// Copyright 2015 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // See the License for the specific language governing permissions and // limitations under the License. package ast import ( "fmt" "strings" "github.com/pingcap/errors" "github.com/pingcap/tidb/pkg/parser/auth" "github.com/pingcap/tidb/pkg/parser/format" "github.com/pingcap/tidb/pkg/parser/model" "github.com/pingcap/tidb/pkg/parser/mysql" "github.com/pingcap/tidb/pkg/parser/terror" "github.com/pingcap/tidb/pkg/parser/tidb" "github.com/pingcap/tidb/pkg/parser/types" ) var ( _ DDLNode = &AlterTableStmt{} _ DDLNode = &AlterSequenceStmt{} _ DDLNode = &AlterPlacementPolicyStmt{} _ DDLNode = &AlterResourceGroupStmt{} _ DDLNode = &CreateDatabaseStmt{} _ DDLNode = &CreateIndexStmt{} _ DDLNode = &CreateTableStmt{} _ DDLNode = &CreateViewStmt{} _ DDLNode = &CreateSequenceStmt{} _ DDLNode = &CreatePlacementPolicyStmt{} _ DDLNode = &CreateResourceGroupStmt{} _ DDLNode = &DropDatabaseStmt{} _ DDLNode = &FlashBackDatabaseStmt{} _ DDLNode = &DropIndexStmt{} _ DDLNode = &DropTableStmt{} _ DDLNode = &DropSequenceStmt{} _ DDLNode = &DropPlacementPolicyStmt{} _ DDLNode = &DropResourceGroupStmt{} _ DDLNode = &OptimizeTableStmt{} _ DDLNode = &RenameTableStmt{} _ DDLNode = &TruncateTableStmt{} _ DDLNode = &RepairTableStmt{} _ Node = &AlterTableSpec{} _ Node = &ColumnDef{} _ Node = &ColumnOption{} _ Node = &ColumnPosition{} _ Node = &Constraint{} _ Node = &IndexPartSpecification{} _ Node = &ReferenceDef{} ) // CharsetOpt is used for parsing charset option from SQL. type CharsetOpt struct { Chs string Col string } // NullString represents a string that may be nil. type NullString struct { String string Empty bool // Empty is true if String is empty backtick. } // DatabaseOptionType is the type for database options. type DatabaseOptionType int // Database option types. const ( DatabaseOptionNone DatabaseOptionType = iota DatabaseOptionCharset DatabaseOptionCollate DatabaseOptionEncryption DatabaseSetTiFlashReplica DatabaseOptionPlacementPolicy = DatabaseOptionType(PlacementOptionPolicy) ) // DatabaseOption represents database option. type DatabaseOption struct { Tp DatabaseOptionType Value string UintValue uint64 TiFlashReplica *TiFlashReplicaSpec } // Restore implements Node interface. func (n *DatabaseOption) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case DatabaseOptionCharset: ctx.WriteKeyWord("CHARACTER SET") ctx.WritePlain(" = ") ctx.WritePlain(n.Value) case DatabaseOptionCollate: ctx.WriteKeyWord("COLLATE") ctx.WritePlain(" = ") ctx.WritePlain(n.Value) case DatabaseOptionEncryption: ctx.WriteKeyWord("ENCRYPTION") ctx.WritePlain(" = ") ctx.WriteString(n.Value) case DatabaseOptionPlacementPolicy: placementOpt := PlacementOption{ Tp: PlacementOptionPolicy, UintValue: n.UintValue, StrValue: n.Value, } return placementOpt.Restore(ctx) case DatabaseSetTiFlashReplica: ctx.WriteKeyWord("SET TIFLASH REPLICA ") ctx.WritePlainf("%d", n.TiFlashReplica.Count) if len(n.TiFlashReplica.Labels) == 0 { break } ctx.WriteKeyWord(" LOCATION LABELS ") for i, v := range n.TiFlashReplica.Labels { if i > 0 { ctx.WritePlain(", ") } ctx.WriteString(v) } default: return errors.Errorf("invalid DatabaseOptionType: %d", n.Tp) } return nil } // CreateDatabaseStmt is a statement to create a database. // See https://dev.mysql.com/doc/refman/5.7/en/create-database.html type CreateDatabaseStmt struct { ddlNode IfNotExists bool Name model.CIStr Options []*DatabaseOption } // Restore implements Node interface. func (n *CreateDatabaseStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("CREATE DATABASE ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } ctx.WriteName(n.Name.O) for i, option := range n.Options { ctx.WritePlain(" ") err := option.Restore(ctx) if err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateDatabaseStmt DatabaseOption: [%v]", i) } } return nil } // Accept implements Node Accept interface. func (n *CreateDatabaseStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreateDatabaseStmt) return v.Leave(n) } // AlterDatabaseStmt is a statement to change the structure of a database. // See https://dev.mysql.com/doc/refman/5.7/en/alter-database.html type AlterDatabaseStmt struct { ddlNode Name model.CIStr AlterDefaultDatabase bool Options []*DatabaseOption } // Restore implements Node interface. func (n *AlterDatabaseStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasSkipPlacementRuleForRestoreFlag() && n.isAllPlacementOptions() { return nil } // If all options placement options and RestoreTiDBSpecialComment flag is on, // we should restore the whole node in special comment. For example, the restore result should be: // /*T![placement] ALTER DATABASE `db1` PLACEMENT POLICY = `p1` */ // instead of // ALTER DATABASE `db1` /*T![placement] PLACEMENT POLICY = `p1` */ // because altering a database without any options is not a legal syntax in mysql if n.isAllPlacementOptions() && ctx.Flags.HasTiDBSpecialCommentFlag() { return restorePlacementStmtInSpecialComment(ctx, n) } ctx.WriteKeyWord("ALTER DATABASE") if !n.AlterDefaultDatabase { ctx.WritePlain(" ") ctx.WriteName(n.Name.O) } for i, option := range n.Options { ctx.WritePlain(" ") err := option.Restore(ctx) if err != nil { return errors.Annotatef(err, "An error occurred while splicing AlterDatabaseStmt DatabaseOption: [%v]", i) } } return nil } // Accept implements Node Accept interface. func (n *AlterDatabaseStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AlterDatabaseStmt) return v.Leave(n) } func (n *AlterDatabaseStmt) isAllPlacementOptions() bool { for _, n := range n.Options { switch n.Tp { case DatabaseOptionPlacementPolicy: default: return false } } return true } // DropDatabaseStmt is a statement to drop a database and all tables in the database. // See https://dev.mysql.com/doc/refman/5.7/en/drop-database.html type DropDatabaseStmt struct { ddlNode IfExists bool Name model.CIStr } // Restore implements Node interface. func (n *DropDatabaseStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("DROP DATABASE ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.Name.O) return nil } // Accept implements Node Accept interface. func (n *DropDatabaseStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*DropDatabaseStmt) return v.Leave(n) } // FlashBackDatabaseStmt is a statement to restore a database and all tables in the database. type FlashBackDatabaseStmt struct { ddlNode DBName model.CIStr NewName string } // Restore implements Node interface. func (n *FlashBackDatabaseStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("FLASHBACK DATABASE ") ctx.WriteName(n.DBName.O) if len(n.NewName) > 0 { ctx.WriteKeyWord(" TO ") ctx.WriteName(n.NewName) } return nil } // Accept implements Node Accept interface. func (n *FlashBackDatabaseStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*FlashBackDatabaseStmt) return v.Leave(n) } // IndexPartSpecifications is used for parsing index column name or index expression from SQL. type IndexPartSpecification struct { node Column *ColumnName Length int // Order is parsed but should be ignored because MySQL v5.7 doesn't support it. Desc bool Expr ExprNode } // Restore implements Node interface. func (n *IndexPartSpecification) Restore(ctx *format.RestoreCtx) error { if n.Expr != nil { ctx.WritePlain("(") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing IndexPartSpecifications") } ctx.WritePlain(")") if n.Desc { ctx.WritePlain(" DESC") } return nil } if err := n.Column.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing IndexPartSpecifications") } if n.Length > 0 { ctx.WritePlainf("(%d)", n.Length) } if n.Desc { ctx.WritePlain(" DESC") } return nil } // Accept implements Node Accept interface. func (n *IndexPartSpecification) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*IndexPartSpecification) if n.Expr != nil { node, ok := n.Expr.Accept(v) if !ok { return n, false } n.Expr = node.(ExprNode) return v.Leave(n) } node, ok := n.Column.Accept(v) if !ok { return n, false } n.Column = node.(*ColumnName) return v.Leave(n) } // MatchType is the type for reference match type. type MatchType int // match type const ( MatchNone MatchType = iota MatchFull MatchPartial MatchSimple ) // ReferenceDef is used for parsing foreign key reference option from SQL. // See http://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html type ReferenceDef struct { node Table *TableName IndexPartSpecifications []*IndexPartSpecification OnDelete *OnDeleteOpt OnUpdate *OnUpdateOpt Match MatchType } // Restore implements Node interface. func (n *ReferenceDef) Restore(ctx *format.RestoreCtx) error { if n.Table != nil { ctx.WriteKeyWord("REFERENCES ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ReferenceDef") } } if n.IndexPartSpecifications != nil { ctx.WritePlain("(") for i, indexColNames := range n.IndexPartSpecifications { if i > 0 { ctx.WritePlain(", ") } if err := indexColNames.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing IndexPartSpecifications: [%v]", i) } } ctx.WritePlain(")") } if n.Match != MatchNone { ctx.WriteKeyWord(" MATCH ") switch n.Match { case MatchFull: ctx.WriteKeyWord("FULL") case MatchPartial: ctx.WriteKeyWord("PARTIAL") case MatchSimple: ctx.WriteKeyWord("SIMPLE") } } if n.OnDelete.ReferOpt != model.ReferOptionNoOption { ctx.WritePlain(" ") if err := n.OnDelete.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing OnDelete") } } if n.OnUpdate.ReferOpt != model.ReferOptionNoOption { ctx.WritePlain(" ") if err := n.OnUpdate.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing OnUpdate") } } return nil } // Accept implements Node Accept interface. func (n *ReferenceDef) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*ReferenceDef) if n.Table != nil { node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) } for i, val := range n.IndexPartSpecifications { node, ok := val.Accept(v) if !ok { return n, false } n.IndexPartSpecifications[i] = node.(*IndexPartSpecification) } onDelete, ok := n.OnDelete.Accept(v) if !ok { return n, false } n.OnDelete = onDelete.(*OnDeleteOpt) onUpdate, ok := n.OnUpdate.Accept(v) if !ok { return n, false } n.OnUpdate = onUpdate.(*OnUpdateOpt) return v.Leave(n) } // OnDeleteOpt is used for optional on delete clause. type OnDeleteOpt struct { node ReferOpt model.ReferOptionType } // Restore implements Node interface. func (n *OnDeleteOpt) Restore(ctx *format.RestoreCtx) error { if n.ReferOpt != model.ReferOptionNoOption { ctx.WriteKeyWord("ON DELETE ") ctx.WriteKeyWord(n.ReferOpt.String()) } return nil } // Accept implements Node Accept interface. func (n *OnDeleteOpt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*OnDeleteOpt) return v.Leave(n) } // OnUpdateOpt is used for optional on update clause. type OnUpdateOpt struct { node ReferOpt model.ReferOptionType } // Restore implements Node interface. func (n *OnUpdateOpt) Restore(ctx *format.RestoreCtx) error { if n.ReferOpt != model.ReferOptionNoOption { ctx.WriteKeyWord("ON UPDATE ") ctx.WriteKeyWord(n.ReferOpt.String()) } return nil } // Accept implements Node Accept interface. func (n *OnUpdateOpt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*OnUpdateOpt) return v.Leave(n) } // ColumnOptionType is the type for ColumnOption. type ColumnOptionType int // ColumnOption types. const ( ColumnOptionNoOption ColumnOptionType = iota ColumnOptionPrimaryKey ColumnOptionNotNull ColumnOptionAutoIncrement ColumnOptionDefaultValue ColumnOptionUniqKey ColumnOptionNull ColumnOptionOnUpdate // For Timestamp and Datetime only. ColumnOptionFulltext ColumnOptionComment ColumnOptionGenerated ColumnOptionReference ColumnOptionCollate ColumnOptionCheck ColumnOptionColumnFormat ColumnOptionStorage ColumnOptionAutoRandom ) var ( invalidOptionForGeneratedColumn = map[ColumnOptionType]string{ ColumnOptionAutoIncrement: "AUTO_INCREMENT", ColumnOptionOnUpdate: "ON UPDATE", ColumnOptionDefaultValue: "DEFAULT", } ) // ColumnOption is used for parsing column constraint info from SQL. type ColumnOption struct { node Tp ColumnOptionType // Expr is used for ColumnOptionDefaultValue/ColumnOptionOnUpdateColumnOptionGenerated. // For ColumnOptionDefaultValue or ColumnOptionOnUpdate, it's the target value. // For ColumnOptionGenerated, it's the target expression. Expr ExprNode // Stored is only for ColumnOptionGenerated, default is false. Stored bool // Refer is used for foreign key. Refer *ReferenceDef StrValue string AutoRandOpt AutoRandomOption // Enforced is only for Check, default is true. Enforced bool // Name is only used for Check Constraint name. ConstraintName string PrimaryKeyTp model.PrimaryKeyType } // Restore implements Node interface. func (n *ColumnOption) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case ColumnOptionNoOption: return nil case ColumnOptionPrimaryKey: ctx.WriteKeyWord("PRIMARY KEY") pkTp := n.PrimaryKeyTp.String() if len(pkTp) != 0 { ctx.WritePlain(" ") _ = ctx.WriteWithSpecialComments(tidb.FeatureIDClusteredIndex, func() error { ctx.WriteKeyWord(pkTp) return nil }) } case ColumnOptionNotNull: ctx.WriteKeyWord("NOT NULL") case ColumnOptionAutoIncrement: ctx.WriteKeyWord("AUTO_INCREMENT") case ColumnOptionDefaultValue: ctx.WriteKeyWord("DEFAULT ") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnOption DefaultValue Expr") } case ColumnOptionUniqKey: ctx.WriteKeyWord("UNIQUE KEY") case ColumnOptionNull: ctx.WriteKeyWord("NULL") case ColumnOptionOnUpdate: ctx.WriteKeyWord("ON UPDATE ") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnOption ON UPDATE Expr") } case ColumnOptionFulltext: return errors.New("TiDB Parser ignore the `ColumnOptionFulltext` type now") case ColumnOptionComment: ctx.WriteKeyWord("COMMENT ") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnOption COMMENT Expr") } case ColumnOptionGenerated: ctx.WriteKeyWord("GENERATED ALWAYS AS") ctx.WritePlain("(") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnOption GENERATED ALWAYS Expr") } ctx.WritePlain(")") if n.Stored { ctx.WriteKeyWord(" STORED") } else { ctx.WriteKeyWord(" VIRTUAL") } case ColumnOptionReference: if err := n.Refer.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnOption ReferenceDef") } case ColumnOptionCollate: if n.StrValue == "" { return errors.New("Empty ColumnOption COLLATE") } ctx.WriteKeyWord("COLLATE ") ctx.WritePlain(n.StrValue) case ColumnOptionCheck: if n.ConstraintName != "" { ctx.WriteKeyWord("CONSTRAINT ") ctx.WriteName(n.ConstraintName) ctx.WritePlain(" ") } ctx.WriteKeyWord("CHECK") ctx.WritePlain("(") if err := n.Expr.Restore(ctx); err != nil { return errors.Trace(err) } ctx.WritePlain(")") if n.Enforced { ctx.WriteKeyWord(" ENFORCED") } else { ctx.WriteKeyWord(" NOT ENFORCED") } case ColumnOptionColumnFormat: ctx.WriteKeyWord("COLUMN_FORMAT ") ctx.WriteKeyWord(n.StrValue) case ColumnOptionStorage: ctx.WriteKeyWord("STORAGE ") ctx.WriteKeyWord(n.StrValue) case ColumnOptionAutoRandom: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDAutoRandom, func() error { ctx.WriteKeyWord("AUTO_RANDOM") opt := n.AutoRandOpt if opt.ShardBits != types.UnspecifiedLength { if opt.RangeBits != types.UnspecifiedLength { ctx.WritePlainf("(%d, %d)", opt.ShardBits, opt.RangeBits) } else { ctx.WritePlainf("(%d)", opt.ShardBits) } } return nil }) default: return errors.New("An error occurred while splicing ColumnOption") } return nil } // Accept implements Node Accept interface. func (n *ColumnOption) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*ColumnOption) if n.Expr != nil { node, ok := n.Expr.Accept(v) if !ok { return n, false } n.Expr = node.(ExprNode) } return v.Leave(n) } // AutoRandomOption contains the length of shard bits and range bits. type AutoRandomOption struct { // ShardBits is the number of bits used to store the shard. ShardBits int // RangeBits is the number of int primary key bits that will be used by TiDB. RangeBits int } // IndexVisibility is the option for index visibility. type IndexVisibility int // IndexVisibility options. const ( IndexVisibilityDefault IndexVisibility = iota IndexVisibilityVisible IndexVisibilityInvisible ) // IndexOption is the index options. // // KEY_BLOCK_SIZE [=] value // | index_type // | WITH PARSER parser_name // | COMMENT 'string' // // See http://dev.mysql.com/doc/refman/5.7/en/create-table.html type IndexOption struct { node KeyBlockSize uint64 Tp model.IndexType Comment string ParserName model.CIStr Visibility IndexVisibility PrimaryKeyTp model.PrimaryKeyType } // Restore implements Node interface. func (n *IndexOption) Restore(ctx *format.RestoreCtx) error { hasPrevOption := false if n.PrimaryKeyTp != model.PrimaryKeyTypeDefault { _ = ctx.WriteWithSpecialComments(tidb.FeatureIDClusteredIndex, func() error { ctx.WriteKeyWord(n.PrimaryKeyTp.String()) return nil }) hasPrevOption = true } if n.KeyBlockSize > 0 { if hasPrevOption { ctx.WritePlain(" ") } ctx.WriteKeyWord("KEY_BLOCK_SIZE") ctx.WritePlainf("=%d", n.KeyBlockSize) hasPrevOption = true } if n.Tp != model.IndexTypeInvalid { if hasPrevOption { ctx.WritePlain(" ") } ctx.WriteKeyWord("USING ") ctx.WritePlain(n.Tp.String()) hasPrevOption = true } if len(n.ParserName.O) > 0 { if hasPrevOption { ctx.WritePlain(" ") } ctx.WriteKeyWord("WITH PARSER ") ctx.WriteName(n.ParserName.O) hasPrevOption = true } if n.Comment != "" { if hasPrevOption { ctx.WritePlain(" ") } ctx.WriteKeyWord("COMMENT ") ctx.WriteString(n.Comment) hasPrevOption = true } if n.Visibility != IndexVisibilityDefault { if hasPrevOption { ctx.WritePlain(" ") } switch n.Visibility { case IndexVisibilityVisible: ctx.WriteKeyWord("VISIBLE") case IndexVisibilityInvisible: ctx.WriteKeyWord("INVISIBLE") } } return nil } // Accept implements Node Accept interface. func (n *IndexOption) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*IndexOption) return v.Leave(n) } // ConstraintType is the type for Constraint. type ConstraintType int // ConstraintTypes const ( ConstraintNoConstraint ConstraintType = iota ConstraintPrimaryKey ConstraintKey ConstraintIndex ConstraintUniq ConstraintUniqKey ConstraintUniqIndex ConstraintForeignKey ConstraintFulltext ConstraintCheck ) // Constraint is constraint for table definition. type Constraint struct { node // only supported by MariaDB 10.0.2+ (ADD {INDEX|KEY}, ADD FOREIGN KEY), // see https://mariadb.com/kb/en/library/alter-table/ IfNotExists bool Tp ConstraintType Name string Keys []*IndexPartSpecification // Used for PRIMARY KEY, UNIQUE, ...... Refer *ReferenceDef // Used for foreign key. Option *IndexOption // Index Options Expr ExprNode // Used for Check Enforced bool // Used for Check InColumn bool // Used for Check InColumnName string // Used for Check IsEmptyIndex bool // Used for Check } // Restore implements Node interface. func (n *Constraint) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case ConstraintNoConstraint: return nil case ConstraintPrimaryKey: ctx.WriteKeyWord("PRIMARY KEY") case ConstraintKey: ctx.WriteKeyWord("KEY") if n.IfNotExists { ctx.WriteKeyWord(" IF NOT EXISTS") } case ConstraintIndex: ctx.WriteKeyWord("INDEX") if n.IfNotExists { ctx.WriteKeyWord(" IF NOT EXISTS") } case ConstraintUniq: ctx.WriteKeyWord("UNIQUE") case ConstraintUniqKey: ctx.WriteKeyWord("UNIQUE KEY") case ConstraintUniqIndex: ctx.WriteKeyWord("UNIQUE INDEX") case ConstraintFulltext: ctx.WriteKeyWord("FULLTEXT") case ConstraintCheck: if n.Name != "" { ctx.WriteKeyWord("CONSTRAINT ") ctx.WriteName(n.Name) ctx.WritePlain(" ") } ctx.WriteKeyWord("CHECK") ctx.WritePlain("(") if err := n.Expr.Restore(ctx); err != nil { return errors.Trace(err) } ctx.WritePlain(") ") if n.Enforced { ctx.WriteKeyWord("ENFORCED") } else { ctx.WriteKeyWord("NOT ENFORCED") } return nil } if n.Tp == ConstraintForeignKey { ctx.WriteKeyWord("CONSTRAINT ") if n.Name != "" { ctx.WriteName(n.Name) ctx.WritePlain(" ") } ctx.WriteKeyWord("FOREIGN KEY ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } } else if n.Name != "" || n.IsEmptyIndex { ctx.WritePlain(" ") ctx.WriteName(n.Name) } ctx.WritePlain("(") for i, keys := range n.Keys { if i > 0 { ctx.WritePlain(", ") } if err := keys.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing Constraint Keys: [%v]", i) } } ctx.WritePlain(")") if n.Refer != nil { ctx.WritePlain(" ") if err := n.Refer.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing Constraint Refer") } } if n.Option != nil { ctx.WritePlain(" ") if err := n.Option.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing Constraint Option") } } return nil } // Accept implements Node Accept interface. func (n *Constraint) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*Constraint) for i, val := range n.Keys { node, ok := val.Accept(v) if !ok { return n, false } n.Keys[i] = node.(*IndexPartSpecification) } if n.Refer != nil { node, ok := n.Refer.Accept(v) if !ok { return n, false } n.Refer = node.(*ReferenceDef) } if n.Option != nil { node, ok := n.Option.Accept(v) if !ok { return n, false } n.Option = node.(*IndexOption) } if n.Expr != nil { node, ok := n.Expr.Accept(v) if !ok { return n, false } n.Expr = node.(ExprNode) } return v.Leave(n) } // ColumnDef is used for parsing column definition from SQL. type ColumnDef struct { node Name *ColumnName Tp *types.FieldType Options []*ColumnOption } // Restore implements Node interface. func (n *ColumnDef) Restore(ctx *format.RestoreCtx) error { if err := n.Name.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnDef Name") } if n.Tp != nil { ctx.WritePlain(" ") if err := n.Tp.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing ColumnDef Type") } } for i, options := range n.Options { ctx.WritePlain(" ") if err := options.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing ColumnDef ColumnOption: [%v]", i) } } return nil } // Accept implements Node Accept interface. func (n *ColumnDef) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*ColumnDef) node, ok := n.Name.Accept(v) if !ok { return n, false } n.Name = node.(*ColumnName) for i, val := range n.Options { node, ok := val.Accept(v) if !ok { return n, false } n.Options[i] = node.(*ColumnOption) } return v.Leave(n) } // Validate checks if a column definition is legal. // For example, generated column definitions that contain such // column options as `ON UPDATE`, `AUTO_INCREMENT`, `DEFAULT` // are illegal. func (n *ColumnDef) Validate() error { generatedCol := false var illegalOpt4gc string for _, opt := range n.Options { if opt.Tp == ColumnOptionGenerated { generatedCol = true } msg, found := invalidOptionForGeneratedColumn[opt.Tp] if found { illegalOpt4gc = msg } } if generatedCol && illegalOpt4gc != "" { return ErrWrongUsage.GenWithStackByArgs(illegalOpt4gc, "generated column") } return nil } type TemporaryKeyword int const ( TemporaryNone TemporaryKeyword = iota TemporaryGlobal TemporaryLocal ) // CreateTableStmt is a statement to create a table. // See https://dev.mysql.com/doc/refman/5.7/en/create-table.html type CreateTableStmt struct { ddlNode IfNotExists bool TemporaryKeyword // Meanless when TemporaryKeyword is not TemporaryGlobal. // ON COMMIT DELETE ROWS => true // ON COMMIT PRESERVE ROW => false OnCommitDelete bool Table *TableName ReferTable *TableName Cols []*ColumnDef Constraints []*Constraint Options []*TableOption Partition *PartitionOptions OnDuplicate OnDuplicateKeyHandlingType Select ResultSetNode } // Restore implements Node interface. func (n *CreateTableStmt) Restore(ctx *format.RestoreCtx) error { switch n.TemporaryKeyword { case TemporaryNone: ctx.WriteKeyWord("CREATE TABLE ") case TemporaryGlobal: ctx.WriteKeyWord("CREATE GLOBAL TEMPORARY TABLE ") case TemporaryLocal: ctx.WriteKeyWord("CREATE TEMPORARY TABLE ") } if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing CreateTableStmt Table") } if n.ReferTable != nil { ctx.WriteKeyWord(" LIKE ") if err := n.ReferTable.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing CreateTableStmt ReferTable") } } lenCols := len(n.Cols) lenConstraints := len(n.Constraints) if lenCols+lenConstraints > 0 { ctx.WritePlain(" (") for i, col := range n.Cols { if i > 0 { ctx.WritePlain(",") } if err := col.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateTableStmt ColumnDef: [%v]", i) } } for i, constraint := range n.Constraints { if i > 0 || lenCols >= 1 { ctx.WritePlain(",") } if err := constraint.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateTableStmt Constraints: [%v]", i) } } ctx.WritePlain(")") } options := tableOptionsWithRestoreTTLFlag(ctx.Flags, n.Options) for i, option := range options { ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateTableStmt TableOption: [%v]", i) } } if n.Partition != nil { ctx.WritePlain(" ") if err := n.Partition.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing CreateTableStmt Partition") } } if n.Select != nil { switch n.OnDuplicate { case OnDuplicateKeyHandlingError: ctx.WriteKeyWord(" AS ") case OnDuplicateKeyHandlingIgnore: ctx.WriteKeyWord(" IGNORE AS ") case OnDuplicateKeyHandlingReplace: ctx.WriteKeyWord(" REPLACE AS ") } if err := n.Select.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing CreateTableStmt Select") } } if n.TemporaryKeyword == TemporaryGlobal { if n.OnCommitDelete { ctx.WriteKeyWord(" ON COMMIT DELETE ROWS") } else { ctx.WriteKeyWord(" ON COMMIT PRESERVE ROWS") } } return nil } // Accept implements Node Accept interface. func (n *CreateTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreateTableStmt) node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) if n.ReferTable != nil { node, ok = n.ReferTable.Accept(v) if !ok { return n, false } n.ReferTable = node.(*TableName) } for i, val := range n.Cols { node, ok = val.Accept(v) if !ok { return n, false } n.Cols[i] = node.(*ColumnDef) } for i, val := range n.Constraints { node, ok = val.Accept(v) if !ok { return n, false } n.Constraints[i] = node.(*Constraint) } if n.Select != nil { node, ok := n.Select.Accept(v) if !ok { return n, false } n.Select = node.(ResultSetNode) } if n.Partition != nil { node, ok := n.Partition.Accept(v) if !ok { return n, false } n.Partition = node.(*PartitionOptions) } for i, option := range n.Options { node, ok = option.Accept(v) if !ok { return n, false } n.Options[i] = node.(*TableOption) } return v.Leave(n) } // DropTableStmt is a statement to drop one or more tables. // See https://dev.mysql.com/doc/refman/5.7/en/drop-table.html type DropTableStmt struct { ddlNode IfExists bool Tables []*TableName IsView bool TemporaryKeyword // make sense ONLY if/when IsView == false } // Restore implements Node interface. func (n *DropTableStmt) Restore(ctx *format.RestoreCtx) error { if n.IsView { ctx.WriteKeyWord("DROP VIEW ") } else { switch n.TemporaryKeyword { case TemporaryNone: ctx.WriteKeyWord("DROP TABLE ") case TemporaryGlobal: ctx.WriteKeyWord("DROP GLOBAL TEMPORARY TABLE ") case TemporaryLocal: ctx.WriteKeyWord("DROP TEMPORARY TABLE ") } } if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } for index, table := range n.Tables { if index != 0 { ctx.WritePlain(", ") } if err := table.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore DropTableStmt.Tables[%d]", index) } } return nil } // Accept implements Node Accept interface. func (n *DropTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*DropTableStmt) for i, val := range n.Tables { node, ok := val.Accept(v) if !ok { return n, false } n.Tables[i] = node.(*TableName) } return v.Leave(n) } // DropPlacementPolicyStmt is a statement to drop a Policy. type DropPlacementPolicyStmt struct { ddlNode IfExists bool PolicyName model.CIStr } // Restore implements Restore interface. func (n *DropPlacementPolicyStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasTiDBSpecialCommentFlag() { return restorePlacementStmtInSpecialComment(ctx, n) } ctx.WriteKeyWord("DROP PLACEMENT POLICY ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.PolicyName.O) return nil } func (n *DropPlacementPolicyStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*DropPlacementPolicyStmt) return v.Leave(n) } type DropResourceGroupStmt struct { ddlNode IfExists bool ResourceGroupName model.CIStr } // Restore implements Restore interface. func (n *DropResourceGroupStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasTiDBSpecialCommentFlag() { return restoreStmtInSpecialComment(ctx, n, tidb.FeatureIDResourceGroup) } ctx.WriteKeyWord("DROP RESOURCE GROUP ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.ResourceGroupName.O) return nil } func (n *DropResourceGroupStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*DropResourceGroupStmt) return v.Leave(n) } type OptimizeTableStmt struct { ddlNode NoWriteToBinLog bool Tables []*TableName } func (n *OptimizeTableStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("OPTIMIZE ") if n.NoWriteToBinLog { ctx.WriteKeyWord("NO_WRITE_TO_BINLOG ") } ctx.WriteKeyWord("TABLE ") for index, table := range n.Tables { if index != 0 { ctx.WritePlain(", ") } if err := table.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore OptimizeTableStmt.Tables[%d]", index) } } return nil } func (n *OptimizeTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*OptimizeTableStmt) return v.Leave(n) } // DropSequenceStmt is a statement to drop a Sequence. type DropSequenceStmt struct { ddlNode IfExists bool Sequences []*TableName } // Restore implements Node interface. func (n *DropSequenceStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("DROP SEQUENCE ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } for i, sequence := range n.Sequences { if i != 0 { ctx.WritePlain(", ") } if err := sequence.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore DropSequenceStmt.Sequences[%d]", i) } } return nil } // Accept implements Node Accept interface. func (n *DropSequenceStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*DropSequenceStmt) for i, val := range n.Sequences { node, ok := val.Accept(v) if !ok { return n, false } n.Sequences[i] = node.(*TableName) } return v.Leave(n) } // RenameTableStmt is a statement to rename a table. // See http://dev.mysql.com/doc/refman/5.7/en/rename-table.html type RenameTableStmt struct { ddlNode TableToTables []*TableToTable } // Restore implements Node interface. func (n *RenameTableStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("RENAME TABLE ") for index, table2table := range n.TableToTables { if index != 0 { ctx.WritePlain(", ") } if err := table2table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore RenameTableStmt.TableToTables") } } return nil } // Accept implements Node Accept interface. func (n *RenameTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*RenameTableStmt) for i, t := range n.TableToTables { node, ok := t.Accept(v) if !ok { return n, false } n.TableToTables[i] = node.(*TableToTable) } return v.Leave(n) } // TableToTable represents renaming old table to new table used in RenameTableStmt. type TableToTable struct { node OldTable *TableName NewTable *TableName } // Restore implements Node interface. func (n *TableToTable) Restore(ctx *format.RestoreCtx) error { if err := n.OldTable.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore TableToTable.OldTable") } ctx.WriteKeyWord(" TO ") if err := n.NewTable.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore TableToTable.NewTable") } return nil } // Accept implements Node Accept interface. func (n *TableToTable) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*TableToTable) node, ok := n.OldTable.Accept(v) if !ok { return n, false } n.OldTable = node.(*TableName) node, ok = n.NewTable.Accept(v) if !ok { return n, false } n.NewTable = node.(*TableName) return v.Leave(n) } // CreateViewStmt is a statement to create a View. // See https://dev.mysql.com/doc/refman/5.7/en/create-view.html type CreateViewStmt struct { ddlNode OrReplace bool ViewName *TableName Cols []model.CIStr Select StmtNode SchemaCols []model.CIStr Algorithm model.ViewAlgorithm Definer *auth.UserIdentity Security model.ViewSecurity CheckOption model.ViewCheckOption } // Restore implements Node interface. func (n *CreateViewStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("CREATE ") if n.OrReplace { ctx.WriteKeyWord("OR REPLACE ") } ctx.WriteKeyWord("ALGORITHM") ctx.WritePlain(" = ") ctx.WriteKeyWord(n.Algorithm.String()) ctx.WriteKeyWord(" DEFINER") ctx.WritePlain(" = ") // todo Use n.Definer.Restore(ctx) to replace this part if n.Definer.CurrentUser { ctx.WriteKeyWord("current_user") } else { ctx.WriteName(n.Definer.Username) if n.Definer.Hostname != "" { ctx.WritePlain("@") ctx.WriteName(n.Definer.Hostname) } } ctx.WriteKeyWord(" SQL SECURITY ") ctx.WriteKeyWord(n.Security.String()) ctx.WriteKeyWord(" VIEW ") if err := n.ViewName.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while create CreateViewStmt.ViewName") } for i, col := range n.Cols { if i == 0 { ctx.WritePlain(" (") } else { ctx.WritePlain(",") } ctx.WriteName(col.O) if i == len(n.Cols)-1 { ctx.WritePlain(")") } } ctx.WriteKeyWord(" AS ") if err := n.Select.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while create CreateViewStmt.Select") } if n.CheckOption != model.CheckOptionCascaded { ctx.WriteKeyWord(" WITH ") ctx.WriteKeyWord(n.CheckOption.String()) ctx.WriteKeyWord(" CHECK OPTION") } return nil } // Accept implements Node Accept interface. func (n *CreateViewStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreateViewStmt) node, ok := n.ViewName.Accept(v) if !ok { return n, false } n.ViewName = node.(*TableName) selnode, ok := n.Select.Accept(v) if !ok { return n, false } n.Select = selnode.(StmtNode) return v.Leave(n) } // CreatePlacementPolicyStmt is a statement to create a policy. type CreatePlacementPolicyStmt struct { ddlNode OrReplace bool IfNotExists bool PolicyName model.CIStr PlacementOptions []*PlacementOption } // Restore implements Node interface. func (n *CreatePlacementPolicyStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasTiDBSpecialCommentFlag() { return restorePlacementStmtInSpecialComment(ctx, n) } ctx.WriteKeyWord("CREATE ") if n.OrReplace { ctx.WriteKeyWord("OR REPLACE ") } ctx.WriteKeyWord("PLACEMENT POLICY ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } ctx.WriteName(n.PolicyName.O) for i, option := range n.PlacementOptions { ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreatePlacementPolicy TableOption: [%v]", i) } } return nil } // Accept implements Node Accept interface. func (n *CreatePlacementPolicyStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreatePlacementPolicyStmt) return v.Leave(n) } // CreateResourceGroupStmt is a statement to create a policy. type CreateResourceGroupStmt struct { ddlNode IfNotExists bool ResourceGroupName model.CIStr ResourceGroupOptionList []*ResourceGroupOption } // Restore implements Node interface. func (n *CreateResourceGroupStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasTiDBSpecialCommentFlag() { return restoreStmtInSpecialComment(ctx, n, tidb.FeatureIDResourceGroup) } ctx.WriteKeyWord("CREATE ") ctx.WriteKeyWord("RESOURCE GROUP ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } ctx.WriteName(n.ResourceGroupName.O) for i, option := range n.ResourceGroupOptionList { if i > 0 { ctx.WritePlain(",") } ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateResourceGroupStmt Option: [%v]", i) } } return nil } // Accept implements Node Accept interface. func (n *CreateResourceGroupStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreateResourceGroupStmt) return v.Leave(n) } // CreateSequenceStmt is a statement to create a Sequence. type CreateSequenceStmt struct { ddlNode // TODO : support or replace if need : care for it will conflict on temporaryOpt. IfNotExists bool Name *TableName SeqOptions []*SequenceOption TblOptions []*TableOption } // Restore implements Node interface. func (n *CreateSequenceStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("CREATE ") ctx.WriteKeyWord("SEQUENCE ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } if err := n.Name.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while create CreateSequenceStmt.Name") } for i, option := range n.SeqOptions { ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateSequenceStmt SequenceOption: [%v]", i) } } for i, option := range n.TblOptions { ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing CreateSequenceStmt TableOption: [%v]", i) } } return nil } // Accept implements Node Accept interface. func (n *CreateSequenceStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreateSequenceStmt) node, ok := n.Name.Accept(v) if !ok { return n, false } n.Name = node.(*TableName) return v.Leave(n) } // IndexLockAndAlgorithm stores the algorithm option and the lock option. type IndexLockAndAlgorithm struct { node LockTp LockType AlgorithmTp AlgorithmType } // Restore implements Node interface. func (n *IndexLockAndAlgorithm) Restore(ctx *format.RestoreCtx) error { hasPrevOption := false if n.AlgorithmTp != AlgorithmTypeDefault { ctx.WriteKeyWord("ALGORITHM") ctx.WritePlain(" = ") ctx.WriteKeyWord(n.AlgorithmTp.String()) hasPrevOption = true } if n.LockTp != LockTypeDefault { if hasPrevOption { ctx.WritePlain(" ") } ctx.WriteKeyWord("LOCK") ctx.WritePlain(" = ") ctx.WriteKeyWord(n.LockTp.String()) } return nil } // Accept implements Node Accept interface. func (n *IndexLockAndAlgorithm) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*IndexLockAndAlgorithm) return v.Leave(n) } // IndexKeyType is the type for index key. type IndexKeyType int // Index key types. const ( IndexKeyTypeNone IndexKeyType = iota IndexKeyTypeUnique IndexKeyTypeSpatial IndexKeyTypeFullText ) // CreateIndexStmt is a statement to create an index. // See https://dev.mysql.com/doc/refman/5.7/en/create-index.html type CreateIndexStmt struct { ddlNode // only supported by MariaDB 10.0.2+, // see https://mariadb.com/kb/en/library/create-index/ IfNotExists bool IndexName string Table *TableName IndexPartSpecifications []*IndexPartSpecification IndexOption *IndexOption KeyType IndexKeyType LockAlg *IndexLockAndAlgorithm } // Restore implements Node interface. func (n *CreateIndexStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("CREATE ") switch n.KeyType { case IndexKeyTypeUnique: ctx.WriteKeyWord("UNIQUE ") case IndexKeyTypeSpatial: ctx.WriteKeyWord("SPATIAL ") case IndexKeyTypeFullText: ctx.WriteKeyWord("FULLTEXT ") } ctx.WriteKeyWord("INDEX ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } ctx.WriteName(n.IndexName) ctx.WriteKeyWord(" ON ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore CreateIndexStmt.Table") } ctx.WritePlain(" (") for i, indexColName := range n.IndexPartSpecifications { if i != 0 { ctx.WritePlain(", ") } if err := indexColName.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore CreateIndexStmt.IndexPartSpecifications: [%v]", i) } } ctx.WritePlain(")") if n.IndexOption.Tp != model.IndexTypeInvalid || n.IndexOption.KeyBlockSize > 0 || n.IndexOption.Comment != "" || len(n.IndexOption.ParserName.O) > 0 || n.IndexOption.Visibility != IndexVisibilityDefault { ctx.WritePlain(" ") if err := n.IndexOption.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore CreateIndexStmt.IndexOption") } } if n.LockAlg != nil { ctx.WritePlain(" ") if err := n.LockAlg.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore CreateIndexStmt.LockAlg") } } return nil } // Accept implements Node Accept interface. func (n *CreateIndexStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CreateIndexStmt) node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) for i, val := range n.IndexPartSpecifications { node, ok = val.Accept(v) if !ok { return n, false } n.IndexPartSpecifications[i] = node.(*IndexPartSpecification) } if n.IndexOption != nil { node, ok := n.IndexOption.Accept(v) if !ok { return n, false } n.IndexOption = node.(*IndexOption) } if n.LockAlg != nil { node, ok := n.LockAlg.Accept(v) if !ok { return n, false } n.LockAlg = node.(*IndexLockAndAlgorithm) } return v.Leave(n) } // DropIndexStmt is a statement to drop the index. // See https://dev.mysql.com/doc/refman/5.7/en/drop-index.html type DropIndexStmt struct { ddlNode IfExists bool IndexName string Table *TableName LockAlg *IndexLockAndAlgorithm IsHypo bool // whether this operation is for a hypothetical index. } // Restore implements Node interface. func (n *DropIndexStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("DROP INDEX ") if n.IfExists { _ = ctx.WriteWithSpecialComments("", func() error { ctx.WriteKeyWord("IF EXISTS ") return nil }) } ctx.WriteName(n.IndexName) ctx.WriteKeyWord(" ON ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while add index") } if n.LockAlg != nil { ctx.WritePlain(" ") if err := n.LockAlg.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore CreateIndexStmt.LockAlg") } } return nil } // Accept implements Node Accept interface. func (n *DropIndexStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*DropIndexStmt) node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) if n.LockAlg != nil { node, ok := n.LockAlg.Accept(v) if !ok { return n, false } n.LockAlg = node.(*IndexLockAndAlgorithm) } return v.Leave(n) } // LockTablesStmt is a statement to lock tables. type LockTablesStmt struct { ddlNode TableLocks []TableLock } // TableLock contains the table name and lock type. type TableLock struct { Table *TableName Type model.TableLockType } // Accept implements Node Accept interface. func (n *LockTablesStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*LockTablesStmt) for i := range n.TableLocks { node, ok := n.TableLocks[i].Table.Accept(v) if !ok { return n, false } n.TableLocks[i].Table = node.(*TableName) } return v.Leave(n) } // Restore implements Node interface. func (n *LockTablesStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("LOCK TABLES ") for i, tl := range n.TableLocks { if i != 0 { ctx.WritePlain(", ") } if err := tl.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while add index") } ctx.WriteKeyWord(" " + tl.Type.String()) } return nil } // UnlockTablesStmt is a statement to unlock tables. type UnlockTablesStmt struct { ddlNode } // Accept implements Node Accept interface. func (n *UnlockTablesStmt) Accept(v Visitor) (Node, bool) { _, _ = v.Enter(n) return v.Leave(n) } // Restore implements Node interface. func (n *UnlockTablesStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("UNLOCK TABLES") return nil } // CleanupTableLockStmt is a statement to cleanup table lock. type CleanupTableLockStmt struct { ddlNode Tables []*TableName } // Accept implements Node Accept interface. func (n *CleanupTableLockStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*CleanupTableLockStmt) for i := range n.Tables { node, ok := n.Tables[i].Accept(v) if !ok { return n, false } n.Tables[i] = node.(*TableName) } return v.Leave(n) } // Restore implements Node interface. func (n *CleanupTableLockStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("ADMIN CLEANUP TABLE LOCK ") for i, v := range n.Tables { if i != 0 { ctx.WritePlain(", ") } if err := v.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore CleanupTableLockStmt.Tables[%d]", i) } } return nil } // RepairTableStmt is a statement to repair tableInfo. type RepairTableStmt struct { ddlNode Table *TableName CreateStmt *CreateTableStmt } // Accept implements Node Accept interface. func (n *RepairTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*RepairTableStmt) node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) node, ok = n.CreateStmt.Accept(v) if !ok { return n, false } n.CreateStmt = node.(*CreateTableStmt) return v.Leave(n) } // Restore implements Node interface. func (n *RepairTableStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("ADMIN REPAIR TABLE ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore RepairTableStmt.table : [%v]", n.Table) } ctx.WritePlain(" ") if err := n.CreateStmt.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore RepairTableStmt.createStmt : [%v]", n.CreateStmt) } return nil } // PlacementOptionType is the type for PlacementOption type PlacementOptionType int // PlacementOption types. const ( PlacementOptionPrimaryRegion PlacementOptionType = 0x3000 + iota PlacementOptionRegions PlacementOptionFollowerCount PlacementOptionVoterCount PlacementOptionLearnerCount PlacementOptionSchedule PlacementOptionConstraints PlacementOptionLeaderConstraints PlacementOptionLearnerConstraints PlacementOptionFollowerConstraints PlacementOptionVoterConstraints PlacementOptionSurvivalPreferences PlacementOptionPolicy ) // PlacementOption is used for parsing placement option. type PlacementOption struct { Tp PlacementOptionType StrValue string UintValue uint64 } func (n *PlacementOption) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasSkipPlacementRuleForRestoreFlag() { return nil } fn := func() error { switch n.Tp { case PlacementOptionPrimaryRegion: ctx.WriteKeyWord("PRIMARY_REGION ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionRegions: ctx.WriteKeyWord("REGIONS ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionFollowerCount: ctx.WriteKeyWord("FOLLOWERS ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case PlacementOptionVoterCount: ctx.WriteKeyWord("VOTERS ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case PlacementOptionLearnerCount: ctx.WriteKeyWord("LEARNERS ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case PlacementOptionSchedule: ctx.WriteKeyWord("SCHEDULE ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionConstraints: ctx.WriteKeyWord("CONSTRAINTS ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionLeaderConstraints: ctx.WriteKeyWord("LEADER_CONSTRAINTS ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionFollowerConstraints: ctx.WriteKeyWord("FOLLOWER_CONSTRAINTS ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionVoterConstraints: ctx.WriteKeyWord("VOTER_CONSTRAINTS ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionLearnerConstraints: ctx.WriteKeyWord("LEARNER_CONSTRAINTS ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case PlacementOptionPolicy: ctx.WriteKeyWord("PLACEMENT POLICY ") ctx.WritePlain("= ") ctx.WriteName(n.StrValue) case PlacementOptionSurvivalPreferences: ctx.WriteKeyWord("SURVIVAL_PREFERENCES ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) default: return errors.Errorf("invalid PlacementOption: %d", n.Tp) } return nil } // WriteSpecialComment return ctx.WriteWithSpecialComments(tidb.FeatureIDPlacement, fn) } // ResourceGroupOption is used for parsing resource group option. type ResourceGroupOption struct { Tp ResourceUnitType StrValue string UintValue uint64 BoolValue bool RunawayOptionList []*ResourceGroupRunawayOption BackgroundOptions []*ResourceGroupBackgroundOption } type ResourceUnitType int const ( // RU mode ResourceRURate ResourceUnitType = iota ResourcePriority // Raw mode ResourceUnitCPU ResourceUnitIOReadBandwidth ResourceUnitIOWriteBandwidth // Options ResourceBurstableOpiton ResourceGroupRunaway ResourceGroupBackground ) func (n *ResourceGroupOption) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case ResourceRURate: ctx.WriteKeyWord("RU_PER_SEC ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case ResourcePriority: ctx.WriteKeyWord("PRIORITY ") ctx.WritePlain("= ") ctx.WriteKeyWord(model.PriorityValueToName(n.UintValue)) case ResourceUnitCPU: ctx.WriteKeyWord("CPU ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case ResourceUnitIOReadBandwidth: ctx.WriteKeyWord("IO_READ_BANDWIDTH ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case ResourceUnitIOWriteBandwidth: ctx.WriteKeyWord("IO_WRITE_BANDWIDTH ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case ResourceBurstableOpiton: ctx.WriteKeyWord("BURSTABLE ") ctx.WritePlain("= ") ctx.WritePlain(strings.ToUpper(fmt.Sprintf("%v", n.BoolValue))) case ResourceGroupRunaway: ctx.WritePlain("QUERY_LIMIT ") ctx.WritePlain("= ") if len(n.RunawayOptionList) > 0 { ctx.WritePlain("(") for i, option := range n.RunawayOptionList { if i > 0 { ctx.WritePlain(" ") } if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing ResourceGroupRunaway Option: [%v]", option) } } ctx.WritePlain(")") } else { ctx.WritePlain("NULL") } case ResourceGroupBackground: ctx.WritePlain("BACKGROUND ") ctx.WritePlain("= ") if len(n.BackgroundOptions) > 0 { ctx.WritePlain("(") for i, option := range n.BackgroundOptions { if i > 0 { ctx.WritePlain(", ") } if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing ResourceGroup Background Option: [%v]", option) } } ctx.WritePlain(")") } else { ctx.WritePlain("NULL") } default: return errors.Errorf("invalid ResourceGroupOption: %d", n.Tp) } return nil } type RunawayOptionType int const ( RunawayRule RunawayOptionType = iota RunawayAction RunawayWatch ) // ResourceGroupRunawayOption is used for parsing resource group runaway rule option. type ResourceGroupRunawayOption struct { Tp RunawayOptionType StrValue string IntValue int32 } func (n *ResourceGroupRunawayOption) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case RunawayRule: ctx.WriteKeyWord("EXEC_ELAPSED ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case RunawayAction: ctx.WriteKeyWord("ACTION ") ctx.WritePlain("= ") ctx.WriteKeyWord(model.RunawayActionType(n.IntValue).String()) case RunawayWatch: ctx.WriteKeyWord("WATCH ") ctx.WritePlain("= ") ctx.WriteKeyWord(model.RunawayWatchType(n.IntValue).String()) ctx.WritePlain(" ") ctx.WriteKeyWord("DURATION ") ctx.WritePlain("= ") if len(n.StrValue) > 0 { ctx.WriteString(n.StrValue) } else { ctx.WriteKeyWord("UNLIMITED") } default: return errors.Errorf("invalid ResourceGroupRunawayOption: %d", n.Tp) } return nil } type BackgroundOptionType int const ( BackgroundOptionNone BackgroundOptionType = iota BackgroundOptionTaskNames ) // ResourceGroupBackgroundOption is used to config background job settings. type ResourceGroupBackgroundOption struct { Type BackgroundOptionType StrValue string } func (n *ResourceGroupBackgroundOption) Restore(ctx *format.RestoreCtx) error { switch n.Type { case BackgroundOptionTaskNames: ctx.WriteKeyWord("TASK_TYPES ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) default: return errors.Errorf("unknown ResourceGroupBackgroundOption: %d", n.Type) } return nil } type StatsOptionType int const ( StatsOptionBuckets StatsOptionType = 0x5000 + iota StatsOptionTopN StatsOptionColsChoice StatsOptionColList StatsOptionSampleRate ) // TableOptionType is the type for TableOption type TableOptionType int // TableOption types. const ( TableOptionNone TableOptionType = iota TableOptionEngine TableOptionCharset TableOptionCollate TableOptionAutoIdCache //nolint:revive TableOptionAutoIncrement TableOptionAutoRandomBase TableOptionComment TableOptionAvgRowLength TableOptionCheckSum TableOptionCompression TableOptionConnection TableOptionPassword TableOptionKeyBlockSize TableOptionMaxRows TableOptionMinRows TableOptionDelayKeyWrite TableOptionRowFormat TableOptionStatsPersistent TableOptionStatsAutoRecalc TableOptionShardRowID TableOptionPreSplitRegion TableOptionPackKeys TableOptionTablespace TableOptionNodegroup TableOptionDataDirectory TableOptionIndexDirectory TableOptionStorageMedia TableOptionStatsSamplePages TableOptionSecondaryEngine TableOptionSecondaryEngineNull TableOptionInsertMethod TableOptionTableCheckSum TableOptionUnion TableOptionEncryption TableOptionTTL TableOptionTTLEnable TableOptionTTLJobInterval TableOptionPlacementPolicy = TableOptionType(PlacementOptionPolicy) TableOptionStatsBuckets = TableOptionType(StatsOptionBuckets) TableOptionStatsTopN = TableOptionType(StatsOptionTopN) TableOptionStatsColsChoice = TableOptionType(StatsOptionColsChoice) TableOptionStatsColList = TableOptionType(StatsOptionColList) TableOptionStatsSampleRate = TableOptionType(StatsOptionSampleRate) ) // RowFormat types const ( RowFormatDefault uint64 = iota + 1 RowFormatDynamic RowFormatFixed RowFormatCompressed RowFormatRedundant RowFormatCompact TokuDBRowFormatDefault TokuDBRowFormatFast TokuDBRowFormatSmall TokuDBRowFormatZlib TokuDBRowFormatQuickLZ TokuDBRowFormatLzma TokuDBRowFormatSnappy TokuDBRowFormatUncompressed TokuDBRowFormatZstd ) // OnDuplicateKeyHandlingType is the option that handle unique key values in 'CREATE TABLE ... SELECT' or `LOAD DATA`. // See https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html // See https://dev.mysql.com/doc/refman/5.7/en/load-data.html type OnDuplicateKeyHandlingType int // OnDuplicateKeyHandling types const ( OnDuplicateKeyHandlingError OnDuplicateKeyHandlingType = iota OnDuplicateKeyHandlingIgnore OnDuplicateKeyHandlingReplace ) const ( TableOptionCharsetWithoutConvertTo uint64 = 0 TableOptionCharsetWithConvertTo uint64 = 1 ) // TableOption is used for parsing table option from SQL. type TableOption struct { node Tp TableOptionType Default bool StrValue string UintValue uint64 BoolValue bool TimeUnitValue *TimeUnitExpr Value ValueExpr TableNames []*TableName ColumnName *ColumnName } func (n *TableOption) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case TableOptionEngine: ctx.WriteKeyWord("ENGINE ") ctx.WritePlain("= ") if n.StrValue != "" { ctx.WritePlain(n.StrValue) } else { ctx.WritePlain("''") } case TableOptionCharset: if n.UintValue == TableOptionCharsetWithConvertTo { ctx.WriteKeyWord("CONVERT TO ") } else { ctx.WriteKeyWord("DEFAULT ") } ctx.WriteKeyWord("CHARACTER SET ") if n.UintValue == TableOptionCharsetWithoutConvertTo { ctx.WriteKeyWord("= ") } if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WriteKeyWord(n.StrValue) } case TableOptionCollate: ctx.WriteKeyWord("DEFAULT COLLATE ") ctx.WritePlain("= ") ctx.WriteKeyWord(n.StrValue) case TableOptionAutoIncrement: if n.BoolValue { _ = ctx.WriteWithSpecialComments(tidb.FeatureIDForceAutoInc, func() error { ctx.WriteKeyWord("FORCE") return nil }) ctx.WritePlain(" ") } ctx.WriteKeyWord("AUTO_INCREMENT ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionAutoIdCache: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDAutoIDCache, func() error { ctx.WriteKeyWord("AUTO_ID_CACHE ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) return nil }) case TableOptionAutoRandomBase: if n.BoolValue { _ = ctx.WriteWithSpecialComments(tidb.FeatureIDForceAutoInc, func() error { ctx.WriteKeyWord("FORCE") return nil }) ctx.WritePlain(" ") } _ = ctx.WriteWithSpecialComments(tidb.FeatureIDAutoRandomBase, func() error { ctx.WriteKeyWord("AUTO_RANDOM_BASE ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) return nil }) case TableOptionComment: ctx.WriteKeyWord("COMMENT ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionAvgRowLength: ctx.WriteKeyWord("AVG_ROW_LENGTH ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionCheckSum: ctx.WriteKeyWord("CHECKSUM ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionCompression: ctx.WriteKeyWord("COMPRESSION ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionConnection: ctx.WriteKeyWord("CONNECTION ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionPassword: ctx.WriteKeyWord("PASSWORD ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionKeyBlockSize: ctx.WriteKeyWord("KEY_BLOCK_SIZE ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionMaxRows: ctx.WriteKeyWord("MAX_ROWS ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionMinRows: ctx.WriteKeyWord("MIN_ROWS ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionDelayKeyWrite: ctx.WriteKeyWord("DELAY_KEY_WRITE ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionRowFormat: ctx.WriteKeyWord("ROW_FORMAT ") ctx.WritePlain("= ") switch n.UintValue { case RowFormatDefault: ctx.WriteKeyWord("DEFAULT") case RowFormatDynamic: ctx.WriteKeyWord("DYNAMIC") case RowFormatFixed: ctx.WriteKeyWord("FIXED") case RowFormatCompressed: ctx.WriteKeyWord("COMPRESSED") case RowFormatRedundant: ctx.WriteKeyWord("REDUNDANT") case RowFormatCompact: ctx.WriteKeyWord("COMPACT") case TokuDBRowFormatDefault: ctx.WriteKeyWord("TOKUDB_DEFAULT") case TokuDBRowFormatFast: ctx.WriteKeyWord("TOKUDB_FAST") case TokuDBRowFormatSmall: ctx.WriteKeyWord("TOKUDB_SMALL") case TokuDBRowFormatZlib: ctx.WriteKeyWord("TOKUDB_ZLIB") case TokuDBRowFormatQuickLZ: ctx.WriteKeyWord("TOKUDB_QUICKLZ") case TokuDBRowFormatLzma: ctx.WriteKeyWord("TOKUDB_LZMA") case TokuDBRowFormatSnappy: ctx.WriteKeyWord("TOKUDB_SNAPPY") case TokuDBRowFormatZstd: ctx.WriteKeyWord("TOKUDB_ZSTD") case TokuDBRowFormatUncompressed: ctx.WriteKeyWord("TOKUDB_UNCOMPRESSED") default: return errors.Errorf("invalid TableOption: TableOptionRowFormat: %d", n.UintValue) } case TableOptionStatsPersistent: // TODO: not support ctx.WriteKeyWord("STATS_PERSISTENT ") ctx.WritePlain("= ") ctx.WriteKeyWord("DEFAULT") ctx.WritePlain(" /* TableOptionStatsPersistent is not supported */ ") case TableOptionStatsAutoRecalc: ctx.WriteKeyWord("STATS_AUTO_RECALC ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WritePlainf("%d", n.UintValue) } case TableOptionShardRowID: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDTiDB, func() error { ctx.WriteKeyWord("SHARD_ROW_ID_BITS ") ctx.WritePlainf("= %d", n.UintValue) return nil }) case TableOptionPreSplitRegion: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDTiDB, func() error { ctx.WriteKeyWord("PRE_SPLIT_REGIONS ") ctx.WritePlainf("= %d", n.UintValue) return nil }) case TableOptionPackKeys: // TODO: not support ctx.WriteKeyWord("PACK_KEYS ") ctx.WritePlain("= ") ctx.WriteKeyWord("DEFAULT") ctx.WritePlain(" /* TableOptionPackKeys is not supported */ ") case TableOptionTablespace: ctx.WriteKeyWord("TABLESPACE ") ctx.WritePlain("= ") ctx.WriteName(n.StrValue) case TableOptionNodegroup: ctx.WriteKeyWord("NODEGROUP ") ctx.WritePlainf("= %d", n.UintValue) case TableOptionDataDirectory: ctx.WriteKeyWord("DATA DIRECTORY ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionIndexDirectory: ctx.WriteKeyWord("INDEX DIRECTORY ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionStorageMedia: ctx.WriteKeyWord("STORAGE ") ctx.WriteKeyWord(n.StrValue) case TableOptionStatsSamplePages: ctx.WriteKeyWord("STATS_SAMPLE_PAGES ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WritePlainf("%d", n.UintValue) } case TableOptionSecondaryEngine: ctx.WriteKeyWord("SECONDARY_ENGINE ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionSecondaryEngineNull: ctx.WriteKeyWord("SECONDARY_ENGINE ") ctx.WritePlain("= ") ctx.WriteKeyWord("NULL") case TableOptionInsertMethod: ctx.WriteKeyWord("INSERT_METHOD ") ctx.WritePlain("= ") ctx.WriteKeyWord(n.StrValue) case TableOptionTableCheckSum: ctx.WriteKeyWord("TABLE_CHECKSUM ") ctx.WritePlain("= ") ctx.WritePlainf("%d", n.UintValue) case TableOptionUnion: ctx.WriteKeyWord("UNION ") ctx.WritePlain("= (") for i, tableName := range n.TableNames { if i != 0 { ctx.WritePlain(",") } tableName.Restore(ctx) } ctx.WritePlain(")") case TableOptionEncryption: ctx.WriteKeyWord("ENCRYPTION ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) case TableOptionPlacementPolicy: if ctx.Flags.HasSkipPlacementRuleForRestoreFlag() { return nil } placementOpt := PlacementOption{ Tp: PlacementOptionPolicy, UintValue: n.UintValue, StrValue: n.StrValue, } return placementOpt.Restore(ctx) case TableOptionStatsBuckets: ctx.WriteKeyWord("STATS_BUCKETS ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WritePlainf("%d", n.UintValue) } case TableOptionStatsTopN: ctx.WriteKeyWord("STATS_TOPN ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WritePlainf("%d", n.UintValue) } case TableOptionStatsSampleRate: ctx.WriteKeyWord("STATS_SAMPLE_RATE ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WritePlainf("%v", n.Value.GetValue()) } case TableOptionStatsColsChoice: ctx.WriteKeyWord("STATS_COL_CHOICE ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WriteString(n.StrValue) } case TableOptionStatsColList: ctx.WriteKeyWord("STATS_COL_LIST ") ctx.WritePlain("= ") if n.Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WriteString(n.StrValue) } case TableOptionTTL: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDTTL, func() error { ctx.WriteKeyWord("TTL ") ctx.WritePlain("= ") ctx.WriteName(n.ColumnName.Name.String()) ctx.WritePlain(" + INTERVAL ") err := n.Value.Restore(ctx) ctx.WritePlain(" ") if err != nil { return err } return n.TimeUnitValue.Restore(ctx) }) case TableOptionTTLEnable: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDTTL, func() error { ctx.WriteKeyWord("TTL_ENABLE ") ctx.WritePlain("= ") if n.BoolValue { ctx.WriteString("ON") } else { ctx.WriteString("OFF") } return nil }) case TableOptionTTLJobInterval: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDTTL, func() error { ctx.WriteKeyWord("TTL_JOB_INTERVAL ") ctx.WritePlain("= ") ctx.WriteString(n.StrValue) return nil }) default: return errors.Errorf("invalid TableOption: %d", n.Tp) } return nil } // Accept implements Node Accept interface. func (n *TableOption) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*TableOption) if n.Value != nil { node, ok := n.Value.Accept(v) if !ok { return n, false } n.Value = node.(ValueExpr) } if n.TimeUnitValue != nil { node, ok := n.TimeUnitValue.Accept(v) if !ok { return n, false } n.TimeUnitValue = node.(*TimeUnitExpr) } return v.Leave(n) } // SequenceOptionType is the type for SequenceOption type SequenceOptionType int // SequenceOption types. const ( SequenceOptionNone SequenceOptionType = iota SequenceOptionIncrementBy SequenceStartWith SequenceNoMinValue SequenceMinValue SequenceNoMaxValue SequenceMaxValue SequenceNoCache SequenceCache SequenceNoCycle SequenceCycle // SequenceRestart is only used in alter sequence statement. SequenceRestart SequenceRestartWith ) // SequenceOption is used for parsing sequence option from SQL. type SequenceOption struct { Tp SequenceOptionType IntValue int64 } func (n *SequenceOption) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case SequenceOptionIncrementBy: ctx.WriteKeyWord("INCREMENT BY ") ctx.WritePlainf("%d", n.IntValue) case SequenceStartWith: ctx.WriteKeyWord("START WITH ") ctx.WritePlainf("%d", n.IntValue) case SequenceNoMinValue: ctx.WriteKeyWord("NO MINVALUE") case SequenceMinValue: ctx.WriteKeyWord("MINVALUE ") ctx.WritePlainf("%d", n.IntValue) case SequenceNoMaxValue: ctx.WriteKeyWord("NO MAXVALUE") case SequenceMaxValue: ctx.WriteKeyWord("MAXVALUE ") ctx.WritePlainf("%d", n.IntValue) case SequenceNoCache: ctx.WriteKeyWord("NOCACHE") case SequenceCache: ctx.WriteKeyWord("CACHE ") ctx.WritePlainf("%d", n.IntValue) case SequenceNoCycle: ctx.WriteKeyWord("NOCYCLE") case SequenceCycle: ctx.WriteKeyWord("CYCLE") case SequenceRestart: ctx.WriteKeyWord("RESTART") case SequenceRestartWith: ctx.WriteKeyWord("RESTART WITH ") ctx.WritePlainf("%d", n.IntValue) default: return errors.Errorf("invalid SequenceOption: %d", n.Tp) } return nil } // ColumnPositionType is the type for ColumnPosition. type ColumnPositionType int // ColumnPosition Types const ( ColumnPositionNone ColumnPositionType = iota ColumnPositionFirst ColumnPositionAfter ) // ColumnPosition represent the position of the newly added column type ColumnPosition struct { node // Tp is either ColumnPositionNone, ColumnPositionFirst or ColumnPositionAfter. Tp ColumnPositionType // RelativeColumn is the column the newly added column after if type is ColumnPositionAfter RelativeColumn *ColumnName } // Restore implements Node interface. func (n *ColumnPosition) Restore(ctx *format.RestoreCtx) error { switch n.Tp { case ColumnPositionNone: // do nothing case ColumnPositionFirst: ctx.WriteKeyWord("FIRST") case ColumnPositionAfter: ctx.WriteKeyWord("AFTER ") if err := n.RelativeColumn.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore ColumnPosition.RelativeColumn") } default: return errors.Errorf("invalid ColumnPositionType: %d", n.Tp) } return nil } // Accept implements Node Accept interface. func (n *ColumnPosition) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*ColumnPosition) if n.RelativeColumn != nil { node, ok := n.RelativeColumn.Accept(v) if !ok { return n, false } n.RelativeColumn = node.(*ColumnName) } return v.Leave(n) } // AlterTableType is the type for AlterTableSpec. type AlterTableType int // AlterTable types. const ( AlterTableOption AlterTableType = iota + 1 AlterTableAddColumns AlterTableAddConstraint AlterTableDropColumn AlterTableDropPrimaryKey AlterTableDropIndex AlterTableDropForeignKey AlterTableModifyColumn AlterTableChangeColumn AlterTableRenameColumn AlterTableRenameTable AlterTableAlterColumn AlterTableLock AlterTableWriteable AlterTableAlgorithm AlterTableRenameIndex AlterTableForce AlterTableAddPartitions // A tombstone for `AlterTableAlterPartition`. It will never be used anymore. // Just left a tombstone here to keep the enum number unchanged. __DEPRECATED_AlterTableAlterPartition //nolint:revive AlterTablePartitionAttributes AlterTablePartitionOptions AlterTableCoalescePartitions AlterTableDropPartition AlterTableTruncatePartition AlterTablePartition AlterTableEnableKeys AlterTableDisableKeys AlterTableRemovePartitioning AlterTableWithValidation AlterTableWithoutValidation AlterTableSecondaryLoad AlterTableSecondaryUnload AlterTableRebuildPartition AlterTableReorganizePartition AlterTableCheckPartitions AlterTableExchangePartition AlterTableOptimizePartition AlterTableRepairPartition AlterTableImportPartitionTablespace AlterTableDiscardPartitionTablespace AlterTableAlterCheck AlterTableDropCheck AlterTableImportTablespace AlterTableDiscardTablespace AlterTableIndexInvisible // TODO: Add more actions AlterTableOrderByColumns // AlterTableSetTiFlashReplica uses to set the table TiFlash replica. AlterTableSetTiFlashReplica // A tombstone for `AlterTablePlacement`. It will never be used anymore. // Just left a tombstone here to keep the enum number unchanged. __DEPRECATED_AlterTablePlacement //nolint:revive AlterTableAddStatistics AlterTableDropStatistics AlterTableAttributes AlterTableCache AlterTableNoCache AlterTableStatsOptions AlterTableDropFirstPartition AlterTableAddLastPartition AlterTableReorganizeLastPartition AlterTableReorganizeFirstPartition AlterTableRemoveTTL ) // LockType is the type for AlterTableSpec. // See https://dev.mysql.com/doc/refman/5.7/en/alter-table.html#alter-table-concurrency type LockType byte func (n LockType) String() string { switch n { case LockTypeNone: return "NONE" case LockTypeDefault: return "DEFAULT" case LockTypeShared: return "SHARED" case LockTypeExclusive: return "EXCLUSIVE" } return "" } // Lock Types. const ( LockTypeNone LockType = iota + 1 LockTypeDefault LockTypeShared LockTypeExclusive ) // AlgorithmType is the algorithm of the DDL operations. // See https://dev.mysql.com/doc/refman/8.0/en/alter-table.html#alter-table-performance. type AlgorithmType byte // DDL algorithms. // For now, TiDB only supported inplace and instance algorithms. If the user specify `copy`, // will get an error. const ( AlgorithmTypeDefault AlgorithmType = iota AlgorithmTypeCopy AlgorithmTypeInplace AlgorithmTypeInstant ) func (a AlgorithmType) String() string { switch a { case AlgorithmTypeDefault: return "DEFAULT" case AlgorithmTypeCopy: return "COPY" case AlgorithmTypeInplace: return "INPLACE" case AlgorithmTypeInstant: return "INSTANT" default: return "DEFAULT" } } // AlterTableSpec represents alter table specification. type AlterTableSpec struct { node // only supported by MariaDB 10.0.2+ (DROP COLUMN, CHANGE COLUMN, MODIFY COLUMN, DROP INDEX, DROP FOREIGN KEY, DROP PARTITION) // see https://mariadb.com/kb/en/library/alter-table/ IfExists bool // only supported by MariaDB 10.0.2+ (ADD COLUMN, ADD PARTITION) // see https://mariadb.com/kb/en/library/alter-table/ IfNotExists bool NoWriteToBinlog bool OnAllPartitions bool Tp AlterTableType Name string IndexName model.CIStr Constraint *Constraint Options []*TableOption OrderByList []*AlterOrderItem NewTable *TableName NewColumns []*ColumnDef NewConstraints []*Constraint OldColumnName *ColumnName NewColumnName *ColumnName Position *ColumnPosition LockType LockType Algorithm AlgorithmType Comment string FromKey model.CIStr ToKey model.CIStr Partition *PartitionOptions PartitionNames []model.CIStr PartDefinitions []*PartitionDefinition WithValidation bool Num uint64 Visibility IndexVisibility TiFlashReplica *TiFlashReplicaSpec Writeable bool Statistics *StatisticsSpec AttributesSpec *AttributesSpec StatsOptionsSpec *StatsOptionsSpec } type TiFlashReplicaSpec struct { Count uint64 Labels []string Hypo bool // hypothetical replica is used by index advisor } // AlterOrderItem represents an item in order by at alter table stmt. type AlterOrderItem struct { node Column *ColumnName Desc bool } // Restore implements Node interface. func (n *AlterOrderItem) Restore(ctx *format.RestoreCtx) error { if err := n.Column.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterOrderItem.Column") } if n.Desc { ctx.WriteKeyWord(" DESC") } return nil } func (n *AlterTableSpec) IsAllPlacementRule() bool { switch n.Tp { case AlterTablePartitionAttributes, AlterTablePartitionOptions, AlterTableOption, AlterTableAttributes: for _, o := range n.Options { if o.Tp != TableOptionPlacementPolicy { return false } } return true default: return false } } // Restore implements Node interface. func (n *AlterTableSpec) Restore(ctx *format.RestoreCtx) error { if n.IsAllPlacementRule() && ctx.Flags.HasSkipPlacementRuleForRestoreFlag() { return nil } switch n.Tp { case AlterTableSetTiFlashReplica: ctx.WriteKeyWord("SET TIFLASH REPLICA ") ctx.WritePlainf("%d", n.TiFlashReplica.Count) if len(n.TiFlashReplica.Labels) == 0 { break } ctx.WriteKeyWord(" LOCATION LABELS ") for i, v := range n.TiFlashReplica.Labels { if i > 0 { ctx.WritePlain(", ") } ctx.WriteString(v) } case AlterTableAddStatistics: ctx.WriteKeyWord("ADD STATS_EXTENDED ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } ctx.WriteName(n.Statistics.StatsName) switch n.Statistics.StatsType { case StatsTypeCardinality: ctx.WriteKeyWord(" CARDINALITY(") case StatsTypeDependency: ctx.WriteKeyWord(" DEPENDENCY(") case StatsTypeCorrelation: ctx.WriteKeyWord(" CORRELATION(") } for i, col := range n.Statistics.Columns { if i != 0 { ctx.WritePlain(", ") } if err := col.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AddStatisticsSpec.Columns: [%v]", i) } } ctx.WritePlain(")") case AlterTableDropStatistics: ctx.WriteKeyWord("DROP STATS_EXTENDED ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.Statistics.StatsName) case AlterTableOption: switch { case len(n.Options) == 2 && n.Options[0].Tp == TableOptionCharset && n.Options[1].Tp == TableOptionCollate: if n.Options[0].UintValue == TableOptionCharsetWithConvertTo { ctx.WriteKeyWord("CONVERT TO ") } ctx.WriteKeyWord("CHARACTER SET ") if n.Options[0].Default { ctx.WriteKeyWord("DEFAULT") } else { ctx.WriteKeyWord(n.Options[0].StrValue) } ctx.WriteKeyWord(" COLLATE ") ctx.WriteKeyWord(n.Options[1].StrValue) case n.Options[0].Tp == TableOptionCharset && n.Options[0].Default: if n.Options[0].UintValue == TableOptionCharsetWithConvertTo { ctx.WriteKeyWord("CONVERT TO ") } ctx.WriteKeyWord("CHARACTER SET DEFAULT") default: for i, opt := range n.Options { if i != 0 { ctx.WritePlain(" ") } if err := opt.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.Options[%d]", i) } } } case AlterTableAddColumns: ctx.WriteKeyWord("ADD COLUMN ") if n.IfNotExists { ctx.WriteKeyWord("IF NOT EXISTS ") } if n.Position != nil && len(n.NewColumns) == 1 { if err := n.NewColumns[0].Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.NewColumns[%d]", 0) } if n.Position.Tp != ColumnPositionNone { ctx.WritePlain(" ") } if err := n.Position.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.Position") } } else { lenCols := len(n.NewColumns) ctx.WritePlain("(") for i, col := range n.NewColumns { if i != 0 { ctx.WritePlain(", ") } if err := col.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.NewColumns[%d]", i) } } for i, constraint := range n.NewConstraints { if i != 0 || lenCols >= 1 { ctx.WritePlain(", ") } if err := constraint.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.NewConstraints[%d]", i) } } ctx.WritePlain(")") } case AlterTableAddConstraint: ctx.WriteKeyWord("ADD ") if err := n.Constraint.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.Constraint") } case AlterTableDropColumn: ctx.WriteKeyWord("DROP COLUMN ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } if err := n.OldColumnName.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.OldColumnName") } // TODO: RestrictOrCascadeOpt not support case AlterTableDropPrimaryKey: ctx.WriteKeyWord("DROP PRIMARY KEY") case AlterTableDropIndex: ctx.WriteKeyWord("DROP INDEX ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.Name) case AlterTableDropForeignKey: ctx.WriteKeyWord("DROP FOREIGN KEY ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.Name) case AlterTableModifyColumn: ctx.WriteKeyWord("MODIFY COLUMN ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } if err := n.NewColumns[0].Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewColumns[0]") } if n.Position.Tp != ColumnPositionNone { ctx.WritePlain(" ") } if err := n.Position.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.Position") } case AlterTableChangeColumn: ctx.WriteKeyWord("CHANGE COLUMN ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } if err := n.OldColumnName.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.OldColumnName") } ctx.WritePlain(" ") if err := n.NewColumns[0].Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewColumns[0]") } if n.Position.Tp != ColumnPositionNone { ctx.WritePlain(" ") } if err := n.Position.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.Position") } case AlterTableRenameColumn: ctx.WriteKeyWord("RENAME COLUMN ") if err := n.OldColumnName.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.OldColumnName") } ctx.WriteKeyWord(" TO ") if err := n.NewColumnName.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewColumnName") } case AlterTableRenameTable: ctx.WriteKeyWord("RENAME AS ") if err := n.NewTable.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewTable") } case AlterTableAlterColumn: ctx.WriteKeyWord("ALTER COLUMN ") if err := n.NewColumns[0].Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewColumns[0]") } if len(n.NewColumns[0].Options) == 1 { ctx.WriteKeyWord("SET DEFAULT ") expr := n.NewColumns[0].Options[0].Expr if valueExpr, ok := expr.(ValueExpr); ok { if err := valueExpr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewColumns[0].Options[0].Expr") } } else { ctx.WritePlain("(") if err := expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.NewColumns[0].Options[0].Expr") } ctx.WritePlain(")") } } else { ctx.WriteKeyWord(" DROP DEFAULT") } case AlterTableLock: ctx.WriteKeyWord("LOCK ") ctx.WritePlain("= ") ctx.WriteKeyWord(n.LockType.String()) case AlterTableWriteable: ctx.WriteKeyWord("READ ") if n.Writeable { ctx.WriteKeyWord("WRITE") } else { ctx.WriteKeyWord("ONLY") } case AlterTableOrderByColumns: ctx.WriteKeyWord("ORDER BY ") for i, alterOrderItem := range n.OrderByList { if i != 0 { ctx.WritePlain(",") } if err := alterOrderItem.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.OrderByList[%d]", i) } } case AlterTableAlgorithm: ctx.WriteKeyWord("ALGORITHM ") ctx.WritePlain("= ") ctx.WriteKeyWord(n.Algorithm.String()) case AlterTableRenameIndex: ctx.WriteKeyWord("RENAME INDEX ") ctx.WriteName(n.FromKey.O) ctx.WriteKeyWord(" TO ") ctx.WriteName(n.ToKey.O) case AlterTableForce: // TODO: not support ctx.WriteKeyWord("FORCE") ctx.WritePlain(" /* AlterTableForce is not supported */ ") case AlterTableAddPartitions: ctx.WriteKeyWord("ADD PARTITION") if n.IfNotExists { ctx.WriteKeyWord(" IF NOT EXISTS") } if n.NoWriteToBinlog { ctx.WriteKeyWord(" NO_WRITE_TO_BINLOG") } if n.PartDefinitions != nil { ctx.WritePlain(" (") for i, def := range n.PartDefinitions { if i != 0 { ctx.WritePlain(", ") } if err := def.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.PartDefinitions[%d]", i) } } ctx.WritePlain(")") } else if n.Num != 0 { ctx.WriteKeyWord(" PARTITIONS ") ctx.WritePlainf("%d", n.Num) } case AlterTableDropFirstPartition: ctx.WriteKeyWord("FIRST PARTITION LESS THAN (") if err := n.Partition.PartitionMethod.Expr.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableDropFirstPartition Exprs") } ctx.WriteKeyWord(")") if n.NoWriteToBinlog { ctx.WriteKeyWord(" NO_WRITE_TO_BINLOG") } case AlterTableAddLastPartition: ctx.WriteKeyWord("LAST PARTITION LESS THAN (") if err := n.Partition.PartitionMethod.Expr.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableAddLastPartition Exprs") } ctx.WriteKeyWord(")") if n.NoWriteToBinlog { ctx.WriteKeyWord(" NO_WRITE_TO_BINLOG") } case AlterTablePartitionOptions: restoreWithoutSpecialComment := func() error { origFlags := ctx.Flags defer func() { ctx.Flags = origFlags }() ctx.Flags &= ^format.RestoreTiDBSpecialComment ctx.WriteKeyWord("PARTITION ") ctx.WriteName(n.PartitionNames[0].O) ctx.WritePlain(" ") for i, opt := range n.Options { if i != 0 { ctx.WritePlain(" ") } if err := opt.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.Options[%d] for PARTITION `%s`", i, n.PartitionNames[0].O) } } return nil } var err error if ctx.Flags.HasTiDBSpecialCommentFlag() { // AlterTablePartitionOptions now only supports placement options, so add put all options to special comment err = ctx.WriteWithSpecialComments(tidb.FeatureIDPlacement, restoreWithoutSpecialComment) } else { err = restoreWithoutSpecialComment() } if err != nil { return err } case AlterTablePartitionAttributes: ctx.WriteKeyWord("PARTITION ") ctx.WriteName(n.PartitionNames[0].O) ctx.WritePlain(" ") spec := n.AttributesSpec if err := spec.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.AttributesSpec") } case AlterTableCoalescePartitions: ctx.WriteKeyWord("COALESCE PARTITION ") if n.NoWriteToBinlog { ctx.WriteKeyWord("NO_WRITE_TO_BINLOG ") } ctx.WritePlainf("%d", n.Num) case AlterTableDropPartition: ctx.WriteKeyWord("DROP PARTITION ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } case AlterTableTruncatePartition: ctx.WriteKeyWord("TRUNCATE PARTITION ") if n.OnAllPartitions { ctx.WriteKeyWord("ALL") return nil } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } case AlterTableCheckPartitions: ctx.WriteKeyWord("CHECK PARTITION ") if n.OnAllPartitions { ctx.WriteKeyWord("ALL") return nil } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } case AlterTableOptimizePartition: ctx.WriteKeyWord("OPTIMIZE PARTITION ") if n.NoWriteToBinlog { ctx.WriteKeyWord("NO_WRITE_TO_BINLOG ") } if n.OnAllPartitions { ctx.WriteKeyWord("ALL") return nil } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } case AlterTableRepairPartition: ctx.WriteKeyWord("REPAIR PARTITION ") if n.NoWriteToBinlog { ctx.WriteKeyWord("NO_WRITE_TO_BINLOG ") } if n.OnAllPartitions { ctx.WriteKeyWord("ALL") return nil } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } case AlterTableImportPartitionTablespace: ctx.WriteKeyWord("IMPORT PARTITION ") if n.OnAllPartitions { ctx.WriteKeyWord("ALL") } else { for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } } ctx.WriteKeyWord(" TABLESPACE") case AlterTableDiscardPartitionTablespace: ctx.WriteKeyWord("DISCARD PARTITION ") if n.OnAllPartitions { ctx.WriteKeyWord("ALL") } else { for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } } ctx.WriteKeyWord(" TABLESPACE") case AlterTablePartition: if err := n.Partition.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableSpec.Partition") } case AlterTableEnableKeys: ctx.WriteKeyWord("ENABLE KEYS") case AlterTableDisableKeys: ctx.WriteKeyWord("DISABLE KEYS") case AlterTableRemovePartitioning: ctx.WriteKeyWord("REMOVE PARTITIONING") case AlterTableWithValidation: ctx.WriteKeyWord("WITH VALIDATION") case AlterTableWithoutValidation: ctx.WriteKeyWord("WITHOUT VALIDATION") case AlterTableRebuildPartition: ctx.WriteKeyWord("REBUILD PARTITION ") if n.NoWriteToBinlog { ctx.WriteKeyWord("NO_WRITE_TO_BINLOG ") } if n.OnAllPartitions { ctx.WriteKeyWord("ALL") return nil } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } ctx.WriteName(name.O) } case AlterTableReorganizeLastPartition: ctx.WriteKeyWord("SPLIT MAXVALUE PARTITION LESS THAN (") if err := n.Partition.PartitionMethod.Expr.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableReorganizeLastPartition Exprs") } ctx.WriteKeyWord(")") case AlterTableReorganizeFirstPartition: ctx.WriteKeyWord("MERGE FIRST PARTITION LESS THAN (") if err := n.Partition.PartitionMethod.Expr.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableReorganizeLastPartition Exprs") } ctx.WriteKeyWord(")") case AlterTableReorganizePartition: ctx.WriteKeyWord("REORGANIZE PARTITION") if n.NoWriteToBinlog { ctx.WriteKeyWord(" NO_WRITE_TO_BINLOG") } if n.OnAllPartitions { return nil } for i, name := range n.PartitionNames { if i != 0 { ctx.WritePlain(",") } else { ctx.WritePlain(" ") } ctx.WriteName(name.O) } ctx.WriteKeyWord(" INTO ") if n.PartDefinitions != nil { ctx.WritePlain("(") for i, def := range n.PartDefinitions { if i != 0 { ctx.WritePlain(", ") } if err := def.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.PartDefinitions[%d]", i) } } ctx.WritePlain(")") } case AlterTableExchangePartition: ctx.WriteKeyWord("EXCHANGE PARTITION ") ctx.WriteName(n.PartitionNames[0].O) ctx.WriteKeyWord(" WITH TABLE ") n.NewTable.Restore(ctx) if !n.WithValidation { ctx.WriteKeyWord(" WITHOUT VALIDATION") } case AlterTableSecondaryLoad: ctx.WriteKeyWord("SECONDARY_LOAD") case AlterTableSecondaryUnload: ctx.WriteKeyWord("SECONDARY_UNLOAD") case AlterTableAlterCheck: ctx.WriteKeyWord("ALTER CHECK ") ctx.WriteName(n.Constraint.Name) if !n.Constraint.Enforced { ctx.WriteKeyWord(" NOT") } ctx.WriteKeyWord(" ENFORCED") case AlterTableDropCheck: ctx.WriteKeyWord("DROP CHECK ") ctx.WriteName(n.Constraint.Name) case AlterTableImportTablespace: ctx.WriteKeyWord("IMPORT TABLESPACE") case AlterTableDiscardTablespace: ctx.WriteKeyWord("DISCARD TABLESPACE") case AlterTableIndexInvisible: ctx.WriteKeyWord("ALTER INDEX ") ctx.WriteName(n.IndexName.O) switch n.Visibility { case IndexVisibilityVisible: ctx.WriteKeyWord(" VISIBLE") case IndexVisibilityInvisible: ctx.WriteKeyWord(" INVISIBLE") } case AlterTableAttributes: spec := n.AttributesSpec if err := spec.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.AttributesSpec") } case AlterTableCache: ctx.WriteKeyWord("CACHE") case AlterTableNoCache: ctx.WriteKeyWord("NOCACHE") case AlterTableStatsOptions: spec := n.StatsOptionsSpec if err := spec.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableSpec.StatsOptionsSpec") } case AlterTableRemoveTTL: _ = ctx.WriteWithSpecialComments(tidb.FeatureIDTTL, func() error { ctx.WriteKeyWord("REMOVE TTL") return nil }) default: // TODO: not support ctx.WritePlainf(" /* AlterTableType(%d) is not supported */ ", n.Tp) } return nil } // Accept implements Node Accept interface. func (n *AlterTableSpec) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AlterTableSpec) if n.Constraint != nil { node, ok := n.Constraint.Accept(v) if !ok { return n, false } n.Constraint = node.(*Constraint) } if n.NewTable != nil { node, ok := n.NewTable.Accept(v) if !ok { return n, false } n.NewTable = node.(*TableName) } for i, col := range n.NewColumns { node, ok := col.Accept(v) if !ok { return n, false } n.NewColumns[i] = node.(*ColumnDef) } for i, constraint := range n.NewConstraints { node, ok := constraint.Accept(v) if !ok { return n, false } n.NewConstraints[i] = node.(*Constraint) } if n.OldColumnName != nil { node, ok := n.OldColumnName.Accept(v) if !ok { return n, false } n.OldColumnName = node.(*ColumnName) } if n.Position != nil { node, ok := n.Position.Accept(v) if !ok { return n, false } n.Position = node.(*ColumnPosition) } if n.Partition != nil { node, ok := n.Partition.Accept(v) if !ok { return n, false } n.Partition = node.(*PartitionOptions) } for i, option := range n.Options { node, ok := option.Accept(v) if !ok { return n, false } n.Options[i] = node.(*TableOption) } for _, def := range n.PartDefinitions { if !def.acceptInPlace(v) { return n, false } } return v.Leave(n) } // AlterTableStmt is a statement to change the structure of a table. // See https://dev.mysql.com/doc/refman/5.7/en/alter-table.html type AlterTableStmt struct { ddlNode Table *TableName Specs []*AlterTableSpec } func (n *AlterTableStmt) HaveOnlyPlacementOptions() bool { for _, n := range n.Specs { if n.Tp != AlterTablePartitionOptions { return false } if !n.IsAllPlacementRule() { return false } } return true } // Restore implements Node interface. func (n *AlterTableStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasSkipPlacementRuleForRestoreFlag() && n.HaveOnlyPlacementOptions() { return nil } ctx.WriteKeyWord("ALTER TABLE ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterTableStmt.Table") } specs := make([]*AlterTableSpec, 0, len(n.Specs)) for _, spec := range n.Specs { if spec.IsAllPlacementRule() && ctx.Flags.HasSkipPlacementRuleForRestoreFlag() { continue } if spec.Tp == AlterTableOption { newOptions := tableOptionsWithRestoreTTLFlag(ctx.Flags, spec.Options) if len(newOptions) == 0 { continue } newSpec := *spec newSpec.Options = newOptions spec = &newSpec } specs = append(specs, spec) } for i, spec := range specs { if i == 0 || spec.Tp == AlterTablePartition || spec.Tp == AlterTableRemovePartitioning || spec.Tp == AlterTableImportTablespace || spec.Tp == AlterTableDiscardTablespace { ctx.WritePlain(" ") } else { ctx.WritePlain(", ") } if err := spec.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore AlterTableStmt.Specs[%d]", i) } } return nil } // Accept implements Node Accept interface. func (n *AlterTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AlterTableStmt) node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) for i, val := range n.Specs { node, ok = val.Accept(v) if !ok { return n, false } n.Specs[i] = node.(*AlterTableSpec) } return v.Leave(n) } // TruncateTableStmt is a statement to empty a table completely. // See https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html type TruncateTableStmt struct { ddlNode Table *TableName } // Restore implements Node interface. func (n *TruncateTableStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("TRUNCATE TABLE ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore TruncateTableStmt.Table") } return nil } // Accept implements Node Accept interface. func (n *TruncateTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*TruncateTableStmt) node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) return v.Leave(n) } var ( ErrNoParts = terror.ClassDDL.NewStd(mysql.ErrNoParts) ErrPartitionColumnList = terror.ClassDDL.NewStd(mysql.ErrPartitionColumnList) ErrPartitionRequiresValues = terror.ClassDDL.NewStd(mysql.ErrPartitionRequiresValues) ErrPartitionsMustBeDefined = terror.ClassDDL.NewStd(mysql.ErrPartitionsMustBeDefined) ErrPartitionWrongNoPart = terror.ClassDDL.NewStd(mysql.ErrPartitionWrongNoPart) ErrPartitionWrongNoSubpart = terror.ClassDDL.NewStd(mysql.ErrPartitionWrongNoSubpart) ErrPartitionWrongValues = terror.ClassDDL.NewStd(mysql.ErrPartitionWrongValues) ErrRowSinglePartitionField = terror.ClassDDL.NewStd(mysql.ErrRowSinglePartitionField) ErrSubpartition = terror.ClassDDL.NewStd(mysql.ErrSubpartition) ErrSystemVersioningWrongPartitions = terror.ClassDDL.NewStd(mysql.ErrSystemVersioningWrongPartitions) ErrTooManyValues = terror.ClassDDL.NewStd(mysql.ErrTooManyValues) ErrWrongPartitionTypeExpectedSystemTime = terror.ClassDDL.NewStd(mysql.ErrWrongPartitionTypeExpectedSystemTime) ErrUnknownCharacterSet = terror.ClassDDL.NewStd(mysql.ErrUnknownCharacterSet) ErrCoalescePartitionNoPartition = terror.ClassDDL.NewStd(mysql.ErrCoalescePartitionNoPartition) ErrWrongUsage = terror.ClassDDL.NewStd(mysql.ErrWrongUsage) ) type SubPartitionDefinition struct { Name model.CIStr Options []*TableOption } func (spd *SubPartitionDefinition) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("SUBPARTITION ") ctx.WriteName(spd.Name.O) for i, opt := range spd.Options { ctx.WritePlain(" ") if err := opt.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore SubPartitionDefinition.Options[%d]", i) } } return nil } type PartitionDefinitionClause interface { restore(ctx *format.RestoreCtx) error acceptInPlace(v Visitor) bool // Validate checks if the clause is consistent with the given options. // `pt` can be 0 and `columns` can be -1 to skip checking the clause against // the partition type or number of columns in the expression list. Validate(pt model.PartitionType, columns int) error } type PartitionDefinitionClauseNone struct{} func (*PartitionDefinitionClauseNone) restore(_ *format.RestoreCtx) error { return nil } func (*PartitionDefinitionClauseNone) acceptInPlace(_ Visitor) bool { return true } func (*PartitionDefinitionClauseNone) Validate(pt model.PartitionType, _ int) error { switch pt { case 0: case model.PartitionTypeRange: return ErrPartitionRequiresValues.GenWithStackByArgs("RANGE", "LESS THAN") case model.PartitionTypeList: return ErrPartitionRequiresValues.GenWithStackByArgs("LIST", "IN") case model.PartitionTypeSystemTime: return ErrSystemVersioningWrongPartitions } return nil } type PartitionDefinitionClauseLessThan struct { Exprs []ExprNode } func (n *PartitionDefinitionClauseLessThan) restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord(" VALUES LESS THAN ") ctx.WritePlain("(") for i, expr := range n.Exprs { if i != 0 { ctx.WritePlain(", ") } if err := expr.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore PartitionDefinitionClauseLessThan.Exprs[%d]", i) } } ctx.WritePlain(")") return nil } func (n *PartitionDefinitionClauseLessThan) acceptInPlace(v Visitor) bool { for i, expr := range n.Exprs { newExpr, ok := expr.Accept(v) if !ok { return false } n.Exprs[i] = newExpr.(ExprNode) } return true } func (n *PartitionDefinitionClauseLessThan) Validate(pt model.PartitionType, columns int) error { switch pt { case model.PartitionTypeRange, 0: default: return ErrPartitionWrongValues.GenWithStackByArgs("RANGE", "LESS THAN") } switch { case columns == 0 && len(n.Exprs) != 1: return ErrTooManyValues.GenWithStackByArgs("RANGE") case columns > 0 && len(n.Exprs) != columns: return ErrPartitionColumnList } return nil } type PartitionDefinitionClauseIn struct { Values [][]ExprNode } func (n *PartitionDefinitionClauseIn) restore(ctx *format.RestoreCtx) error { // we special-case an empty list of values to mean MariaDB's "DEFAULT" clause. if len(n.Values) == 0 { ctx.WriteKeyWord(" DEFAULT") return nil } if len(n.Values) == 1 && len(n.Values[0]) == 1 { if _, ok := n.Values[0][0].(*DefaultExpr); ok { ctx.WriteKeyWord(" DEFAULT") return nil } } ctx.WriteKeyWord(" VALUES IN ") ctx.WritePlain("(") for i, valList := range n.Values { if i != 0 { ctx.WritePlain(", ") } if len(valList) == 1 { if err := valList[0].Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore PartitionDefinitionClauseIn.Values[%d][0]", i) } } else { ctx.WritePlain("(") for j, val := range valList { if j != 0 { ctx.WritePlain(", ") } if err := val.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore PartitionDefinitionClauseIn.Values[%d][%d]", i, j) } } ctx.WritePlain(")") } } ctx.WritePlain(")") return nil } func (n *PartitionDefinitionClauseIn) acceptInPlace(v Visitor) bool { for _, valList := range n.Values { for j, val := range valList { newVal, ok := val.Accept(v) if !ok { return false } valList[j] = newVal.(ExprNode) } } return true } func (n *PartitionDefinitionClauseIn) Validate(pt model.PartitionType, columns int) error { switch pt { case model.PartitionTypeList, 0: default: return ErrPartitionWrongValues.GenWithStackByArgs("LIST", "IN") } if len(n.Values) == 0 { return nil } nextIdx := 1 expectedColCount := len(n.Values[0]) // OK if one of the n.Values is DefaultExpr as only value if expectedColCount == 1 { if _, ok := n.Values[0][0].(*DefaultExpr); ok { // Only DEFAULT in the partition definition, OK if len(n.Values) > 1 { expectedColCount = len(n.Values[1]) nextIdx++ } } } for _, val := range n.Values[nextIdx:] { if len(val) != expectedColCount { if _, ok := val[0].(*DefaultExpr); ok && len(val) == 1 { continue } return ErrPartitionColumnList } } switch { case columns == 0 && expectedColCount != 1: return ErrRowSinglePartitionField case columns > 0 && expectedColCount != columns: if len(n.Values) == 1 && expectedColCount == 1 { if _, ok := n.Values[0][0].(*DefaultExpr); ok { // Only one value, which is DEFAULT, which is OK return nil } } return ErrPartitionColumnList } return nil } type PartitionDefinitionClauseHistory struct { Current bool } func (n *PartitionDefinitionClauseHistory) restore(ctx *format.RestoreCtx) error { if n.Current { ctx.WriteKeyWord(" CURRENT") } else { ctx.WriteKeyWord(" HISTORY") } return nil } func (*PartitionDefinitionClauseHistory) acceptInPlace(_ Visitor) bool { return true } func (*PartitionDefinitionClauseHistory) Validate(pt model.PartitionType, _ int) error { switch pt { case 0, model.PartitionTypeSystemTime: default: return ErrWrongPartitionTypeExpectedSystemTime } return nil } // PartitionDefinition defines a single partition. type PartitionDefinition struct { Name model.CIStr Clause PartitionDefinitionClause Options []*TableOption Sub []*SubPartitionDefinition } // Comment returns the comment option given to this definition. // The second return value indicates if the comment option exists. func (n *PartitionDefinition) Comment() (string, bool) { for _, opt := range n.Options { if opt.Tp == TableOptionComment { return opt.StrValue, true } } return "", false } func (n *PartitionDefinition) acceptInPlace(v Visitor) bool { return n.Clause.acceptInPlace(v) } // Restore implements Node interface. func (n *PartitionDefinition) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("PARTITION ") ctx.WriteName(n.Name.O) if err := n.Clause.restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore PartitionDefinition.Clause") } for i, opt := range n.Options { ctx.WritePlain(" ") if err := opt.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore PartitionDefinition.Options[%d]", i) } } if len(n.Sub) > 0 { ctx.WritePlain(" (") for i, spd := range n.Sub { if i != 0 { ctx.WritePlain(",") } if err := spd.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore PartitionDefinition.Sub[%d]", i) } } ctx.WritePlain(")") } return nil } type PartitionIntervalExpr struct { Expr ExprNode // TimeUnitInvalid if not Time based INTERVAL! TimeUnit TimeUnitType } type PartitionInterval struct { // To be able to get original text and replace the syntactic sugar with generated // partition definitions node IntervalExpr PartitionIntervalExpr FirstRangeEnd *ExprNode LastRangeEnd *ExprNode MaxValPart bool NullPart bool } // PartitionMethod describes how partitions or subpartitions are constructed. type PartitionMethod struct { // To be able to get original text and replace the syntactic sugar with generated // partition definitions node // Tp is the type of the partition function Tp model.PartitionType // Linear is a modifier to the HASH and KEY type for choosing a different // algorithm Linear bool // Expr is an expression used as argument of HASH, RANGE AND LIST types Expr ExprNode // ColumnNames is a list of column names used as argument of KEY, // RANGE COLUMNS and LIST COLUMNS types ColumnNames []*ColumnName // Unit is a time unit used as argument of SYSTEM_TIME type Unit TimeUnitType // Limit is a row count used as argument of the SYSTEM_TIME type Limit uint64 // Num is the number of (sub)partitions required by the method. Num uint64 // KeyAlgorithm is the optional hash algorithm type for `PARTITION BY [LINEAR] KEY` syntax. KeyAlgorithm *PartitionKeyAlgorithm Interval *PartitionInterval } type PartitionKeyAlgorithm struct { Type uint64 } // Restore implements the Node interface func (n *PartitionMethod) Restore(ctx *format.RestoreCtx) error { if n.Linear { ctx.WriteKeyWord("LINEAR ") } ctx.WriteKeyWord(n.Tp.String()) if n.KeyAlgorithm != nil { ctx.WriteKeyWord(" ALGORITHM") ctx.WritePlainf(" = %d", n.KeyAlgorithm.Type) } switch { case n.Tp == model.PartitionTypeSystemTime: if n.Expr != nil && n.Unit != TimeUnitInvalid { ctx.WriteKeyWord(" INTERVAL ") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore PartitionMethod.Expr") } ctx.WritePlain(" ") ctx.WriteKeyWord(n.Unit.String()) } if n.Limit > 0 { ctx.WriteKeyWord(" LIMIT ") ctx.WritePlainf("%d", n.Limit) } case n.Expr != nil: ctx.WritePlain(" (") if err := n.Expr.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore PartitionMethod.Expr") } ctx.WritePlain(")") default: if n.Tp == model.PartitionTypeRange || n.Tp == model.PartitionTypeList { ctx.WriteKeyWord(" COLUMNS") } ctx.WritePlain(" (") for i, col := range n.ColumnNames { if i > 0 { ctx.WritePlain(",") } if err := col.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing PartitionMethod.ColumnName[%d]", i) } } ctx.WritePlain(")") } if n.Interval != nil { ctx.WritePlain(" INTERVAL (") n.Interval.IntervalExpr.Expr.Restore(ctx) if n.Interval.IntervalExpr.TimeUnit != TimeUnitInvalid { ctx.WritePlain(" ") ctx.WriteKeyWord(n.Interval.IntervalExpr.TimeUnit.String()) } ctx.WritePlain(")") if n.Interval.FirstRangeEnd != nil { ctx.WritePlain(" FIRST PARTITION LESS THAN (") (*n.Interval.FirstRangeEnd).Restore(ctx) ctx.WritePlain(")") } if n.Interval.LastRangeEnd != nil { ctx.WritePlain(" LAST PARTITION LESS THAN (") (*n.Interval.LastRangeEnd).Restore(ctx) ctx.WritePlain(")") } if n.Interval.NullPart { ctx.WritePlain(" NULL PARTITION") } if n.Interval.MaxValPart { ctx.WritePlain(" MAXVALUE PARTITION") } } return nil } // acceptInPlace is like Node.Accept but does not allow replacing the node itself. func (n *PartitionMethod) acceptInPlace(v Visitor) bool { if n.Expr != nil { expr, ok := n.Expr.Accept(v) if !ok { return false } n.Expr = expr.(ExprNode) } for i, colName := range n.ColumnNames { newColName, ok := colName.Accept(v) if !ok { return false } n.ColumnNames[i] = newColName.(*ColumnName) } return true } // PartitionOptions specifies the partition options. type PartitionOptions struct { PartitionMethod Sub *PartitionMethod Definitions []*PartitionDefinition } // Validate checks if the partition is well-formed. func (n *PartitionOptions) Validate() error { // if both a partition list and the partition numbers are specified, their values must match if n.Num != 0 && len(n.Definitions) != 0 && n.Num != uint64(len(n.Definitions)) { return ErrPartitionWrongNoPart } // now check the subpartition count if len(n.Definitions) > 0 { // ensure the subpartition count for every partitions are the same // then normalize n.Num and n.Sub.Num so equality comparison works. n.Num = uint64(len(n.Definitions)) subDefCount := len(n.Definitions[0].Sub) for _, pd := range n.Definitions[1:] { if len(pd.Sub) != subDefCount { return ErrPartitionWrongNoSubpart } } if n.Sub != nil { if n.Sub.Num != 0 && subDefCount != 0 && n.Sub.Num != uint64(subDefCount) { return ErrPartitionWrongNoSubpart } if subDefCount != 0 { n.Sub.Num = uint64(subDefCount) } } else if subDefCount != 0 { return ErrSubpartition } } switch n.Tp { case model.PartitionTypeHash, model.PartitionTypeKey: if n.Num == 0 { n.Num = 1 } case model.PartitionTypeRange, model.PartitionTypeList: if n.Interval == nil && len(n.Definitions) == 0 { return ErrPartitionsMustBeDefined.GenWithStackByArgs(n.Tp) } case model.PartitionTypeSystemTime: if len(n.Definitions) < 2 { return ErrSystemVersioningWrongPartitions } } for _, pd := range n.Definitions { // ensure the partition definition types match the methods, // e.g. RANGE partitions only allows VALUES LESS THAN if err := pd.Clause.Validate(n.Tp, len(n.ColumnNames)); err != nil { return err } } return nil } func (n *PartitionOptions) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("PARTITION BY ") if err := n.PartitionMethod.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore PartitionOptions.PartitionMethod") } if n.Num > 0 && len(n.Definitions) == 0 { ctx.WriteKeyWord(" PARTITIONS ") ctx.WritePlainf("%d", n.Num) } if n.Sub != nil { ctx.WriteKeyWord(" SUBPARTITION BY ") if err := n.Sub.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore PartitionOptions.Sub") } if n.Sub.Num > 0 { ctx.WriteKeyWord(" SUBPARTITIONS ") ctx.WritePlainf("%d", n.Sub.Num) } } if len(n.Definitions) > 0 { ctx.WritePlain(" (") for i, def := range n.Definitions { if i > 0 { ctx.WritePlain(",") } if err := def.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore PartitionOptions.Definitions[%d]", i) } } ctx.WritePlain(")") } return nil } func (n *PartitionOptions) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*PartitionOptions) if !n.PartitionMethod.acceptInPlace(v) { return n, false } if n.Sub != nil && !n.Sub.acceptInPlace(v) { return n, false } for _, def := range n.Definitions { if !def.acceptInPlace(v) { return n, false } } return v.Leave(n) } // RecoverTableStmt is a statement to recover dropped table. type RecoverTableStmt struct { ddlNode JobID int64 Table *TableName JobNum int64 } // Restore implements Node interface. func (n *RecoverTableStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("RECOVER TABLE ") if n.Table != nil { if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing RecoverTableStmt Table") } if n.JobNum > 0 { ctx.WritePlainf(" %d", n.JobNum) } } else { ctx.WriteKeyWord("BY JOB ") ctx.WritePlainf("%d", n.JobID) } return nil } // Accept implements Node Accept interface. func (n *RecoverTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*RecoverTableStmt) if n.Table != nil { node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) } return v.Leave(n) } // FlashBackToTimestampStmt is a statement to restore the cluster to the specified timestamp type FlashBackToTimestampStmt struct { ddlNode FlashbackTS ExprNode FlashbackTSO uint64 Tables []*TableName DBName model.CIStr } // Restore implements Node interface func (n *FlashBackToTimestampStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("FLASHBACK ") if len(n.Tables) != 0 { ctx.WriteKeyWord("TABLE ") for index, table := range n.Tables { if index != 0 { ctx.WritePlain(", ") } if err := table.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while restore DropTableStmt.Tables[%d]", index) } } } else if n.DBName.O != "" { ctx.WriteKeyWord("DATABASE ") ctx.WriteName(n.DBName.O) } else { ctx.WriteKeyWord("CLUSTER") } if n.FlashbackTSO == 0 { ctx.WriteKeyWord(" TO TIMESTAMP ") if err := n.FlashbackTS.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing FlashBackToTimestampStmt.FlashbackTS") } } else { ctx.WriteKeyWord(" TO TSO ") ctx.WritePlainf("%d", n.FlashbackTSO) } return nil } // Accept implements Node Accept interface. func (n *FlashBackToTimestampStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*FlashBackToTimestampStmt) if len(n.Tables) != 0 { for i, val := range n.Tables { node, ok := val.Accept(v) if !ok { return n, false } n.Tables[i] = node.(*TableName) } } if n.FlashbackTSO == 0 { node, ok := n.FlashbackTS.Accept(v) if !ok { return n, false } n.FlashbackTS = node.(ExprNode) } return v.Leave(n) } // FlashBackTableStmt is a statement to restore a dropped/truncate table. type FlashBackTableStmt struct { ddlNode Table *TableName NewName string } // Restore implements Node interface. func (n *FlashBackTableStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("FLASHBACK TABLE ") if err := n.Table.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while splicing RecoverTableStmt Table") } if len(n.NewName) > 0 { ctx.WriteKeyWord(" TO ") ctx.WriteName(n.NewName) } return nil } // Accept implements Node Accept interface. func (n *FlashBackTableStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*FlashBackTableStmt) if n.Table != nil { node, ok := n.Table.Accept(v) if !ok { return n, false } n.Table = node.(*TableName) } return v.Leave(n) } type AttributesSpec struct { node Attributes string Default bool } func (n *AttributesSpec) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("ATTRIBUTES") ctx.WritePlain("=") if n.Default { ctx.WriteKeyWord("DEFAULT") return nil } ctx.WriteString(n.Attributes) return nil } func (n *AttributesSpec) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AttributesSpec) return v.Leave(n) } type StatsOptionsSpec struct { node StatsOptions string Default bool } func (n *StatsOptionsSpec) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("STATS_OPTIONS") ctx.WritePlain("=") if n.Default { ctx.WriteKeyWord("DEFAULT") return nil } ctx.WriteString(n.StatsOptions) return nil } func (n *StatsOptionsSpec) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*StatsOptionsSpec) return v.Leave(n) } // AlterPlacementPolicyStmt is a statement to alter placement policy option. type AlterPlacementPolicyStmt struct { ddlNode PolicyName model.CIStr IfExists bool PlacementOptions []*PlacementOption } func (n *AlterPlacementPolicyStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasSkipPlacementRuleForRestoreFlag() { return nil } if ctx.Flags.HasTiDBSpecialCommentFlag() { return restorePlacementStmtInSpecialComment(ctx, n) } ctx.WriteKeyWord("ALTER PLACEMENT POLICY ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.PolicyName.O) for i, option := range n.PlacementOptions { ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing AlterPlacementPolicyStmt TableOption: [%v]", i) } } return nil } func (n *AlterPlacementPolicyStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AlterPlacementPolicyStmt) return v.Leave(n) } func CheckAppend(ops []*ResourceGroupOption, newOp *ResourceGroupOption) bool { for _, op := range ops { if op.Tp == newOp.Tp { return false } } return true } func CheckRunawayAppend(ops []*ResourceGroupRunawayOption, newOp *ResourceGroupRunawayOption) bool { for _, op := range ops { if op.Tp == newOp.Tp { return false } } return true } func CheckBackgroundAppend(ops []*ResourceGroupBackgroundOption, newOp *ResourceGroupBackgroundOption) bool { for _, op := range ops { if op.Type == newOp.Type { return false } } return true } // AlterResourceGroupStmt is a statement to alter placement policy option. type AlterResourceGroupStmt struct { ddlNode ResourceGroupName model.CIStr IfExists bool ResourceGroupOptionList []*ResourceGroupOption } func (n *AlterResourceGroupStmt) Restore(ctx *format.RestoreCtx) error { if ctx.Flags.HasTiDBSpecialCommentFlag() { return restoreStmtInSpecialComment(ctx, n, tidb.FeatureIDResourceGroup) } ctx.WriteKeyWord("ALTER RESOURCE GROUP ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } ctx.WriteName(n.ResourceGroupName.O) for i, option := range n.ResourceGroupOptionList { if i > 0 { ctx.WritePlain(",") } ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing AlterResourceGroupStmt Options: [%v]", i) } } return nil } func (n *AlterResourceGroupStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AlterResourceGroupStmt) return v.Leave(n) } // AlterSequenceStmt is a statement to alter sequence option. type AlterSequenceStmt struct { ddlNode // sequence name Name *TableName IfExists bool SeqOptions []*SequenceOption } func (n *AlterSequenceStmt) Restore(ctx *format.RestoreCtx) error { ctx.WriteKeyWord("ALTER SEQUENCE ") if n.IfExists { ctx.WriteKeyWord("IF EXISTS ") } if err := n.Name.Restore(ctx); err != nil { return errors.Annotate(err, "An error occurred while restore AlterSequenceStmt.Table") } for i, option := range n.SeqOptions { ctx.WritePlain(" ") if err := option.Restore(ctx); err != nil { return errors.Annotatef(err, "An error occurred while splicing AlterSequenceStmt SequenceOption: [%v]", i) } } return nil } func (n *AlterSequenceStmt) Accept(v Visitor) (Node, bool) { newNode, skipChildren := v.Enter(n) if skipChildren { return v.Leave(newNode) } n = newNode.(*AlterSequenceStmt) node, ok := n.Name.Accept(v) if !ok { return n, false } n.Name = node.(*TableName) return v.Leave(n) } func restorePlacementStmtInSpecialComment(ctx *format.RestoreCtx, n DDLNode) error { return restoreStmtInSpecialComment(ctx, n, tidb.FeatureIDPlacement) } func restoreStmtInSpecialComment(ctx *format.RestoreCtx, n DDLNode, feature string) error { origFlags := ctx.Flags defer func() { ctx.Flags = origFlags }() ctx.Flags |= format.RestoreTiDBSpecialComment return ctx.WriteWithSpecialComments(feature, func() error { ctx.Flags &= ^format.RestoreTiDBSpecialComment return n.Restore(ctx) }) } func tableOptionsWithRestoreTTLFlag(flags format.RestoreFlags, options []*TableOption) []*TableOption { if !flags.HasRestoreWithTTLEnableOff() { return options } newOptions := make([]*TableOption, 0, len(options)) for _, opt := range options { if opt.Tp == TableOptionTTLEnable { continue } newOptions = append(newOptions, opt) if opt.Tp == TableOptionTTL { newOptions = append(newOptions, &TableOption{ Tp: TableOptionTTLEnable, BoolValue: false, }) } } return newOptions }