexKey(key kv.Key, colIDs []int64) (values map[int64][]byte, b []byte, err error) { b = key[prefixLen+idLen:] values = make(map[int64][]byte, len(colIDs)) for _, id := range colIDs { var val []byte val, b, err = codec.CutOne(b) if err != nil { return nil, nil, errors.Trace(err) } values[id] = val } return } // CutIndexPrefix cuts the index prefix. func CutIndexPrefix(key kv.Key) []byte { return key[prefixLen+idLen:] } // CutIndexKeyNew cuts encoded index key into colIDs to bytes slices. // The returned value b is the remaining bytes of the key which would be empty if it is unique index or handle data // if it is non-unique index. func CutIndexKeyNew(key kv.Key, length int) (values [][]byte, b []byte, err error) { b = key[prefixLen+idLen:] values = make([][]byte, 0, length) for i := 0; i < length; i++ { var val []byte val, b, err = codec.CutOne(b) if err != nil { return nil, nil, errors.Trace(err) } values = append(values, val) } return } // CutCommonHandle cuts encoded common handle key into colIDs to bytes slices. // The returned value b is the remaining bytes of the key which would be empty if it is unique index or handle data // if it is non-unique index. func CutCommonHandle(key kv.Key, length int) (values [][]byte, b []byte, err error) { b = key[prefixLen:] values = make([][]byte, 0, length) for i := 0; i < length; i++ { var val []byte val, b, err = codec.CutOne(b) if err != nil { return nil, nil, errors.Trace(err) } values = append(values, val) } return } // HandleStatus is the handle status in index. type HandleStatus int const ( // HandleDefault means decode handle value as int64 or bytes when DecodeIndexKV. HandleDefault HandleStatus = iota // HandleIsUnsigned means decode handle value as uint64 when DecodeIndexKV. HandleIsUnsigned // HandleNotNeeded means no need to decode handle value when DecodeIndexKV. HandleNotNeeded ) // reEncodeHandle encodes the handle as a Datum so it can be properly decoded later. // If it is common handle, it returns the encoded column values. // If it is int handle, it is encoded as int Datum or uint Datum decided by the unsigned. func reEncodeHandle(handle kv.Handle, unsigned bool) ([][]byte, error) { if !handle.IsInt() { handleColLen := handle.NumCols() cHandleBytes := make([][]byte, 0, handleColLen) for i := 0; i < handleColLen; i++ { cHandleBytes = append(cHandleBytes, handle.EncodedCol(i)) } return cHandleBytes, nil } handleDatum := types.NewIntDatum(handle.IntValue()) if unsigned { handleDatum.SetUint64(handleDatum.GetUint64()) } intHandleBytes, err := codec.EncodeValue(nil, nil, handleDatum) return [][]byte{intHandleBytes}, err } // reEncodeHandleConsiderNewCollation encodes the handle as a Datum so it can be properly decoded later. func reEncodeHandleConsiderNewCollation(handle kv.Handle, columns []rowcodec.ColInfo, restoreData []byte) ([][]byte, error) { handleColLen := handle.NumCols() cHandleBytes := make([][]byte, 0, handleColLen) for i := 0; i < handleColLen; i++ { cHandleBytes = append(cHandleBytes, handle.EncodedCol(i)) } if len(restoreData) == 0 { return cHandleBytes, nil } return decodeRestoredValuesV5(columns, cHandleBytes, restoreData) } func decodeRestoredValues(columns []rowcodec.ColInfo, restoredVal []byte) ([][]byte, error) { colIDs := make(map[int64]int, len(columns)) for i, col := range columns { colIDs[col.ID] = i } // We don't need to decode handle here, and colIDs >= 0 always. rd := rowcodec.NewByteDecoder(columns, []int64{-1}, nil, nil) resultValues, err := rd.DecodeToBytesNoHandle(colIDs, restoredVal) if err != nil { return nil, errors.Trace(err) } return resultValues, nil } // decodeRestoredValuesV5 decodes index values whose format is introduced in TiDB 5.0. // Unlike the format in TiDB 4.0, the new format is optimized for storage space: // 1. If the index is a composed index, only the non-binary string column's value need to write to value, not all. // 2. If a string column's collation is _bin, then we only write the number of the truncated spaces to value. // 3. If a string column is char, not varchar, then we use the sortKey directly. func decodeRestoredValuesV5(columns []rowcodec.ColInfo, results [][]byte, restoredVal []byte) ([][]byte, error) { colIDOffsets := buildColumnIDOffsets(columns) colInfosNeedRestore := buildRestoredColumn(columns) rd := rowcodec.NewByteDecoder(colInfosNeedRestore, nil, nil, nil) newResults, err := rd.DecodeToBytesNoHandle(colIDOffsets, restoredVal) if err != nil { return nil, errors.Trace(err) } for i := range newResults { noRestoreData := len(newResults[i]) == 0 if noRestoreData { newResults[i] = results[i] continue } if collate.IsBinCollation(columns[i].Ft.Collate) { noPaddingDatum, err := DecodeColumnValue(results[i], columns[i].Ft, nil) if err != nil { return nil, errors.Trace(err) } paddingCountDatum, err := DecodeColumnValue(newResults[i], types.NewFieldType(mysql.TypeLonglong), nil) if err != nil { return nil, errors.Trace(err) } noPaddingStr, paddingCount := noPaddingDatum.GetString(), int(paddingCountDatum.GetInt64()) // Skip if padding count is 0. if paddingCount == 0 { newResults[i] = results[i] continue } newDatum := &noPaddingDatum newDatum.SetString(noPaddingStr+strings.Repeat(" ", paddingCount), newDatum.Collation()) newResults[i] = newResults[i][:0] newResults[i] = append(newResults[i], rowcodec.BytesFlag) newResults[i] = codec.EncodeBytes(newResults[i], newDatum.GetBytes()) } } return newResults, nil } func buildColumnIDOffsets(allCols []rowcodec.ColInfo) map[int64]int { colIDOffsets := make(map[int64]int, len(allCols)) for i, col := range allCols { colIDOffsets[col.ID] = i } return colIDOffsets } func buildRestoredColumn(allCols []rowcodec.ColInfo) []rowcodec.ColInfo { restoredColumns := make([]rowcodec.ColInfo, 0, len(allCols)) for i, col := range allCols { if !types.NeedRestoredData(col.Ft) { continue } copyColInfo := rowcodec.ColInfo{ ID: col.ID, } if collate.IsBinCollation(col.Ft.Collate) { // Change the fieldType from string to uint since we store the number of the truncated spaces. copyColInfo.Ft = types.NewFieldType(mysql.TypeLonglong) } else { copyColInfo.Ft = allCols[i].Ft } restoredColumns = append(restoredColumns, copyColInfo) } return restoredColumns } func decodeIndexKvOldCollation(key, value []byte, colsLen int, hdStatus HandleStatus) ([][]byte, error) { resultValues, b, err := CutIndexKeyNew(key, colsLen) if err != nil { return nil, errors.Trace(err) } if hdStatus == HandleNotNeeded { return resultValues, nil } var handle kv.Handle if len(b) > 0 { // non-unique index handle, err = decodeHandleInIndexKey(b) if err != nil { return nil, err } handleBytes, err := reEncodeHandle(handle, hdStatus == HandleIsUnsigned) if err != nil { return nil, errors.Trace(err) } resultValues = append(resultValues, handleBytes...) } else { // In unique int handle index. handle = decodeIntHandleInIndexValue(value) handleBytes, err := reEncodeHandle(handle, hdStatus == HandleIsUnsigned) if err != nil { return nil, errors.Trace(err) } resultValues = append(resultValues, handleBytes...) } return resultValues, nil } func getIndexVersion(value []byte) int { if len(value) <= MaxOldEncodeValueLen { return 0 } tailLen := int(value[0]) if (tailLen == 0 || tailLen == 1) && value[1] == IndexVersionFlag { return int(value[2]) } return 0 } // DecodeIndexKV uses to decode index key values. // `colsLen` is expected to be index columns count. // `columns` is expected to be index columns + handle columns(if hdStatus is not HandleNotNeeded). func DecodeIndexKV(key, value []byte, colsLen int, hdStatus HandleStatus, columns []rowcodec.ColInfo) ([][]byte, error) { if len(value) <= MaxOldEncodeValueLen { return decodeIndexKvOldCollation(key, value, colsLen, hdStatus) } if getIndexVersion(value) == 1 { return decodeIndexKvForClusteredIndexVersion1(key, value, colsLen, hdStatus, columns) } return decodeIndexKvGeneral(key, value, colsLen, hdStatus, columns) } // DecodeIndexHandle uses to decode the handle from index key/value. func DecodeIndexHandle(key, value []byte, colsLen int) (kv.Handle, error) { _, b, err := CutIndexKeyNew(key, colsLen) if err != nil { return nil, errors.Trace(err) } if len(b) > 0 { return decodeHandleInIndexKey(b) } else if len(value) >= 8 { return decodeHandleInIndexValue(value) } // Should never execute to here. return nil, errors.Errorf("no handle in index key: %v, value: %v", key, value) } func decodeHandleInIndexKey(keySuffix []byte) (kv.Handle, error) { remain, d, err := codec.DecodeOne(keySuffix) if err != nil { return nil, errors.Trace(err) } if len(remain) == 0 && d.Kind() == types.KindInt64 { return kv.IntHandle(d.GetInt64()), nil } return kv.NewCommonHandle(keySuffix) } func decodeHandleInIndexValue(value []byte) (kv.Handle, error) { if getIndexVersion(value) == 1 { seg := SplitIndexValueForClusteredIndexVersion1(value) return kv.NewCommonHandle(seg.CommonHandle) } if len(value) > MaxOldEncodeValueLen { tailLen := value[0] if tailLen >= 8 { return decodeIntHandleInIndexValue(value[len(value)-int(tailLen):]), nil } handleLen := uint16(value[2])<<8 + uint16(value[3]) return kv.NewCommonHandle(value[4 : 4+handleLen]) } return decodeIntHandleInIndexValue(value), nil } // decodeIntHandleInIndexValue uses to decode index value as int handle id. func decodeIntHandleInIndexValue(data []byte) kv.Handle { return kv.IntHandle(binary.BigEndian.Uint64(data)) } // EncodeTableIndexPrefix encodes index prefix with tableID and idxID. func EncodeTableIndexPrefix(tableID, idxID int64) kv.Key { key := make([]byte, 0, prefixLen) key = appendTableIndexPrefix(key, tableID) key = codec.EncodeInt(key, idxID) return key } // EncodeTablePrefix encodes table prefix with table ID. func EncodeTablePrefix(tableID int64) kv.Key { var key kv.Key key = append(key, tablePrefix...) key = codec.EncodeInt(key, tableID) return key } // appendTableRecordPrefix appends table record prefix "t[tableID]_r". func appendTableRecordPrefix(buf []byte, tableID int64) []byte { buf = append(buf, tablePrefix...) buf = codec.EncodeInt(buf, tableID) buf = append(buf, recordPrefixSep...) return buf } // appendTableIndexPrefix appends table index prefix "t[tableID]_i". func appendTableIndexPrefix(buf []byte, tableID int64) []byte { buf = append(buf, tablePrefix...) buf = codec.EncodeInt(buf, tableID) buf = append(buf, indexPrefixSep...) return buf } // GenTableRecordPrefix composes record prefix with tableID: "t[tableID]_r". func GenTableRecordPrefix(tableID int64) kv.Key { buf := make([]byte, 0, len(tablePrefix)+8+len(recordPrefixSep)) return appendTableRecordPrefix(buf, tableID) } // GenTableIndexPrefix composes index prefix with tableID: "t[tableID]_i". func GenTableIndexPrefix(tableID int64) kv.Key { buf := make([]byte, 0, len(tablePrefix)+8+len(indexPrefixSep)) return appendTableIndexPrefix(buf, tableID) } // IsRecordKey is used to check whether the key is an record key. func IsRecordKey(k []byte) bool { return len(k) > 11 && k[0] == 't' && k[10] == 'r' } // IsIndexKey is used to check whether the key is an index key. func IsIndexKey(k []byte) bool { return len(k) > 11 && k[0] == 't' && k[10] == 'i' } // IsTableKey is used to check whether the key is a table key. func IsTableKey(k []byte) bool { return len(k) == 9 && k[0] == 't' } // IsUntouchedIndexKValue uses to check whether the key is index key, and the value is untouched, // since the untouched index key/value is no need to commit. func IsUntouchedIndexKValue(k, v []byte) bool { if !IsIndexKey(k) { return false } vLen := len(v) if vLen <= MaxOldEncodeValueLen { return (vLen == 1 || vLen == 9) && v[vLen-1] == kv.UnCommitIndexKVFlag } // New index value format tailLen := int(v[0]) if tailLen < 8 { // Non-unique index. return tailLen >= 1 && v[vLen-1] == kv.UnCommitIndexKVFlag } // Unique index return tailLen == 9 } // GenTablePrefix composes table record and index prefix: "t[tableID]". func GenTablePrefix(tableID int64) kv.Key { buf := make([]byte, 0, len(tablePrefix)+8) buf = append(buf, tablePrefix...) buf = codec.EncodeInt(buf, tableID) return buf } // TruncateToRowKeyLen truncates the key to row key length if the key is longer than row key. func TruncateToRowKeyLen(key kv.Key) kv.Key { if len(key) > RecordRowKeyLen { return key[:RecordRowKeyLen] } return key } // GetTableHandleKeyRange returns table handle's key range with tableID. func GetTableHandleKeyRange(tableID int64) (startKey, endKey []byte) { startKey = EncodeRowKeyWithHandle(tableID, kv.IntHandle(math.MinInt64)) endKey = EncodeRowKeyWithHandle(tableID, kv.IntHandle(math.MaxInt64)) return } // GetTableIndexKeyRange returns table index's key range with tableID and indexID. func GetTableIndexKeyRange(tableID, indexID int64) (startKey, endKey []byte) { startKey = EncodeIndexSeekKey(tableID, indexID, nil) endKey = EncodeIndexSeekKey(tableID, indexID, []byte{255}) return } // GetIndexKeyBuf reuse or allocate buffer func GetIndexKeyBuf(buf []byte, defaultCap int) []byte { if buf != nil { return buf[:0] } return make([]byte, 0, defaultCap) } // GenIndexKey generates index key using input physical table id func GenIndexKey(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, phyTblID int64, indexedValues []types.Datum, h kv.Handle, buf []byte) (key []byte, distinct bool, err error) { if idxInfo.Unique { // See https://dev.mysql.com/doc/refman/5.7/en/create-index.html // A UNIQUE index creates a constraint such that all values in the index must be distinct. // An error occurs if you try to add a new row with a key value that matches an existing row. // For all engines, a UNIQUE index permits multiple NULL values for columns that can contain NULL. distinct = true for _, cv := range indexedValues { if cv.IsNull() { distinct = false break } } } // For string columns, indexes can be created using only the leading part of column values, // using col_name(length) syntax to specify an index prefix length. TruncateIndexValues(tblInfo, idxInfo, indexedValues) key = GetIndexKeyBuf(buf, RecordRowKeyLen+len(indexedValues)*9+9) key = appendTableIndexPrefix(key, phyTblID) key = codec.EncodeInt(key, idxInfo.ID) key, err = codec.EncodeKey(sc, key, indexedValues...) if err != nil { return nil, false, err } if !distinct && h != nil { if h.IsInt() { key, err = codec.EncodeKey(sc, key, types.NewDatum(h.IntValue())) } else { key = append(key, h.Encoded()...) } } return } // GenIndexValuePortal is the portal for generating index value. // Value layout: // +-- IndexValueVersion0 (with restore data, or common handle, or index is global) // | // | Layout: TailLen | Options | Padding | [IntHandle] | [UntouchedFlag] // | Length: 1 | len(options) | len(padding) | 8 | 1 // | // | TailLen: len(padding) + len(IntHandle) + len(UntouchedFlag) // | Options: Encode some value for new features, such as common handle, new collations or global index. // | See below for more information. // | Padding: Ensure length of value always >= 10. (or >= 11 if UntouchedFlag exists.) // | IntHandle: Only exists when table use int handles and index is unique. // | UntouchedFlag: Only exists when index is untouched. // | // +-- Old Encoding (without restore data, integer handle, local) // | // | Layout: [Handle] | [UntouchedFlag] // | Length: 8 | 1 // | // | Handle: Only exists in unique index. // | UntouchedFlag: Only exists when index is untouched. // | // | If neither Handle nor UntouchedFlag exists, value will be one single byte '0' (i.e. []byte{'0'}). // | Length of value <= 9, use to distinguish from the new encoding. // | // +-- IndexValueForClusteredIndexVersion1 // | // | Layout: TailLen | VersionFlag | Version | Options | [UntouchedFlag] // | Length: 1 | 1 | 1 | len(options) | 1 // | // | TailLen: len(UntouchedFlag) // | Options: Encode some value for new features, such as common handle, new collations or global index. // | See below for more information. // | UntouchedFlag: Only exists when index is untouched. // | // | Layout of Options: // | // | Segment: Common Handle | Global Index | New Collation // | Layout: CHandle Flag | CHandle Len | CHandle | PidFlag | PartitionID | restoreData // | Length: 1 | 2 | len(CHandle) | 1 | 8 | len(restoreData) // | // | Common Handle Segment: Exists when unique index used common handles. // | Global Index Segment: Exists when index is global. // | New Collation Segment: Exists when new collation is used and index or handle contains non-binary string. // | In v4.0, restored data contains all the index values. For example, (a int, b char(10)) and index (a, b). // | The restored data contains both the values of a and b. // | In v5.0, restored data contains only non-binary data(except for char and _bin). In the above example, the restored data contains only the value of b. // | Besides, if the collation of b is _bin, then restored data is an integer indicate the spaces are truncated. Then we use sortKey // | and the restored data together to restore original data. func GenIndexValuePortal(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, needRestoredData bool, distinct bool, untouched bool, indexedValues []types.Datum, h kv.Handle, partitionID int64, restoredData []types.Datum) ([]byte, error) { if tblInfo.IsCommonHandle && tblInfo.CommonHandleVersion == 1 { return GenIndexValueForClusteredIndexVersion1(sc, tblInfo, idxInfo, needRestoredData, distinct, untouched, indexedValues, h, partitionID, restoredData) } return genIndexValueVersion0(sc, tblInfo, idxInfo, needRestoredData, distinct, untouched, indexedValues, h, partitionID) } // TryGetCommonPkColumnRestoredIds get the IDs of primary key columns which need restored data if the table has common handle. // Caller need to make sure the table has common handle. func TryGetCommonPkColumnRestoredIds(tbl *model.TableInfo) []int64 { var pkColIds []int64 var pkIdx *model.IndexInfo for _, idx := range tbl.Indices { if idx.Primary { pkIdx = idx break } } if pkIdx == nil { return pkColIds } for _, idxCol := range pkIdx.Columns { if types.NeedRestoredData(&tbl.Columns[idxCol.Offset].FieldType) { pkColIds = append(pkColIds, tbl.Columns[idxCol.Offset].ID) } } return pkColIds } // GenIndexValueForClusteredIndexVersion1 generates the index value for the clustered index with version 1(New in v5.0.0). func GenIndexValueForClusteredIndexVersion1(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, IdxValNeedRestoredData bool, distinct bool, untouched bool, indexedValues []types.Datum, h kv.Handle, partitionID int64, handleRestoredData []types.Datum) ([]byte, error) { idxVal := make([]byte, 0) idxVal = append(idxVal, 0) tailLen := 0 // Version info. idxVal = append(idxVal, IndexVersionFlag) idxVal = append(idxVal, byte(1)) if distinct { idxVal = encodeCommonHandle(idxVal, h) } if idxInfo.Global { idxVal = encodePartitionID(idxVal, partitionID) } if IdxValNeedRestoredData || len(handleRestoredData) > 0 { colIds := make([]int64, 0, len(idxInfo.Columns)) allRestoredData := make([]types.Datum, 0, len(handleRestoredData)+len(idxInfo.Columns)) for i, idxCol := range idxInfo.Columns { col := tblInfo.Columns[idxCol.Offset] // If the column is the primary key's column, // the restored data will be written later. Skip writing it here to avoid redundancy. if mysql.HasPriKeyFlag(col.Flag) { continue } if types.NeedRestoredData(&col.FieldType) { colIds = append(colIds, col.ID) if collate.IsBinCollation(col.Collate) { allRestoredData = append(allRestoredData, types.NewUintDatum(uint64(stringutil.GetTailSpaceCount(indexedValues[i].GetString())))) } else { allRestoredData = append(allRestoredData, indexedValues[i]) } } } if len(handleRestoredData) > 0 { pkColIds := TryGetCommonPkColumnRestoredIds(tblInfo) colIds = append(colIds, pkColIds...) allRestoredData = append(allRestoredData, handleRestoredData...) } rd := rowcodec.Encoder{Enable: true} rowRestoredValue, err := rd.Encode(sc, colIds, allRestoredData, nil) if err != nil { return nil, err } idxVal = append(idxVal, rowRestoredValue...) } if untouched { tailLen = 1 idxVal = append(idxVal, kv.UnCommitIndexKVFlag) } idxVal[0] = byte(tailLen) return idxVal, nil } // genIndexValueVersion0 create index value for both local and global index. func genIndexValueVersion0(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, IdxValNeedRestoredData bool, distinct bool, untouched bool, indexedValues []types.Datum, h kv.Handle, partitionID int64) ([]byte, error) { idxVal := make([]byte, 0) idxVal = append(idxVal, 0) newEncode := false tailLen := 0 if !h.IsInt() && distinct { idxVal = encodeCommonHandle(idxVal, h) newEncode = true } if idxInfo.Global { idxVal = encodePartitionID(idxVal, partitionID) newEncode = true } if IdxValNeedRestoredData { colIds := make([]int64, len(idxInfo.Columns)) for i, col := range idxInfo.Columns { colIds[i] = tblInfo.Columns[col.Offset].ID } rd := rowcodec.Encoder{Enable: true} rowRestoredValue, err := rd.Encode(sc, colIds, indexedValues, nil) if err != nil { return nil, err } idxVal = append(idxVal, rowRestoredValue...) newEncode = true } if newEncode { if h.IsInt() && distinct { // The len of the idxVal is always >= 10 since len (restoredValue) > 0. tailLen += 8 idxVal = append(idxVal, EncodeHandleInUniqueIndexValue(h, false)...) } else if len(idxVal) < 10 { // Padding the len to 10 paddingLen := 10 - len(idxVal) tailLen += paddingLen idxVal = append(idxVal, bytes.Repeat([]byte{0x0}, paddingLen)...) } if untouched { // If index is untouched and fetch here means the key is exists in TiKV, but not in txn mem-buffer, // then should also write the untouched index key/value to mem-buffer to make sure the data // is consistent with the index in txn mem-buffer. tailLen += 1 idxVal = append(idxVal, kv.UnCommitIndexKVFlag) } idxVal[0] = byte(tailLen) } else { // Old index value encoding. idxVal = make([]byte, 0) if distinct { idxVal = EncodeHandleInUniqueIndexValue(h, untouched) } if untouched { // If index is untouched and fetch here means the key is exists in TiKV, but not in txn mem-buffer, // then should also write the untouched index key/value to mem-buffer to make sure the data // is consistent with the index in txn mem-buffer. idxVal = append(idxVal, kv.UnCommitIndexKVFlag) } if len(idxVal) == 0 { idxVal = []byte{'0'} } } return idxVal, nil } // TruncateIndexValues truncates the index values created using only the leading part of column values. func TruncateIndexValues(tblInfo *model.TableInfo, idxInfo *model.IndexInfo, indexedValues []types.Datum) { for i := 0; i < len(indexedValues); i++ { idxCol := idxInfo.Columns[i] tblCol := tblInfo.Columns[idxCol.Offset] TruncateIndexValue(&indexedValues[i], idxCol, tblCol) } } // TruncateIndexValue truncate one value in the index. func TruncateIndexValue(v *types.Datum, idxCol *model.IndexColumn, tblCol *model.ColumnInfo) { noPrefixIndex := idxCol.Length == types.UnspecifiedLength if noPrefixIndex { return } notStringType := v.Kind() != types.KindString && v.Kind() != types.KindBytes if notStringType { return } colValue := v.GetBytes() if tblCol.Charset == charset.CharsetBin || tblCol.Charset == charset.CharsetASCII { // Count character length by bytes if charset is binary or ascii. if len(colValue) > idxCol.Length { // truncate value and limit its length if v.Kind() == types.KindBytes { v.SetBytes(colValue[:idxCol.Length]) } else { v.SetString(v.GetString()[:idxCol.Length], tblCol.Collate) } } } else if utf8.RuneCount(colValue) > idxCol.Length { // Count character length by characters for other rune-based charsets, they are all internally encoded as UTF-8. rs := bytes.Runes(colValue) truncateStr := string(rs[:idxCol.Length]) // truncate value and limit its length v.SetString(truncateStr, tblCol.Collate) } } // EncodeHandleInUniqueIndexValue encodes handle in data. func EncodeHandleInUniqueIndexValue(h kv.Handle, isUntouched bool) []byte { if h.IsInt() { var data [8]byte binary.BigEndian.PutUint64(data[:], uint64(h.IntValue())) return data[:] } var untouchedFlag byte if isUntouched { untouchedFlag = 1 } return encodeCommonHandle([]byte{untouchedFlag}, h) } func encodeCommonHandle(idxVal []byte, h kv.Handle) []byte { idxVal = append(idxVal, CommonHandleFlag) hLen := uint16(len(h.Encoded())) idxVal = append(idxVal, byte(hLen>>8), byte(hLen)) idxVal = append(idxVal, h.Encoded()...) return idxVal } // DecodeHandleInUniqueIndexValue decodes handle in data. func DecodeHandleInUniqueIndexValue(data []byte, isCommonHandle bool) (kv.Handle, error) { if !isCommonHandle { dLen := len(data) if dLen <= MaxOldEncodeValueLen { return kv.IntHandle(int64(binary.BigEndian.Uint64(data))), nil } return kv.IntHandle(int64(binary.BigEndian.Uint64(data[dLen-int(data[0]):]))), nil } if getIndexVersion(data) == 1 { seg := SplitIndexValueForClusteredIndexVersion1(data) h, err := kv.NewCommonHandle(seg.CommonHandle) if err != nil { return nil, err } return h, nil } tailLen := int(data[0]) data = data[:len(data)-tailLen] handleLen := uint16(data[2])<<8 + uint16(data[3]) handleEndOff := 4 + handleLen h, err := kv.NewCommonHandle(data[4:handleEndOff]) if err != nil { return nil, err } return h, nil } func encodePartitionID(idxVal []byte, partitionID int64) []byte { idxVal = append(idxVal, PartitionIDFlag) idxVal = codec.EncodeInt(idxVal, partitionID) return idxVal } // IndexValueSegments use to store result of SplitIndexValue. type IndexValueSegments struct { CommonHandle []byte PartitionID []byte RestoredValues []byte IntHandle []byte } // SplitIndexValue splits index value into segments. func SplitIndexValue(value []byte) (segs IndexValueSegments) { tailLen := int(value[0]) tail := value[len(value)-tailLen:] value = value[1 : len(value)-tailLen] if len(tail) >= 8 { segs.IntHandle = tail[:8] } if len(value) > 0 && value[0] == CommonHandleFlag { handleLen := uint16(value[1])<<8 + uint16(value[2]) handleEndOff := 3 + handleLen segs.CommonHandle = value[3:handleEndOff] value = value[handleEndOff:] } if len(value) > 0 && value[0] == PartitionIDFlag { segs.PartitionID = value[1:9] value = value[9:] } if len(value) > 0 && value[0] == RestoreDataFlag { segs.RestoredValues = value } return } // SplitIndexValueForClusteredIndexVersion1 splits index value into segments. func SplitIndexValueForClusteredIndexVersion1(value []byte) (segs IndexValueSegments) { tailLen := int(value[0]) // Skip the tailLen and version info. value = value[3 : len(value)-tailLen] if len(value) > 0 && value[0] == CommonHandleFlag { handleLen := uint16(value[1])<<8 + uint16(value[2]) handleEndOff := 3 + handleLen segs.CommonHandle = value[3:handleEndOff] value = value[handleEndOff:] } if len(value) > 0 && value[0] == PartitionIDFlag { segs.PartitionID = value[1:9] value = value[9:] } if len(value) > 0 && value[0] == RestoreDataFlag { segs.RestoredValues = value } return } func decodeIndexKvForClusteredIndexVersion1(key, value []byte, colsLen int, hdStatus HandleStatus, columns []rowcodec.ColInfo) ([][]byte, error) { var resultValues [][]byte var keySuffix []byte var handle kv.Handle var err error segs := SplitIndexValueForClusteredIndexVersion1(value) resultValues, keySuffix, err = CutIndexKeyNew(key, colsLen) if err != nil { return nil, err } if segs.RestoredValues != nil { resultValues, err = decodeRestoredValuesV5(columns[:colsLen], resultValues, segs.RestoredValues) if err != nil { return nil, err } } if hdStatus == HandleNotNeeded { return resultValues, nil } if segs.CommonHandle != nil { // In unique common handle index. handle, err = kv.NewCommonHandle(segs.CommonHandle) } else { // In non-unique index, decode handle in keySuffix. handle, err = kv.NewCommonHandle(keySuffix) } if err != nil { return nil, err } handleBytes, err := reEncodeHandleConsiderNewCollation(handle, columns[colsLen:], segs.RestoredValues) if err != nil { return nil, err } resultValues = append(resultValues, handleBytes...) if segs.PartitionID != nil { _, pid, err := codec.DecodeInt(segs.PartitionID) if err != nil { return nil, err } datum := types.NewIntDatum(pid) pidBytes, err := codec.EncodeValue(nil, nil, datum) if err != nil { return nil, err } resultValues = append(resultValues, pidBytes) } return resultValues, nil } // decodeIndexKvGeneral decodes index key value pair of new layout in an extensible way. func decodeIndexKvGeneral(key, value []byte, colsLen int, hdStatus HandleStatus, columns []rowcodec.ColInfo) ([][]byte, error) { var resultValues [][]byte var keySuffix []byte var handle kv.Handle var err error segs := SplitIndexValue(value) resultValues, keySuffix, err = CutIndexKeyNew(key, colsLen) if err != nil { return nil, err } if segs.RestoredValues != nil { // new collation resultValues, err = decodeRestoredValues(columns[:colsLen], segs.RestoredValues) if err != nil { return nil, err } } if hdStatus == HandleNotNeeded { return resultValues, nil } if segs.IntHandle != nil { // In unique int handle index. handle = decodeIntHandleInIndexValue(segs.IntHandle) } else if segs.CommonHandle != nil { // In unique common handle index. handle, err = decodeHandleInIndexKey(segs.CommonHandle) if err != nil { return nil, err } } else { // In non-unique index, decode handle in keySuffix handle, err = decodeHandleInIndexKey(keySuffix) if err != nil { return nil, err } } handleBytes, err := reEncodeHandle(handle, hdStatus == HandleIsUnsigned) if err != nil { return nil, err } resultValues = append(resultValues, handleBytes...) if segs.PartitionID != nil { _, pid, err := codec.DecodeInt(segs.PartitionID) if err != nil { return nil, err } datum := types.NewIntDatum(pid) pidBytes, err := codec.EncodeValue(nil, nil, datum) if err != nil { return nil, err } resultValues = append(resultValues, pidBytes) } return resultValues, nil }