// Copyright 2017 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package core import ( "math" "github.com/pingcap/errors" "github.com/pingcap/failpoint" "github.com/pingcap/tidb/expression" "github.com/pingcap/tidb/expression/aggregation" "github.com/pingcap/tidb/kv" "github.com/pingcap/tidb/parser/ast" "github.com/pingcap/tidb/parser/charset" "github.com/pingcap/tidb/parser/model" "github.com/pingcap/tidb/parser/mysql" "github.com/pingcap/tidb/planner/property" "github.com/pingcap/tidb/planner/util" "github.com/pingcap/tidb/sessionctx" "github.com/pingcap/tidb/statistics" "github.com/pingcap/tidb/table/tables" "github.com/pingcap/tidb/types" "github.com/pingcap/tidb/util/chunk" "github.com/pingcap/tidb/util/collate" "github.com/pingcap/tidb/util/logutil" "github.com/pingcap/tidb/util/mathutil" "github.com/pingcap/tidb/util/paging" "github.com/pingcap/tidb/util/plancodec" "github.com/pingcap/tidb/util/size" "github.com/pingcap/tipb/go-tipb" "go.uber.org/zap" ) var ( _ task = &copTask{} _ task = &rootTask{} _ task = &mppTask{} ) // task is a new version of `PhysicalPlanInfo`. It stores cost information for a task. // A task may be CopTask, RootTask, MPPTaskMeta or a ParallelTask. type task interface { count() float64 copy() task plan() PhysicalPlan invalid() bool convertToRootTask(ctx sessionctx.Context) *rootTask MemoryUsage() int64 } // copTask is a task that runs in a distributed kv store. // TODO: In future, we should split copTask to indexTask and tableTask. type copTask struct { indexPlan PhysicalPlan tablePlan PhysicalPlan // indexPlanFinished means we have finished index plan. indexPlanFinished bool // keepOrder indicates if the plan scans data by order. keepOrder bool // needExtraProj means an extra prune is needed because // in double read / index merge cases, they may output one more column for handle(row id). needExtraProj bool // originSchema is the target schema to be projected to when needExtraProj is true. originSchema *expression.Schema extraHandleCol *expression.Column commonHandleCols []*expression.Column // tblColHists stores the original stats of DataSource, it is used to get // average row width when computing network cost. tblColHists *statistics.HistColl // tblCols stores the original columns of DataSource before being pruned, it // is used to compute average row width when computing scan cost. tblCols []*expression.Column idxMergePartPlans []PhysicalPlan idxMergeIsIntersection bool idxMergeAccessMVIndex bool // rootTaskConds stores select conditions containing virtual columns. // These conditions can't push to TiKV, so we have to add a selection for rootTask rootTaskConds []expression.Expression // For table partition. partitionInfo PartitionInfo // expectCnt is the expected row count of upper task, 0 for unlimited. // It's used for deciding whether using paging distsql. expectCnt uint64 } func (t *copTask) invalid() bool { return t.tablePlan == nil && t.indexPlan == nil } func (t *rootTask) invalid() bool { return t.p == nil } func (t *copTask) count() float64 { if t.indexPlanFinished { return t.tablePlan.statsInfo().RowCount } return t.indexPlan.statsInfo().RowCount } func (t *copTask) copy() task { nt := *t return &nt } func (t *copTask) plan() PhysicalPlan { if t.indexPlanFinished { return t.tablePlan } return t.indexPlan } func attachPlan2Task(p PhysicalPlan, t task) task { switch v := t.(type) { case *copTask: if v.indexPlanFinished { p.SetChildren(v.tablePlan) v.tablePlan = p } else { p.SetChildren(v.indexPlan) v.indexPlan = p } case *rootTask: p.SetChildren(v.p) v.p = p case *mppTask: p.SetChildren(v.p) v.p = p } return t } // finishIndexPlan means we no longer add plan to index plan, and compute the network cost for it. func (t *copTask) finishIndexPlan() { if t.indexPlanFinished { return } t.indexPlanFinished = true if t.tablePlan != nil { ts := t.tablePlan.(*PhysicalTableScan) originStats := ts.stats ts.stats = t.indexPlan.statsInfo() if originStats != nil { // keep the original stats version ts.stats.StatsVersion = originStats.StatsVersion } } } func (t *copTask) getStoreType() kv.StoreType { if t.tablePlan == nil { return kv.TiKV } tp := t.tablePlan for len(tp.Children()) > 0 { if len(tp.Children()) > 1 { return kv.TiFlash } tp = tp.Children()[0] } if ts, ok := tp.(*PhysicalTableScan); ok { return ts.StoreType } return kv.TiKV } // MemoryUsage return the memory usage of copTask func (t *copTask) MemoryUsage() (sum int64) { if t == nil { return } sum = size.SizeOfInterface*(2+int64(cap(t.idxMergePartPlans)+cap(t.rootTaskConds))) + size.SizeOfBool*3 + size.SizeOfUint64 + size.SizeOfPointer*(3+int64(cap(t.commonHandleCols)+cap(t.tblCols))) + size.SizeOfSlice*4 + t.partitionInfo.MemoryUsage() if t.indexPlan != nil { sum += t.indexPlan.MemoryUsage() } if t.tablePlan != nil { sum += t.tablePlan.MemoryUsage() } if t.originSchema != nil { sum += t.originSchema.MemoryUsage() } if t.extraHandleCol != nil { sum += t.extraHandleCol.MemoryUsage() } for _, col := range t.commonHandleCols { sum += col.MemoryUsage() } for _, col := range t.tblCols { sum += col.MemoryUsage() } for _, p := range t.idxMergePartPlans { sum += p.MemoryUsage() } for _, expr := range t.rootTaskConds { sum += expr.MemoryUsage() } return } func (p *basePhysicalPlan) attach2Task(tasks ...task) task { t := tasks[0].convertToRootTask(p.ctx) return attachPlan2Task(p.self, t) } func (p *PhysicalUnionScan) attach2Task(tasks ...task) task { // We need to pull the projection under unionScan upon unionScan. // Since the projection only prunes columns, it's ok the put it upon unionScan. if sel, ok := tasks[0].plan().(*PhysicalSelection); ok { if pj, ok := sel.children[0].(*PhysicalProjection); ok { // Convert unionScan->selection->projection to projection->unionScan->selection. sel.SetChildren(pj.children...) p.SetChildren(sel) p.stats = tasks[0].plan().statsInfo() rt, _ := tasks[0].(*rootTask) rt.p = p pj.SetChildren(p) return pj.attach2Task(tasks...) } } if pj, ok := tasks[0].plan().(*PhysicalProjection); ok { // Convert unionScan->projection to projection->unionScan, because unionScan can't handle projection as its children. p.SetChildren(pj.children...) p.stats = tasks[0].plan().statsInfo() rt, _ := tasks[0].(*rootTask) rt.p = pj.children[0] pj.SetChildren(p) return pj.attach2Task(p.basePhysicalPlan.attach2Task(tasks...)) } p.stats = tasks[0].plan().statsInfo() return p.basePhysicalPlan.attach2Task(tasks...) } func (p *PhysicalApply) attach2Task(tasks ...task) task { lTask := tasks[0].convertToRootTask(p.ctx) rTask := tasks[1].convertToRootTask(p.ctx) p.SetChildren(lTask.plan(), rTask.plan()) p.schema = BuildPhysicalJoinSchema(p.JoinType, p) t := &rootTask{ p: p, } return t } func (p *PhysicalIndexMergeJoin) attach2Task(tasks ...task) task { innerTask := p.innerTask outerTask := tasks[1-p.InnerChildIdx].convertToRootTask(p.ctx) if p.InnerChildIdx == 1 { p.SetChildren(outerTask.plan(), innerTask.plan()) } else { p.SetChildren(innerTask.plan(), outerTask.plan()) } t := &rootTask{ p: p, } return t } func (p *PhysicalIndexHashJoin) attach2Task(tasks ...task) task { innerTask := p.innerTask outerTask := tasks[1-p.InnerChildIdx].convertToRootTask(p.ctx) if p.InnerChildIdx == 1 { p.SetChildren(outerTask.plan(), innerTask.plan()) } else { p.SetChildren(innerTask.plan(), outerTask.plan()) } t := &rootTask{ p: p, } return t } func (p *PhysicalIndexJoin) attach2Task(tasks ...task) task { innerTask := p.innerTask outerTask := tasks[1-p.InnerChildIdx].convertToRootTask(p.ctx) if p.InnerChildIdx == 1 { p.SetChildren(outerTask.plan(), innerTask.plan()) } else { p.SetChildren(innerTask.plan(), outerTask.plan()) } t := &rootTask{ p: p, } return t } func getAvgRowSize(stats *property.StatsInfo, cols []*expression.Column) (size float64) { if stats.HistColl != nil { size = stats.HistColl.GetAvgRowSizeListInDisk(cols) } else { // Estimate using just the type info. for _, col := range cols { size += float64(chunk.EstimateTypeWidth(col.GetType())) } } return } func (p *PhysicalHashJoin) attach2Task(tasks ...task) task { if p.storeTp == kv.TiFlash { return p.attach2TaskForTiFlash(tasks...) } lTask := tasks[0].convertToRootTask(p.ctx) rTask := tasks[1].convertToRootTask(p.ctx) p.SetChildren(lTask.plan(), rTask.plan()) task := &rootTask{ p: p, } return task } // TiDB only require that the types fall into the same catalog but TiFlash require the type to be exactly the same, so // need to check if the conversion is a must func needConvert(tp *types.FieldType, rtp *types.FieldType) bool { // all the string type are mapped to the same type in TiFlash, so // do not need convert for string types if types.IsString(tp.GetType()) && types.IsString(rtp.GetType()) { return false } if tp.GetType() != rtp.GetType() { return true } if tp.GetType() != mysql.TypeNewDecimal { return false } if tp.GetDecimal() != rtp.GetDecimal() { return true } // for decimal type, TiFlash have 4 different impl based on the required precision if tp.GetFlen() >= 0 && tp.GetFlen() <= 9 && rtp.GetFlen() >= 0 && rtp.GetFlen() <= 9 { return false } if tp.GetFlen() > 9 && tp.GetFlen() <= 18 && rtp.GetFlen() > 9 && rtp.GetFlen() <= 18 { return false } if tp.GetFlen() > 18 && tp.GetFlen() <= 38 && rtp.GetFlen() > 18 && rtp.GetFlen() <= 38 { return false } if tp.GetFlen() > 38 && tp.GetFlen() <= 65 && rtp.GetFlen() > 38 && rtp.GetFlen() <= 65 { return false } return true } func negotiateCommonType(lType, rType *types.FieldType) (*types.FieldType, bool, bool) { commonType := types.AggFieldType([]*types.FieldType{lType, rType}) if commonType.GetType() == mysql.TypeNewDecimal { lExtend := 0 rExtend := 0 cDec := rType.GetDecimal() if lType.GetDecimal() < rType.GetDecimal() { lExtend = rType.GetDecimal() - lType.GetDecimal() } else if lType.GetDecimal() > rType.GetDecimal() { rExtend = lType.GetDecimal() - rType.GetDecimal() cDec = lType.GetDecimal() } lLen, rLen := lType.GetFlen()+lExtend, rType.GetFlen()+rExtend cLen := mathutil.Max(lLen, rLen) commonType.SetDecimalUnderLimit(cDec) commonType.SetFlenUnderLimit(cLen) } else if needConvert(lType, commonType) || needConvert(rType, commonType) { if mysql.IsIntegerType(commonType.GetType()) { // If the target type is int, both TiFlash and Mysql only support cast to Int64 // so we need to promote the type to Int64 commonType.SetType(mysql.TypeLonglong) commonType.SetFlen(mysql.MaxIntWidth) } } return commonType, needConvert(lType, commonType), needConvert(rType, commonType) } func getProj(ctx sessionctx.Context, p PhysicalPlan) *PhysicalProjection { proj := PhysicalProjection{ Exprs: make([]expression.Expression, 0, len(p.Schema().Columns)), }.Init(ctx, p.statsInfo(), p.SelectBlockOffset()) for _, col := range p.Schema().Columns { proj.Exprs = append(proj.Exprs, col) } proj.SetSchema(p.Schema().Clone()) proj.SetChildren(p) return proj } func appendExpr(p *PhysicalProjection, expr expression.Expression) *expression.Column { p.Exprs = append(p.Exprs, expr) col := &expression.Column{ UniqueID: p.ctx.GetSessionVars().AllocPlanColumnID(), RetType: expr.GetType(), } col.SetCoercibility(expr.Coercibility()) p.schema.Append(col) return col } // TiFlash join require that partition key has exactly the same type, while TiDB only guarantee the partition key is the same catalog, // so if the partition key type is not exactly the same, we need add a projection below the join or exchanger if exists. func (p *PhysicalHashJoin) convertPartitionKeysIfNeed(lTask, rTask *mppTask) (*mppTask, *mppTask) { lp := lTask.p if _, ok := lp.(*PhysicalExchangeReceiver); ok { lp = lp.Children()[0].Children()[0] } rp := rTask.p if _, ok := rp.(*PhysicalExchangeReceiver); ok { rp = rp.Children()[0].Children()[0] } // to mark if any partition key needs to convert lMask := make([]bool, len(lTask.hashCols)) rMask := make([]bool, len(rTask.hashCols)) cTypes := make([]*types.FieldType, len(lTask.hashCols)) lChanged := false rChanged := false for i := range lTask.hashCols { lKey := lTask.hashCols[i] rKey := rTask.hashCols[i] cType, lConvert, rConvert := negotiateCommonType(lKey.Col.RetType, rKey.Col.RetType) if lConvert { lMask[i] = true cTypes[i] = cType lChanged = true } if rConvert { rMask[i] = true cTypes[i] = cType rChanged = true } } if !lChanged && !rChanged { return lTask, rTask } var lProj, rProj *PhysicalProjection if lChanged { lProj = getProj(p.ctx, lp) lp = lProj } if rChanged { rProj = getProj(p.ctx, rp) rp = rProj } lPartKeys := make([]*property.MPPPartitionColumn, 0, len(rTask.hashCols)) rPartKeys := make([]*property.MPPPartitionColumn, 0, len(lTask.hashCols)) for i := range lTask.hashCols { lKey := lTask.hashCols[i] rKey := rTask.hashCols[i] if lMask[i] { cType := cTypes[i].Clone() cType.SetFlag(lKey.Col.RetType.GetFlag()) lCast := expression.BuildCastFunction(p.ctx, lKey.Col, cType) lKey = &property.MPPPartitionColumn{Col: appendExpr(lProj, lCast), CollateID: lKey.CollateID} } if rMask[i] { cType := cTypes[i].Clone() cType.SetFlag(rKey.Col.RetType.GetFlag()) rCast := expression.BuildCastFunction(p.ctx, rKey.Col, cType) rKey = &property.MPPPartitionColumn{Col: appendExpr(rProj, rCast), CollateID: rKey.CollateID} } lPartKeys = append(lPartKeys, lKey) rPartKeys = append(rPartKeys, rKey) } // if left or right child changes, we need to add enforcer. if lChanged { nlTask := lTask.copy().(*mppTask) nlTask.p = lProj nlTask = nlTask.enforceExchanger(&property.PhysicalProperty{ TaskTp: property.MppTaskType, MPPPartitionTp: property.HashType, MPPPartitionCols: lPartKeys, }) lTask = nlTask } if rChanged { nrTask := rTask.copy().(*mppTask) nrTask.p = rProj nrTask = nrTask.enforceExchanger(&property.PhysicalProperty{ TaskTp: property.MppTaskType, MPPPartitionTp: property.HashType, MPPPartitionCols: rPartKeys, }) rTask = nrTask } return lTask, rTask } func (p *PhysicalHashJoin) attach2TaskForMpp(tasks ...task) task { lTask, lok := tasks[0].(*mppTask) rTask, rok := tasks[1].(*mppTask) if !lok || !rok { return invalidTask } if p.mppShuffleJoin { // protection check is case of some bugs if len(lTask.hashCols) != len(rTask.hashCols) || len(lTask.hashCols) == 0 { return invalidTask } lTask, rTask = p.convertPartitionKeysIfNeed(lTask, rTask) } p.SetChildren(lTask.plan(), rTask.plan()) p.schema = BuildPhysicalJoinSchema(p.JoinType, p) // outer task is the task that will pass its MPPPartitionType to the join result // for broadcast inner join, it should be the non-broadcast side, since broadcast side is always the build side, so // just use the probe side is ok. // for hash inner join, both side is ok, by default, we use the probe side // for outer join, it should always be the outer side of the join // for semi join, it should be the left side(the same as left out join) outerTaskIndex := 1 - p.InnerChildIdx if p.JoinType != InnerJoin { if p.JoinType == RightOuterJoin { outerTaskIndex = 1 } else { outerTaskIndex = 0 } } // can not use the task from tasks because it maybe updated. outerTask := lTask if outerTaskIndex == 1 { outerTask = rTask } task := &mppTask{ p: p, partTp: outerTask.partTp, hashCols: outerTask.hashCols, } return task } func (p *PhysicalHashJoin) attach2TaskForTiFlash(tasks ...task) task { lTask, lok := tasks[0].(*copTask) rTask, rok := tasks[1].(*copTask) if !lok || !rok { return p.attach2TaskForMpp(tasks...) } p.SetChildren(lTask.plan(), rTask.plan()) p.schema = BuildPhysicalJoinSchema(p.JoinType, p) if !lTask.indexPlanFinished { lTask.finishIndexPlan() } if !rTask.indexPlanFinished { rTask.finishIndexPlan() } task := &copTask{ tblColHists: rTask.tblColHists, indexPlanFinished: true, tablePlan: p, } return task } func (p *PhysicalMergeJoin) attach2Task(tasks ...task) task { lTask := tasks[0].convertToRootTask(p.ctx) rTask := tasks[1].convertToRootTask(p.ctx) p.SetChildren(lTask.plan(), rTask.plan()) t := &rootTask{ p: p, } return t } func buildIndexLookUpTask(ctx sessionctx.Context, t *copTask) *rootTask { newTask := &rootTask{} p := PhysicalIndexLookUpReader{ tablePlan: t.tablePlan, indexPlan: t.indexPlan, ExtraHandleCol: t.extraHandleCol, CommonHandleCols: t.commonHandleCols, expectedCnt: t.expectCnt, keepOrder: t.keepOrder, }.Init(ctx, t.tablePlan.SelectBlockOffset()) p.PartitionInfo = t.partitionInfo setTableScanToTableRowIDScan(p.tablePlan) p.stats = t.tablePlan.statsInfo() // Do not inject the extra Projection even if t.needExtraProj is set, or the schema between the phase-1 agg and // the final agg would be broken. Please reference comments for the similar logic in // (*copTask).convertToRootTaskImpl() for the PhysicalTableReader case. // We need to refactor these logics. aggPushedDown := false switch p.tablePlan.(type) { case *PhysicalHashAgg, *PhysicalStreamAgg: aggPushedDown = true } if t.needExtraProj && !aggPushedDown { schema := t.originSchema proj := PhysicalProjection{Exprs: expression.Column2Exprs(schema.Columns)}.Init(ctx, p.stats, t.tablePlan.SelectBlockOffset(), nil) proj.SetSchema(schema) proj.SetChildren(p) newTask.p = proj } else { newTask.p = p } return newTask } func extractRows(p PhysicalPlan) float64 { f := float64(0) for _, c := range p.Children() { if len(c.Children()) != 0 { f += extractRows(c) } else { f += c.statsInfo().RowCount } } return f } // calcPagingCost calculates the cost for paging processing which may increase the seekCnt and reduce scanned rows. func calcPagingCost(ctx sessionctx.Context, indexPlan PhysicalPlan, expectCnt uint64) float64 { sessVars := ctx.GetSessionVars() indexRows := indexPlan.StatsCount() sourceRows := extractRows(indexPlan) // with paging, the scanned rows is always less than or equal to source rows. if uint64(sourceRows) < expectCnt { expectCnt = uint64(sourceRows) } seekCnt := paging.CalculateSeekCnt(expectCnt) indexSelectivity := float64(1) if sourceRows > indexRows { indexSelectivity = indexRows / sourceRows } pagingCst := seekCnt*sessVars.GetSeekFactor(nil) + float64(expectCnt)*sessVars.GetCPUFactor() pagingCst *= indexSelectivity // we want the diff between idxCst and pagingCst here, // however, the idxCst does not contain seekFactor, so a seekFactor needs to be removed return math.Max(pagingCst-sessVars.GetSeekFactor(nil), 0) } func (t *rootTask) convertToRootTask(_ sessionctx.Context) *rootTask { return t.copy().(*rootTask) } func (t *copTask) convertToRootTask(ctx sessionctx.Context) *rootTask { // copy one to avoid changing itself. return t.copy().(*copTask).convertToRootTaskImpl(ctx) } func (t *copTask) convertToRootTaskImpl(ctx sessionctx.Context) *rootTask { // copTasks are run in parallel, to make the estimated cost closer to execution time, we amortize // the cost to cop iterator workers. According to `CopClient::Send`, the concurrency // is Min(DistSQLScanConcurrency, numRegionsInvolvedInScan), since we cannot infer // the number of regions involved, we simply use DistSQLScanConcurrency. t.finishIndexPlan() // Network cost of transferring rows of table scan to TiDB. if t.tablePlan != nil { tp := t.tablePlan for len(tp.Children()) > 0 { if len(tp.Children()) == 1 { tp = tp.Children()[0] } else { join := tp.(*PhysicalHashJoin) tp = join.children[1-join.InnerChildIdx] } } ts := tp.(*PhysicalTableScan) prevColumnLen := len(ts.Columns) prevSchema := ts.schema.Clone() ts.Columns = ExpandVirtualColumn(ts.Columns, ts.schema, ts.Table.Columns) if !t.needExtraProj && len(ts.Columns) > prevColumnLen { // Add an projection to make sure not to output extract columns. t.needExtraProj = true t.originSchema = prevSchema } } newTask := &rootTask{} if t.idxMergePartPlans != nil { p := PhysicalIndexMergeReader{ partialPlans: t.idxMergePartPlans, tablePlan: t.tablePlan, IsIntersectionType: t.idxMergeIsIntersection, AccessMVIndex: t.idxMergeAccessMVIndex, }.Init(ctx, t.idxMergePartPlans[0].SelectBlockOffset()) p.PartitionInfo = t.partitionInfo setTableScanToTableRowIDScan(p.tablePlan) newTask.p = p t.handleRootTaskConds(ctx, newTask) if t.needExtraProj { schema := t.originSchema proj := PhysicalProjection{Exprs: expression.Column2Exprs(schema.Columns)}.Init(ctx, p.stats, t.idxMergePartPlans[0].SelectBlockOffset(), nil) proj.SetSchema(schema) proj.SetChildren(p) newTask.p = proj } return newTask } if t.indexPlan != nil && t.tablePlan != nil { newTask = buildIndexLookUpTask(ctx, t) } else if t.indexPlan != nil { p := PhysicalIndexReader{indexPlan: t.indexPlan}.Init(ctx, t.indexPlan.SelectBlockOffset()) p.PartitionInfo = t.partitionInfo p.stats = t.indexPlan.statsInfo() newTask.p = p } else { tp := t.tablePlan for len(tp.Children()) > 0 { if len(tp.Children()) == 1 { tp = tp.Children()[0] } else { join := tp.(*PhysicalHashJoin) tp = join.children[1-join.InnerChildIdx] } } ts := tp.(*PhysicalTableScan) p := PhysicalTableReader{ tablePlan: t.tablePlan, StoreType: ts.StoreType, IsCommonHandle: ts.Table.IsCommonHandle, }.Init(ctx, t.tablePlan.SelectBlockOffset()) p.PartitionInfo = t.partitionInfo p.stats = t.tablePlan.statsInfo() // If agg was pushed down in attach2Task(), the partial agg was placed on the top of tablePlan, the final agg was // placed above the PhysicalTableReader, and the schema should have been set correctly for them, the schema of // partial agg contains the columns needed by the final agg. // If we add the projection here, the projection will be between the final agg and the partial agg, then the // schema will be broken, the final agg will fail to find needed columns in ResolveIndices(). // Besides, the agg would only be pushed down if it doesn't contain virtual columns, so virtual column should not be affected. aggPushedDown := false switch p.tablePlan.(type) { case *PhysicalHashAgg, *PhysicalStreamAgg: aggPushedDown = true } if t.needExtraProj && !aggPushedDown { proj := PhysicalProjection{Exprs: expression.Column2Exprs(t.originSchema.Columns)}.Init(ts.ctx, ts.stats, ts.SelectBlockOffset(), nil) proj.SetSchema(t.originSchema) proj.SetChildren(p) newTask.p = proj } else { newTask.p = p } } t.handleRootTaskConds(ctx, newTask) return newTask } func (t *copTask) handleRootTaskConds(ctx sessionctx.Context, newTask *rootTask) { if len(t.rootTaskConds) > 0 { selectivity, _, err := t.tblColHists.Selectivity(ctx, t.rootTaskConds, nil) if err != nil { logutil.BgLogger().Debug("calculate selectivity failed, use selection factor", zap.Error(err)) selectivity = SelectionFactor } sel := PhysicalSelection{Conditions: t.rootTaskConds}.Init(ctx, newTask.p.statsInfo().Scale(selectivity), newTask.p.SelectBlockOffset()) sel.fromDataSource = true sel.SetChildren(newTask.p) newTask.p = sel } } // setTableScanToTableRowIDScan is to update the isChildOfIndexLookUp attribute of PhysicalTableScan child func setTableScanToTableRowIDScan(p PhysicalPlan) { if ts, ok := p.(*PhysicalTableScan); ok { ts.SetIsChildOfIndexLookUp(true) } else { for _, child := range p.Children() { setTableScanToTableRowIDScan(child) } } } // rootTask is the final sink node of a plan graph. It should be a single goroutine on tidb. type rootTask struct { p PhysicalPlan isEmpty bool // isEmpty indicates if this task contains a dual table and returns empty data. // TODO: The flag 'isEmpty' is only checked by Projection and UnionAll. We should support more cases in the future. } func (t *rootTask) copy() task { return &rootTask{ p: t.p, } } func (t *rootTask) count() float64 { return t.p.statsInfo().RowCount } func (t *rootTask) plan() PhysicalPlan { return t.p } // MemoryUsage return the memory usage of rootTask func (t *rootTask) MemoryUsage() (sum int64) { if t == nil { return } sum = size.SizeOfInterface + size.SizeOfBool if t.p != nil { sum += t.p.MemoryUsage() } return sum } func (p *PhysicalLimit) attach2Task(tasks ...task) task { t := tasks[0].copy() sunk := false if cop, ok := t.(*copTask); ok { // For double read which requires order being kept, the limit cannot be pushed down to the table side, // because handles would be reordered before being sent to table scan. if (!cop.keepOrder || !cop.indexPlanFinished || cop.indexPlan == nil) && len(cop.rootTaskConds) == 0 { // When limit is pushed down, we should remove its offset. newCount := p.Offset + p.Count childProfile := cop.plan().statsInfo() // Strictly speaking, for the row count of stats, we should multiply newCount with "regionNum", // but "regionNum" is unknown since the copTask can be a double read, so we ignore it now. stats := deriveLimitStats(childProfile, float64(newCount)) pushedDownLimit := PhysicalLimit{Count: newCount}.Init(p.ctx, stats, p.blockOffset) cop = attachPlan2Task(pushedDownLimit, cop).(*copTask) // Don't use clone() so that Limit and its children share the same schema. Otherwise the virtual generated column may not be resolved right. pushedDownLimit.SetSchema(pushedDownLimit.children[0].Schema()) } t = cop.convertToRootTask(p.ctx) sunk = p.sinkIntoIndexLookUp(t) } else if mpp, ok := t.(*mppTask); ok { newCount := p.Offset + p.Count childProfile := mpp.plan().statsInfo() stats := deriveLimitStats(childProfile, float64(newCount)) pushedDownLimit := PhysicalLimit{Count: newCount}.Init(p.ctx, stats, p.blockOffset) mpp = attachPlan2Task(pushedDownLimit, mpp).(*mppTask) pushedDownLimit.SetSchema(pushedDownLimit.children[0].Schema()) t = mpp.convertToRootTask(p.ctx) } if sunk { return t } return attachPlan2Task(p, t) } func (p *PhysicalLimit) sinkIntoIndexLookUp(t task) bool { root := t.(*rootTask) reader, isDoubleRead := root.p.(*PhysicalIndexLookUpReader) proj, isProj := root.p.(*PhysicalProjection) if !isDoubleRead && !isProj { return false } if isProj { reader, isDoubleRead = proj.Children()[0].(*PhysicalIndexLookUpReader) if !isDoubleRead { return false } } // If this happens, some Projection Operator must be inlined into this Limit. (issues/14428) // For example, if the original plan is `IndexLookUp(col1, col2) -> Limit(col1, col2) -> Project(col1)`, // then after inlining the Project, it will be `IndexLookUp(col1, col2) -> Limit(col1)` here. // If the Limit is sunk into the IndexLookUp, the IndexLookUp's schema needs to be updated as well, // but updating it here is not safe, so do not sink Limit into this IndexLookUp in this case now. if p.Schema().Len() != reader.Schema().Len() { return false } // We can sink Limit into IndexLookUpReader only if tablePlan contains no Selection. ts, isTableScan := reader.tablePlan.(*PhysicalTableScan) if !isTableScan { return false } reader.PushedLimit = &PushedDownLimit{ Offset: p.Offset, Count: p.Count, } originStats := ts.stats ts.stats = p.stats if originStats != nil { // keep the original stats version ts.stats.StatsVersion = originStats.StatsVersion } reader.stats = p.stats if isProj { proj.stats = p.stats } return true } // canPushDown checks if this topN can be pushed down. If each of the expression can be converted to pb, it can be pushed. func (p *PhysicalTopN) canPushDown(storeTp kv.StoreType) bool { exprs := make([]expression.Expression, 0, len(p.ByItems)) for _, item := range p.ByItems { exprs = append(exprs, item.Expr) } return expression.CanExprsPushDown(p.ctx.GetSessionVars().StmtCtx, exprs, p.ctx.GetClient(), storeTp) } func (p *PhysicalSort) attach2Task(tasks ...task) task { t := tasks[0].copy() t = attachPlan2Task(p, t) return t } func (p *NominalSort) attach2Task(tasks ...task) task { if p.OnlyColumn { return tasks[0] } t := tasks[0].copy() t = attachPlan2Task(p, t) return t } func (p *PhysicalTopN) getPushedDownTopN(childPlan PhysicalPlan) *PhysicalTopN { newByItems := make([]*util.ByItems, 0, len(p.ByItems)) for _, expr := range p.ByItems { newByItems = append(newByItems, expr.Clone()) } newCount := p.Offset + p.Count childProfile := childPlan.statsInfo() // Strictly speaking, for the row count of pushed down TopN, we should multiply newCount with "regionNum", // but "regionNum" is unknown since the copTask can be a double read, so we ignore it now. stats := deriveLimitStats(childProfile, float64(newCount)) topN := PhysicalTopN{ ByItems: newByItems, Count: newCount, }.Init(p.ctx, stats, p.blockOffset, p.GetChildReqProps(0)) topN.SetChildren(childPlan) return topN } // canPushToIndexPlan checks if this TopN can be pushed to the index side of copTask. // It can be pushed to the index side when all columns used by ByItems are available from the index side and // // there's no prefix index column. func (p *PhysicalTopN) canPushToIndexPlan(indexPlan PhysicalPlan, byItemCols []*expression.Column) bool { schema := indexPlan.Schema() for _, col := range byItemCols { pos := schema.ColumnIndex(col) if pos == -1 { return false } if schema.Columns[pos].IsPrefix { return false } } return true } func (p *PhysicalTopN) attach2Task(tasks ...task) task { t := tasks[0].copy() cols := make([]*expression.Column, 0, len(p.ByItems)) for _, item := range p.ByItems { cols = append(cols, expression.ExtractColumns(item.Expr)...) } needPushDown := len(cols) > 0 if copTask, ok := t.(*copTask); ok && needPushDown && p.canPushDown(copTask.getStoreType()) && len(copTask.rootTaskConds) == 0 { newTask, changed := p.pushTopNDownToDynamicPartition(copTask) if changed { return newTask } // If all columns in topN are from index plan, we push it to index plan, otherwise we finish the index plan and // push it to table plan. var pushedDownTopN *PhysicalTopN if !copTask.indexPlanFinished && p.canPushToIndexPlan(copTask.indexPlan, cols) { pushedDownTopN = p.getPushedDownTopN(copTask.indexPlan) copTask.indexPlan = pushedDownTopN } else { copTask.finishIndexPlan() pushedDownTopN = p.getPushedDownTopN(copTask.tablePlan) copTask.tablePlan = pushedDownTopN } } else if mppTask, ok := t.(*mppTask); ok && needPushDown && p.canPushDown(kv.TiFlash) { pushedDownTopN := p.getPushedDownTopN(mppTask.p) mppTask.p = pushedDownTopN } rootTask := t.convertToRootTask(p.ctx) return attachPlan2Task(p, rootTask) } // pushTopNDownToDynamicPartition is a temp solution for partition table. It actually does the same thing as DataSource's isMatchProp. // We need to support a more enhanced read strategy in the execution phase. So that we can achieve Limit(TiDB)->Reader(TiDB)->Limit(TiKV/TiFlash)->Scan(TiKV/TiFlash). // Before that is done, we use this logic to provide a way to keep the order property when reading from TiKV, so that we can use the orderliness of index to speed up the query. // Here we can change the execution plan to TopN(TiDB)->Reader(TiDB)->Limit(TiKV)->Scan(TiKV).(TiFlash is not supported). func (p *PhysicalTopN) pushTopNDownToDynamicPartition(copTsk *copTask) (task, bool) { if copTsk.getStoreType() != kv.TiKV { return nil, false } copTsk = copTsk.copy().(*copTask) if len(copTsk.rootTaskConds) > 0 { return nil, false } colsProp, ok := GetPropByOrderByItems(p.ByItems) if !ok { return nil, false } allSameOrder, isDesc := colsProp.AllSameOrder() if !allSameOrder { return nil, false } checkIndexMatchProp := func(idxCols []*expression.Column, idxColLens []int, constColsByCond []bool, colsProp *property.PhysicalProperty) bool { // If the number of the by-items is bigger than the index columns. We cannot push down since it must not keep order. if len(idxCols) < len(colsProp.SortItems) { return false } idxPos := 0 for _, byItem := range colsProp.SortItems { found := false for ; idxPos < len(idxCols); idxPos++ { if idxColLens[idxPos] == types.UnspecifiedLength && idxCols[idxPos].Equal(p.SCtx(), byItem.Col) { found = true idxPos++ break } if len(constColsByCond) == 0 || idxPos > len(constColsByCond) || !constColsByCond[idxPos] { found = false break } } if !found { return false } } return true } var ( idxScan *PhysicalIndexScan tblScan *PhysicalTableScan tblInfo *model.TableInfo err error ) if copTsk.indexPlan != nil { copTsk.indexPlan, err = copTsk.indexPlan.Clone() if err != nil { return nil, false } finalIdxScanPlan := copTsk.indexPlan for len(finalIdxScanPlan.Children()) > 0 && finalIdxScanPlan.Children()[0] != nil { finalIdxScanPlan = finalIdxScanPlan.Children()[0] } idxScan = finalIdxScanPlan.(*PhysicalIndexScan) tblInfo = idxScan.Table } if copTsk.tablePlan != nil { copTsk.tablePlan, err = copTsk.tablePlan.Clone() if err != nil { return nil, false } finalTblScanPlan := copTsk.tablePlan for len(finalTblScanPlan.Children()) > 0 { finalTblScanPlan = finalTblScanPlan.Children()[0] } tblScan = finalTblScanPlan.(*PhysicalTableScan) tblInfo = tblScan.Table } pi := tblInfo.GetPartitionInfo() if pi == nil { return nil, false } if !copTsk.indexPlanFinished { // If indexPlan side isn't finished, there's no selection on the table side. propMatched := checkIndexMatchProp(idxScan.IdxCols, idxScan.IdxColLens, idxScan.constColsByCond, colsProp) if !propMatched { return nil, false } idxScan.Desc = isDesc childProfile := copTsk.plan().statsInfo() newCount := p.Offset + p.Count stats := deriveLimitStats(childProfile, float64(newCount)) pushedLimit := PhysicalLimit{ Count: newCount, }.Init(p.SCtx(), stats, p.SelectBlockOffset()) pushedLimit.SetSchema(copTsk.indexPlan.Schema()) copTsk = attachPlan2Task(pushedLimit, copTsk).(*copTask) } else if copTsk.indexPlan == nil { if tblScan.HandleCols == nil { return nil, false } if tblScan.HandleCols.IsInt() { pk := tblScan.HandleCols.GetCol(0) if len(colsProp.SortItems) != 1 || !colsProp.SortItems[0].Col.Equal(p.SCtx(), pk) { return nil, false } } else { idxCols, idxColLens := expression.IndexInfo2PrefixCols(tblScan.Columns, tblScan.Schema().Columns, tables.FindPrimaryIndex(tblScan.Table)) matched := checkIndexMatchProp(idxCols, idxColLens, nil, colsProp) if !matched { return nil, false } } tblScan.Desc = isDesc // SplitRangesAcrossInt64Boundary needs the KeepOrder flag. See that func and the struct tableResultHandler for more details. tblScan.KeepOrder = true childProfile := copTsk.plan().statsInfo() newCount := p.Offset + p.Count stats := deriveLimitStats(childProfile, float64(newCount)) pushedLimit := PhysicalLimit{ Count: newCount, }.Init(p.SCtx(), stats, p.SelectBlockOffset()) pushedLimit.SetSchema(copTsk.tablePlan.Schema()) copTsk = attachPlan2Task(pushedLimit, copTsk).(*copTask) } else { return nil, false } rootTask := copTsk.convertToRootTask(p.ctx) return attachPlan2Task(p, rootTask), true } func (p *PhysicalProjection) attach2Task(tasks ...task) task { t := tasks[0].copy() if cop, ok := t.(*copTask); ok { if len(cop.rootTaskConds) == 0 && expression.CanExprsPushDown(p.ctx.GetSessionVars().StmtCtx, p.Exprs, p.ctx.GetClient(), cop.getStoreType()) { copTask := attachPlan2Task(p, cop) return copTask } } else if mpp, ok := t.(*mppTask); ok { if expression.CanExprsPushDown(p.ctx.GetSessionVars().StmtCtx, p.Exprs, p.ctx.GetClient(), kv.TiFlash) { p.SetChildren(mpp.p) mpp.p = p return mpp } } t = t.convertToRootTask(p.ctx) t = attachPlan2Task(p, t) if root, ok := tasks[0].(*rootTask); ok && root.isEmpty { t.(*rootTask).isEmpty = true } return t } func (p *PhysicalUnionAll) attach2MppTasks(tasks ...task) task { t := &mppTask{p: p} childPlans := make([]PhysicalPlan, 0, len(tasks)) for _, tk := range tasks { if mpp, ok := tk.(*mppTask); ok && !tk.invalid() { childPlans = append(childPlans, mpp.plan()) } else if root, ok := tk.(*rootTask); ok && root.isEmpty { continue } else { return invalidTask } } if len(childPlans) == 0 { return invalidTask } p.SetChildren(childPlans...) return t } func (p *PhysicalUnionAll) attach2Task(tasks ...task) task { for _, t := range tasks { if _, ok := t.(*mppTask); ok { return p.attach2MppTasks(tasks...) } } t := &rootTask{p: p} childPlans := make([]PhysicalPlan, 0, len(tasks)) for _, task := range tasks { task = task.convertToRootTask(p.ctx) childPlans = append(childPlans, task.plan()) } p.SetChildren(childPlans...) return t } func (sel *PhysicalSelection) attach2Task(tasks ...task) task { if mppTask, _ := tasks[0].(*mppTask); mppTask != nil { // always push to mpp task. sc := sel.ctx.GetSessionVars().StmtCtx if expression.CanExprsPushDown(sc, sel.Conditions, sel.ctx.GetClient(), kv.TiFlash) { return attachPlan2Task(sel, mppTask.copy()) } } t := tasks[0].convertToRootTask(sel.ctx) return attachPlan2Task(sel, t) } // CheckAggCanPushCop checks whether the aggFuncs and groupByItems can // be pushed down to coprocessor. func CheckAggCanPushCop(sctx sessionctx.Context, aggFuncs []*aggregation.AggFuncDesc, groupByItems []expression.Expression, storeType kv.StoreType) bool { sc := sctx.GetSessionVars().StmtCtx client := sctx.GetClient() ret := true reason := "" for _, aggFunc := range aggFuncs { // if the aggFunc contain VirtualColumn or CorrelatedColumn, it can not be pushed down. if expression.ContainVirtualColumn(aggFunc.Args) || expression.ContainCorrelatedColumn(aggFunc.Args) { reason = "expressions of AggFunc `" + aggFunc.Name + "` contain virtual column or correlated column, which is not supported now" ret = false break } if !aggregation.CheckAggPushDown(aggFunc, storeType) { reason = "AggFunc `" + aggFunc.Name + "` is not supported now" ret = false break } if !expression.CanExprsPushDownWithExtraInfo(sc, aggFunc.Args, client, storeType, aggFunc.Name == ast.AggFuncSum) { reason = "arguments of AggFunc `" + aggFunc.Name + "` contains unsupported exprs" ret = false break } orderBySize := len(aggFunc.OrderByItems) if orderBySize > 0 { exprs := make([]expression.Expression, 0, orderBySize) for _, item := range aggFunc.OrderByItems { exprs = append(exprs, item.Expr) } if !expression.CanExprsPushDownWithExtraInfo(sc, exprs, client, storeType, false) { reason = "arguments of AggFunc `" + aggFunc.Name + "` contains unsupported exprs in order-by clause" ret = false break } } pb, _ := aggregation.AggFuncToPBExpr(sctx, client, aggFunc, storeType) if pb == nil { reason = "AggFunc `" + aggFunc.Name + "` can not be converted to pb expr" ret = false break } } if ret && expression.ContainVirtualColumn(groupByItems) { reason = "groupByItems contain virtual columns, which is not supported now" ret = false } if ret && !expression.CanExprsPushDown(sc, groupByItems, client, storeType) { reason = "groupByItems contain unsupported exprs" ret = false } if !ret { storageName := storeType.Name() if storeType == kv.UnSpecified { storageName = "storage layer" } warnErr := errors.New("Aggregation can not be pushed to " + storageName + " because " + reason) if sc.InExplainStmt { sc.AppendWarning(warnErr) } else { sc.AppendExtraWarning(warnErr) } } return ret } // AggInfo stores the information of an Aggregation. type AggInfo struct { AggFuncs []*aggregation.AggFuncDesc GroupByItems []expression.Expression Schema *expression.Schema } // BuildFinalModeAggregation splits either LogicalAggregation or PhysicalAggregation to finalAgg and partial1Agg, // returns the information of partial and final agg. // partialIsCop means whether partial agg is a cop task. When partialIsCop is false, // we do not set the AggMode for partialAgg cause it may be split further when // building the aggregate executor(e.g. buildHashAgg will split the AggDesc further for parallel executing). // firstRowFuncMap is a map between partial first_row to final first_row, will be used in RemoveUnnecessaryFirstRow func BuildFinalModeAggregation( sctx sessionctx.Context, original *AggInfo, partialIsCop bool, isMPPTask bool) (partial, final *AggInfo, firstRowFuncMap map[*aggregation.AggFuncDesc]*aggregation.AggFuncDesc) { firstRowFuncMap = make(map[*aggregation.AggFuncDesc]*aggregation.AggFuncDesc, len(original.AggFuncs)) partial = &AggInfo{ AggFuncs: make([]*aggregation.AggFuncDesc, 0, len(original.AggFuncs)), GroupByItems: original.GroupByItems, Schema: expression.NewSchema(), } partialCursor := 0 final = &AggInfo{ AggFuncs: make([]*aggregation.AggFuncDesc, len(original.AggFuncs)), GroupByItems: make([]expression.Expression, 0, len(original.GroupByItems)), Schema: original.Schema, } partialGbySchema := expression.NewSchema() // add group by columns for _, gbyExpr := range partial.GroupByItems { var gbyCol *expression.Column if col, ok := gbyExpr.(*expression.Column); ok { gbyCol = col } else { gbyCol = &expression.Column{ UniqueID: sctx.GetSessionVars().AllocPlanColumnID(), RetType: gbyExpr.GetType(), } } partialGbySchema.Append(gbyCol) final.GroupByItems = append(final.GroupByItems, gbyCol) } // TODO: Refactor the way of constructing aggregation functions. // This for loop is ugly, but I do not find a proper way to reconstruct // it right away. // group_concat is special when pushing down, it cannot take the two phase execution if no distinct but with orderBy, and other cases are also different: // for example: group_concat([distinct] expr0, expr1[, order by expr2] separator ‘,’) // no distinct, no orderBy: can two phase // [final agg] group_concat(col#1,’,’) // [part agg] group_concat(expr0, expr1,’,’) -> col#1 // no distinct, orderBy: only one phase // distinct, no orderBy: can two phase // [final agg] group_concat(distinct col#0, col#1,’,’) // [part agg] group by expr0 ->col#0, expr1 -> col#1 // distinct, orderBy: can two phase // [final agg] group_concat(distinct col#0, col#1, order by col#2,’,’) // [part agg] group by expr0 ->col#0, expr1 -> col#1; agg function: firstrow(expr2)-> col#2 for i, aggFunc := range original.AggFuncs { finalAggFunc := &aggregation.AggFuncDesc{HasDistinct: false} finalAggFunc.Name = aggFunc.Name finalAggFunc.OrderByItems = aggFunc.OrderByItems args := make([]expression.Expression, 0, len(aggFunc.Args)) if aggFunc.HasDistinct { /* eg: SELECT COUNT(DISTINCT a), SUM(b) FROM t GROUP BY c change from [root] group by: c, funcs:count(distinct a), funcs:sum(b) to [root] group by: c, funcs:count(distinct a), funcs:sum(b) [cop]: group by: c, a */ // onlyAddFirstRow means if the distinctArg does not occur in group by items, // it should be replaced with a firstrow() agg function, needed for the order by items of group_concat() getDistinctExpr := func(distinctArg expression.Expression, onlyAddFirstRow bool) (ret expression.Expression) { // 1. add all args to partial.GroupByItems foundInGroupBy := false for j, gbyExpr := range partial.GroupByItems { if gbyExpr.Equal(sctx, distinctArg) && gbyExpr.GetType().Equal(distinctArg.GetType()) { // if the two expressions exactly the same in terms of data types and collation, then can avoid it. foundInGroupBy = true ret = partialGbySchema.Columns[j] break } } if !foundInGroupBy { var gbyCol *expression.Column if col, ok := distinctArg.(*expression.Column); ok { gbyCol = col } else { gbyCol = &expression.Column{ UniqueID: sctx.GetSessionVars().AllocPlanColumnID(), RetType: distinctArg.GetType(), } } // 2. add group by items if needed if !onlyAddFirstRow { partial.GroupByItems = append(partial.GroupByItems, distinctArg) partialGbySchema.Append(gbyCol) ret = gbyCol } // 3. add firstrow() if needed if !partialIsCop || onlyAddFirstRow { // if partial is a cop task, firstrow function is redundant since group by items are outputted // by group by schema, and final functions use group by schema as their arguments. // if partial agg is not cop, we must append firstrow function & schema, to output the group by // items. // maybe we can unify them sometime. // only add firstrow for order by items of group_concat() firstRow, err := aggregation.NewAggFuncDesc(sctx, ast.AggFuncFirstRow, []expression.Expression{distinctArg}, false) if err != nil { panic("NewAggFuncDesc FirstRow meets error: " + err.Error()) } partial.AggFuncs = append(partial.AggFuncs, firstRow) newCol, _ := gbyCol.Clone().(*expression.Column) newCol.RetType = firstRow.RetTp partial.Schema.Append(newCol) if onlyAddFirstRow { ret = newCol } partialCursor++ } } return ret } for j, distinctArg := range aggFunc.Args { // the last arg of ast.AggFuncGroupConcat is the separator, so just put it into the final agg if aggFunc.Name == ast.AggFuncGroupConcat && j+1 == len(aggFunc.Args) { args = append(args, distinctArg) continue } args = append(args, getDistinctExpr(distinctArg, false)) } byItems := make([]*util.ByItems, 0, len(aggFunc.OrderByItems)) for _, byItem := range aggFunc.OrderByItems { byItems = append(byItems, &util.ByItems{Expr: getDistinctExpr(byItem.Expr, true), Desc: byItem.Desc}) } finalAggFunc.OrderByItems = byItems finalAggFunc.HasDistinct = aggFunc.HasDistinct // In logical optimize phase, the Agg->PartitionUnion->TableReader may become // Agg1->PartitionUnion->Agg2->TableReader, and the Agg2 is a partial aggregation. // So in the push down here, we need to add a new if-condition check: // If the original agg mode is partial already, the finalAggFunc's mode become Partial2. if aggFunc.Mode == aggregation.CompleteMode { finalAggFunc.Mode = aggregation.CompleteMode } else if aggFunc.Mode == aggregation.Partial1Mode || aggFunc.Mode == aggregation.Partial2Mode { finalAggFunc.Mode = aggregation.Partial2Mode } } else { if aggFunc.Name == ast.AggFuncGroupConcat && len(aggFunc.OrderByItems) > 0 { // group_concat can only run in one phase if it has order by items but without distinct property partial = nil final = original return } if aggregation.NeedCount(finalAggFunc.Name) { if isMPPTask && finalAggFunc.Name == ast.AggFuncCount { // For MPP Task, the final count() is changed to sum(). // Note: MPP mode does not run avg() directly, instead, avg() -> sum()/(case when count() = 0 then 1 else count() end), // so we do not process it here. finalAggFunc.Name = ast.AggFuncSum } else { ft := types.NewFieldType(mysql.TypeLonglong) ft.SetFlen(21) ft.SetCharset(charset.CharsetBin) ft.SetCollate(charset.CollationBin) partial.Schema.Append(&expression.Column{ UniqueID: sctx.GetSessionVars().AllocPlanColumnID(), RetType: ft, }) args = append(args, partial.Schema.Columns[partialCursor]) partialCursor++ } } if finalAggFunc.Name == ast.AggFuncApproxCountDistinct { ft := types.NewFieldType(mysql.TypeString) ft.SetCharset(charset.CharsetBin) ft.SetCollate(charset.CollationBin) ft.AddFlag(mysql.NotNullFlag) partial.Schema.Append(&expression.Column{ UniqueID: sctx.GetSessionVars().AllocPlanColumnID(), RetType: ft, }) args = append(args, partial.Schema.Columns[partialCursor]) partialCursor++ } if aggregation.NeedValue(finalAggFunc.Name) { partial.Schema.Append(&expression.Column{ UniqueID: sctx.GetSessionVars().AllocPlanColumnID(), RetType: original.Schema.Columns[i].GetType(), }) args = append(args, partial.Schema.Columns[partialCursor]) partialCursor++ } if aggFunc.Name == ast.AggFuncAvg { cntAgg := aggFunc.Clone() cntAgg.Name = ast.AggFuncCount err := cntAgg.TypeInfer(sctx) if err != nil { // must not happen partial = nil final = original return } partial.Schema.Columns[partialCursor-2].RetType = cntAgg.RetTp // we must call deep clone in this case, to avoid sharing the arguments. sumAgg := aggFunc.Clone() sumAgg.Name = ast.AggFuncSum sumAgg.TypeInfer4AvgSum(sumAgg.RetTp) partial.Schema.Columns[partialCursor-1].RetType = sumAgg.RetTp partial.AggFuncs = append(partial.AggFuncs, cntAgg, sumAgg) } else if aggFunc.Name == ast.AggFuncApproxCountDistinct || aggFunc.Name == ast.AggFuncGroupConcat { newAggFunc := aggFunc.Clone() newAggFunc.Name = aggFunc.Name newAggFunc.RetTp = partial.Schema.Columns[partialCursor-1].GetType() partial.AggFuncs = append(partial.AggFuncs, newAggFunc) if aggFunc.Name == ast.AggFuncGroupConcat { // append the last separator arg args = append(args, aggFunc.Args[len(aggFunc.Args)-1]) } } else { partialFuncDesc := aggFunc.Clone() partial.AggFuncs = append(partial.AggFuncs, partialFuncDesc) if aggFunc.Name == ast.AggFuncFirstRow { firstRowFuncMap[partialFuncDesc] = finalAggFunc } } // In logical optimize phase, the Agg->PartitionUnion->TableReader may become // Agg1->PartitionUnion->Agg2->TableReader, and the Agg2 is a partial aggregation. // So in the push down here, we need to add a new if-condition check: // If the original agg mode is partial already, the finalAggFunc's mode become Partial2. if aggFunc.Mode == aggregation.CompleteMode { finalAggFunc.Mode = aggregation.FinalMode } else if aggFunc.Mode == aggregation.Partial1Mode || aggFunc.Mode == aggregation.Partial2Mode { finalAggFunc.Mode = aggregation.Partial2Mode } } finalAggFunc.Args = args finalAggFunc.RetTp = aggFunc.RetTp final.AggFuncs[i] = finalAggFunc } partial.Schema.Append(partialGbySchema.Columns...) if partialIsCop { for _, f := range partial.AggFuncs { f.Mode = aggregation.Partial1Mode } } return } // convertAvgForMPP converts avg(arg) to sum(arg)/(case when count(arg)=0 then 1 else count(arg) end), in detail: // 1.rewrite avg() in the final aggregation to count() and sum(), and reconstruct its schema. // 2.replace avg() with sum(arg)/(case when count(arg)=0 then 1 else count(arg) end) and reuse the original schema of the final aggregation. // If there is no avg, nothing is changed and return nil. func (p *basePhysicalAgg) convertAvgForMPP() *PhysicalProjection { newSchema := expression.NewSchema() newSchema.Keys = p.schema.Keys newSchema.UniqueKeys = p.schema.UniqueKeys newAggFuncs := make([]*aggregation.AggFuncDesc, 0, 2*len(p.AggFuncs)) exprs := make([]expression.Expression, 0, 2*len(p.schema.Columns)) // add agg functions schema for i, aggFunc := range p.AggFuncs { if aggFunc.Name == ast.AggFuncAvg { // inset a count(column) avgCount := aggFunc.Clone() avgCount.Name = ast.AggFuncCount err := avgCount.TypeInfer(p.ctx) if err != nil { // must not happen return nil } newAggFuncs = append(newAggFuncs, avgCount) avgCountCol := &expression.Column{ UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(), RetType: avgCount.RetTp, } newSchema.Append(avgCountCol) // insert a sum(column) avgSum := aggFunc.Clone() avgSum.Name = ast.AggFuncSum avgSum.TypeInfer4AvgSum(avgSum.RetTp) newAggFuncs = append(newAggFuncs, avgSum) avgSumCol := &expression.Column{ UniqueID: p.schema.Columns[i].UniqueID, RetType: avgSum.RetTp, } newSchema.Append(avgSumCol) // avgSumCol/(case when avgCountCol=0 then 1 else avgCountCol end) eq := expression.NewFunctionInternal(p.ctx, ast.EQ, types.NewFieldType(mysql.TypeTiny), avgCountCol, expression.NewZero()) caseWhen := expression.NewFunctionInternal(p.ctx, ast.Case, avgCountCol.RetType, eq, expression.NewOne(), avgCountCol) divide := expression.NewFunctionInternal(p.ctx, ast.Div, avgSumCol.RetType, avgSumCol, caseWhen) divide.(*expression.ScalarFunction).RetType = p.schema.Columns[i].RetType exprs = append(exprs, divide) } else { newAggFuncs = append(newAggFuncs, aggFunc) newSchema.Append(p.schema.Columns[i]) exprs = append(exprs, p.schema.Columns[i]) } } // no avgs // for final agg, always add project due to in-compatibility between TiDB and TiFlash if len(p.schema.Columns) == len(newSchema.Columns) && !p.IsFinalAgg() { return nil } // add remaining columns to exprs for i := len(p.AggFuncs); i < len(p.schema.Columns); i++ { exprs = append(exprs, p.schema.Columns[i]) } proj := PhysicalProjection{ Exprs: exprs, CalculateNoDelay: false, AvoidColumnEvaluator: false, }.Init(p.SCtx(), p.stats, p.SelectBlockOffset(), p.GetChildReqProps(0).CloneEssentialFields()) proj.SetSchema(p.schema) p.AggFuncs = newAggFuncs p.schema = newSchema return proj } func (p *basePhysicalAgg) newPartialAggregate(copTaskType kv.StoreType, isMPPTask bool) (partial, final PhysicalPlan) { // Check if this aggregation can push down. if !CheckAggCanPushCop(p.ctx, p.AggFuncs, p.GroupByItems, copTaskType) { return nil, p.self } partialPref, finalPref, firstRowFuncMap := BuildFinalModeAggregation(p.ctx, &AggInfo{ AggFuncs: p.AggFuncs, GroupByItems: p.GroupByItems, Schema: p.Schema().Clone(), }, true, isMPPTask) if partialPref == nil { return nil, p.self } if p.tp == plancodec.TypeStreamAgg && len(partialPref.GroupByItems) != len(finalPref.GroupByItems) { return nil, p.self } // Remove unnecessary FirstRow. partialPref.AggFuncs = RemoveUnnecessaryFirstRow(p.ctx, finalPref.GroupByItems, partialPref.AggFuncs, partialPref.GroupByItems, partialPref.Schema, firstRowFuncMap) if copTaskType == kv.TiDB { // For partial agg of TiDB cop task, since TiDB coprocessor reuse the TiDB executor, // and TiDB aggregation executor won't output the group by value, // so we need add `firstrow` aggregation function to output the group by value. aggFuncs, err := genFirstRowAggForGroupBy(p.ctx, partialPref.GroupByItems) if err != nil { return nil, p.self } partialPref.AggFuncs = append(partialPref.AggFuncs, aggFuncs...) } p.AggFuncs = partialPref.AggFuncs p.GroupByItems = partialPref.GroupByItems p.schema = partialPref.Schema partialAgg := p.self // Create physical "final" aggregation. prop := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64} if p.tp == plancodec.TypeStreamAgg { finalAgg := basePhysicalAgg{ AggFuncs: finalPref.AggFuncs, GroupByItems: finalPref.GroupByItems, MppRunMode: p.MppRunMode, }.initForStream(p.ctx, p.stats, p.blockOffset, prop) finalAgg.schema = finalPref.Schema return partialAgg, finalAgg } finalAgg := basePhysicalAgg{ AggFuncs: finalPref.AggFuncs, GroupByItems: finalPref.GroupByItems, MppRunMode: p.MppRunMode, }.initForHash(p.ctx, p.stats, p.blockOffset, prop) finalAgg.schema = finalPref.Schema return partialAgg, finalAgg } // canUse3StageDistinctAgg returns true if this agg can use 3 stage for distinct aggregation func (p *basePhysicalAgg) canUse3StageDistinctAgg() bool { num := 0 if !p.ctx.GetSessionVars().Enable3StageDistinctAgg || len(p.GroupByItems) > 0 { return false } for _, fun := range p.AggFuncs { if fun.HasDistinct { num++ if num > 1 || fun.Name != ast.AggFuncCount { return false } for _, arg := range fun.Args { // bail out when args are not simple column, see GitHub issue #35417 if _, ok := arg.(*expression.Column); !ok { return false } } } else if len(fun.Args) > 1 { return false } if len(fun.OrderByItems) > 0 || fun.Mode != aggregation.CompleteMode { return false } } return num == 1 } func genFirstRowAggForGroupBy(ctx sessionctx.Context, groupByItems []expression.Expression) ([]*aggregation.AggFuncDesc, error) { aggFuncs := make([]*aggregation.AggFuncDesc, 0, len(groupByItems)) for _, groupBy := range groupByItems { agg, err := aggregation.NewAggFuncDesc(ctx, ast.AggFuncFirstRow, []expression.Expression{groupBy}, false) if err != nil { return nil, err } aggFuncs = append(aggFuncs, agg) } return aggFuncs, nil } // RemoveUnnecessaryFirstRow removes unnecessary FirstRow of the aggregation. This function can be // used for both LogicalAggregation and PhysicalAggregation. // When the select column is same with the group by key, the column can be removed and gets value from the group by key. // e.g // select a, count(b) from t group by a; // The schema is [firstrow(a), count(b), a]. The column firstrow(a) is unnecessary. // Can optimize the schema to [count(b), a] , and change the index to get value. func RemoveUnnecessaryFirstRow( sctx sessionctx.Context, finalGbyItems []expression.Expression, partialAggFuncs []*aggregation.AggFuncDesc, partialGbyItems []expression.Expression, partialSchema *expression.Schema, firstRowFuncMap map[*aggregation.AggFuncDesc]*aggregation.AggFuncDesc) []*aggregation.AggFuncDesc { partialCursor := 0 newAggFuncs := make([]*aggregation.AggFuncDesc, 0, len(partialAggFuncs)) for _, aggFunc := range partialAggFuncs { if aggFunc.Name == ast.AggFuncFirstRow { canOptimize := false for j, gbyExpr := range partialGbyItems { if j >= len(finalGbyItems) { // after distinct push, len(partialGbyItems) may larger than len(finalGbyItems) // for example, // select /*+ HASH_AGG() */ a, count(distinct a) from t; // will generate to, // HashAgg root funcs:count(distinct a), funcs:firstrow(a)" // HashAgg cop group by:a, funcs:firstrow(a)->Column#6" // the firstrow in root task can not be removed. break } if gbyExpr.Equal(sctx, aggFunc.Args[0]) { canOptimize = true firstRowFuncMap[aggFunc].Args[0] = finalGbyItems[j] break } } if canOptimize { partialSchema.Columns = append(partialSchema.Columns[:partialCursor], partialSchema.Columns[partialCursor+1:]...) continue } } partialCursor += computePartialCursorOffset(aggFunc.Name) newAggFuncs = append(newAggFuncs, aggFunc) } return newAggFuncs } func computePartialCursorOffset(name string) int { offset := 0 if aggregation.NeedCount(name) { offset++ } if aggregation.NeedValue(name) { offset++ } if name == ast.AggFuncApproxCountDistinct { offset++ } return offset } func (p *PhysicalStreamAgg) attach2Task(tasks ...task) task { t := tasks[0].copy() if cop, ok := t.(*copTask); ok { // We should not push agg down across double read, since the data of second read is ordered by handle instead of index. // The `extraHandleCol` is added if the double read needs to keep order. So we just use it to decided // whether the following plan is double read with order reserved. if cop.extraHandleCol != nil || len(cop.rootTaskConds) > 0 { t = cop.convertToRootTask(p.ctx) attachPlan2Task(p, t) } else { storeType := cop.getStoreType() // TiFlash doesn't support Stream Aggregation if storeType == kv.TiFlash && len(p.GroupByItems) > 0 { return invalidTask } partialAgg, finalAgg := p.newPartialAggregate(storeType, false) if partialAgg != nil { if cop.tablePlan != nil { cop.finishIndexPlan() partialAgg.SetChildren(cop.tablePlan) cop.tablePlan = partialAgg // If needExtraProj is true, a projection will be created above the PhysicalIndexLookUpReader to make sure // the schema is the same as the original DataSource schema. // However, we pushed down the agg here, the partial agg was placed on the top of tablePlan, and the final // agg will be placed above the PhysicalIndexLookUpReader, and the schema will be set correctly for them. // If we add the projection again, the projection will be between the PhysicalIndexLookUpReader and // the partial agg, and the schema will be broken. cop.needExtraProj = false } else { partialAgg.SetChildren(cop.indexPlan) cop.indexPlan = partialAgg } } t = cop.convertToRootTask(p.ctx) attachPlan2Task(finalAgg, t) } } else if mpp, ok := t.(*mppTask); ok { t = mpp.convertToRootTask(p.ctx) attachPlan2Task(p, t) } else { attachPlan2Task(p, t) } return t } // cpuCostDivisor computes the concurrency to which we would amortize CPU cost // for hash aggregation. func (p *PhysicalHashAgg) cpuCostDivisor(hasDistinct bool) (float64, float64) { if hasDistinct { return 0, 0 } sessionVars := p.ctx.GetSessionVars() finalCon, partialCon := sessionVars.HashAggFinalConcurrency(), sessionVars.HashAggPartialConcurrency() // According to `ValidateSetSystemVar`, `finalCon` and `partialCon` cannot be less than or equal to 0. if finalCon == 1 && partialCon == 1 { return 0, 0 } // It is tricky to decide which concurrency we should use to amortize CPU cost. Since cost of hash // aggregation is tend to be under-estimated as explained in `attach2Task`, we choose the smaller // concurrecy to make some compensation. return math.Min(float64(finalCon), float64(partialCon)), float64(finalCon + partialCon) } func (p *PhysicalHashAgg) attach2TaskForMpp1Phase(mpp *mppTask) task { // 1-phase agg: when the partition columns can be satisfied, where the plan does not need to enforce Exchange // only push down the original agg proj := p.convertAvgForMPP() attachPlan2Task(p.self, mpp) if proj != nil { attachPlan2Task(proj, mpp) } return mpp } func (p *PhysicalHashAgg) attach2TaskForMpp(tasks ...task) task { t := tasks[0].copy() mpp, ok := t.(*mppTask) if !ok { return invalidTask } switch p.MppRunMode { case Mpp1Phase: // 1-phase agg: when the partition columns can be satisfied, where the plan does not need to enforce Exchange // only push down the original agg proj := p.convertAvgForMPP() attachPlan2Task(p, mpp) if proj != nil { attachPlan2Task(proj, mpp) } return mpp case Mpp2Phase: // TODO: when partition property is matched by sub-plan, we actually needn't do extra an exchange and final agg. proj := p.convertAvgForMPP() partialAgg, finalAgg := p.newPartialAggregate(kv.TiFlash, true) if partialAgg == nil { return invalidTask } attachPlan2Task(partialAgg, mpp) partitionCols := p.MppPartitionCols if len(partitionCols) == 0 { items := finalAgg.(*PhysicalHashAgg).GroupByItems partitionCols = make([]*property.MPPPartitionColumn, 0, len(items)) for _, expr := range items { col, ok := expr.(*expression.Column) if !ok { return invalidTask } partitionCols = append(partitionCols, &property.MPPPartitionColumn{ Col: col, CollateID: property.GetCollateIDByNameForPartition(col.GetType().GetCollate()), }) } } prop := &property.PhysicalProperty{TaskTp: property.MppTaskType, ExpectedCnt: math.MaxFloat64, MPPPartitionTp: property.HashType, MPPPartitionCols: partitionCols} newMpp := mpp.enforceExchangerImpl(prop) if newMpp.invalid() { return newMpp } attachPlan2Task(finalAgg, newMpp) // TODO: how to set 2-phase cost? if proj != nil { attachPlan2Task(proj, newMpp) } return newMpp case MppTiDB: partialAgg, finalAgg := p.newPartialAggregate(kv.TiFlash, false) if partialAgg != nil { attachPlan2Task(partialAgg, mpp) } t = mpp.convertToRootTask(p.ctx) attachPlan2Task(finalAgg, t) return t case MppScalar: prop := &property.PhysicalProperty{TaskTp: property.MppTaskType, ExpectedCnt: math.MaxFloat64, MPPPartitionTp: property.SinglePartitionType} if !mpp.needEnforceExchanger(prop) { return p.attach2TaskForMpp1Phase(mpp) } // we have to check it before the content of p has been modified canUse3StageAgg := p.canUse3StageDistinctAgg() proj := p.convertAvgForMPP() partialAgg, finalAgg := p.newPartialAggregate(kv.TiFlash, true) if finalAgg == nil { return invalidTask } // generate 3 stage aggregation for single count distinct if applicable. // select count(distinct a), count(b) from foo // will generate plan: // HashAgg sum(#1), sum(#2) -> final agg // +- Exchange Passthrough // +- HashAgg count(distinct a) #1, sum(#3) #2 -> middle agg // +- Exchange HashPartition by a // +- HashAgg count(b) #3, group by a -> partial agg // +- TableScan foo var middleAgg *PhysicalHashAgg = nil if partialAgg != nil && canUse3StageAgg { clonedAgg, err := finalAgg.Clone() if err != nil { return invalidTask } middleAgg = clonedAgg.(*PhysicalHashAgg) distinctPos := 0 middleSchema := expression.NewSchema() schemaMap := make(map[int64]*expression.Column, len(middleAgg.AggFuncs)) for i, fun := range middleAgg.AggFuncs { col := &expression.Column{ UniqueID: p.ctx.GetSessionVars().AllocPlanColumnID(), RetType: fun.RetTp, } if fun.HasDistinct { distinctPos = i fun.Mode = aggregation.Partial1Mode } else { fun.Mode = aggregation.Partial2Mode originalCol := fun.Args[0].(*expression.Column) schemaMap[originalCol.UniqueID] = col } middleSchema.Append(col) } middleAgg.schema = middleSchema finalHashAgg := finalAgg.(*PhysicalHashAgg) finalAggDescs := make([]*aggregation.AggFuncDesc, 0, len(finalHashAgg.AggFuncs)) for i, fun := range finalHashAgg.AggFuncs { newArgs := make([]expression.Expression, 0, 1) if distinctPos == i { // change count(distinct) to sum() fun.Name = ast.AggFuncSum fun.HasDistinct = false newArgs = append(newArgs, middleSchema.Columns[i]) } else { for _, arg := range fun.Args { newCol, err := arg.RemapColumn(schemaMap) if err != nil { return invalidTask } newArgs = append(newArgs, newCol) } } fun.Mode = aggregation.FinalMode fun.Args = newArgs finalAggDescs = append(finalAggDescs, fun) } finalHashAgg.AggFuncs = finalAggDescs } // partial agg would be null if one scalar agg cannot run in two-phase mode if partialAgg != nil { attachPlan2Task(partialAgg, mpp) } if middleAgg != nil && canUse3StageAgg { items := partialAgg.(*PhysicalHashAgg).GroupByItems partitionCols := make([]*property.MPPPartitionColumn, 0, len(items)) for _, expr := range items { col, ok := expr.(*expression.Column) if !ok { continue } partitionCols = append(partitionCols, &property.MPPPartitionColumn{ Col: col, CollateID: property.GetCollateIDByNameForPartition(col.GetType().GetCollate()), }) } prop := &property.PhysicalProperty{TaskTp: property.MppTaskType, ExpectedCnt: math.MaxFloat64, MPPPartitionTp: property.HashType, MPPPartitionCols: partitionCols} newMpp := mpp.enforceExchanger(prop) attachPlan2Task(middleAgg, newMpp) mpp = newMpp } newMpp := mpp.enforceExchanger(prop) attachPlan2Task(finalAgg, newMpp) if proj == nil { proj = PhysicalProjection{ Exprs: make([]expression.Expression, 0, len(p.Schema().Columns)), }.Init(p.ctx, p.statsInfo(), p.SelectBlockOffset()) for _, col := range p.Schema().Columns { proj.Exprs = append(proj.Exprs, col) } proj.SetSchema(p.schema) } attachPlan2Task(proj, newMpp) return newMpp default: return invalidTask } } func (p *PhysicalHashAgg) attach2Task(tasks ...task) task { t := tasks[0].copy() final := p if cop, ok := t.(*copTask); ok { if len(cop.rootTaskConds) == 0 { copTaskType := cop.getStoreType() partialAgg, finalAgg := p.newPartialAggregate(copTaskType, false) if finalAgg != nil { final = finalAgg.(*PhysicalHashAgg) } if partialAgg != nil { if cop.tablePlan != nil { cop.finishIndexPlan() partialAgg.SetChildren(cop.tablePlan) cop.tablePlan = partialAgg // If needExtraProj is true, a projection will be created above the PhysicalIndexLookUpReader to make sure // the schema is the same as the original DataSource schema. // However, we pushed down the agg here, the partial agg was placed on the top of tablePlan, and the final // agg will be placed above the PhysicalIndexLookUpReader, and the schema will be set correctly for them. // If we add the projection again, the projection will be between the PhysicalIndexLookUpReader and // the partial agg, and the schema will be broken. cop.needExtraProj = false } else { partialAgg.SetChildren(cop.indexPlan) cop.indexPlan = partialAgg } } // In `newPartialAggregate`, we are using stats of final aggregation as stats // of `partialAgg`, so the network cost of transferring result rows of `partialAgg` // to TiDB is normally under-estimated for hash aggregation, since the group-by // column may be independent of the column used for region distribution, so a closer // estimation of network cost for hash aggregation may multiply the number of // regions involved in the `partialAgg`, which is unknown however. t = cop.convertToRootTask(p.ctx) attachPlan2Task(finalAgg, t) } else { t = cop.convertToRootTask(p.ctx) attachPlan2Task(p, t) } } else if _, ok := t.(*mppTask); ok { return final.attach2TaskForMpp(tasks...) } else { attachPlan2Task(p, t) } return t } func (p *PhysicalWindow) attach2TaskForMPP(mpp *mppTask) task { // FIXME: currently, tiflash's join has different schema with TiDB, // so we have to rebuild the schema of join and operators which may inherit schema from join. // for window, we take the sub-plan's schema, and the schema generated by windowDescs. columns := p.Schema().Clone().Columns[len(p.Schema().Columns)-len(p.WindowFuncDescs):] p.schema = expression.MergeSchema(mpp.plan().Schema(), expression.NewSchema(columns...)) failpoint.Inject("CheckMPPWindowSchemaLength", func() { if len(p.Schema().Columns) != len(mpp.plan().Schema().Columns)+len(p.WindowFuncDescs) { panic("mpp physical window has incorrect schema length") } }) return attachPlan2Task(p, mpp) } func (p *PhysicalWindow) attach2Task(tasks ...task) task { if mpp, ok := tasks[0].copy().(*mppTask); ok && p.storeTp == kv.TiFlash { return p.attach2TaskForMPP(mpp) } t := tasks[0].convertToRootTask(p.ctx) return attachPlan2Task(p.self, t) } // mppTask can not : // 1. keep order // 2. support double read // 3. consider virtual columns. // 4. TODO: partition prune after close type mppTask struct { p PhysicalPlan partTp property.MPPPartitionType hashCols []*property.MPPPartitionColumn // rootTaskConds record filters of TableScan that cannot be pushed down to TiFlash. // For logical plan like: HashAgg -> Selection -> TableScan, if filters in Selection cannot be pushed to TiFlash. // Planner will generate physical plan like: PhysicalHashAgg -> PhysicalSelection -> TableReader -> PhysicalTableScan(cop tiflash) // Because planner will make mppTask invalid directly then use copTask directly. // But in DisaggregatedTiFlash mode, cop and batchCop protocol is disabled, so we have to consider this situation for mppTask. // When generating PhysicalTableScan, if prop.TaskTp is RootTaskType, mppTask will be converted to rootTask, // and filters in rootTaskConds will be added in a Selection which will be executed in TiDB. // So physical plan be like: PhysicalHashAgg -> PhysicalSelection -> TableReader -> ExchangeSender -> PhysicalTableScan(mpp tiflash) rootTaskConds []expression.Expression tblColHists *statistics.HistColl } func (t *mppTask) count() float64 { return t.p.statsInfo().RowCount } func (t *mppTask) copy() task { nt := *t return &nt } func (t *mppTask) plan() PhysicalPlan { return t.p } func (t *mppTask) invalid() bool { return t.p == nil } func (t *mppTask) convertToRootTask(ctx sessionctx.Context) *rootTask { return t.copy().(*mppTask).convertToRootTaskImpl(ctx) } // MemoryUsage return the memory usage of mppTask func (t *mppTask) MemoryUsage() (sum int64) { if t == nil { return } sum = size.SizeOfInterface + size.SizeOfInt + size.SizeOfSlice + int64(cap(t.hashCols))*size.SizeOfPointer if t.p != nil { sum += t.p.MemoryUsage() } return } func collectPartitionInfosFromMPPPlan(p *PhysicalTableReader, mppPlan PhysicalPlan) { switch x := mppPlan.(type) { case *PhysicalTableScan: p.PartitionInfos = append(p.PartitionInfos, tableScanAndPartitionInfo{x, x.PartitionInfo}) default: for _, ch := range mppPlan.Children() { collectPartitionInfosFromMPPPlan(p, ch) } } } func collectRowSizeFromMPPPlan(mppPlan PhysicalPlan) (rowSize float64) { if mppPlan != nil && mppPlan.Stats() != nil && mppPlan.Stats().HistColl != nil { return mppPlan.Stats().HistColl.GetAvgRowSize(mppPlan.SCtx(), mppPlan.Schema().Columns, false, false) } return 1 // use 1 as lower-bound for safety } func accumulateNetSeekCost4MPP(p PhysicalPlan) (cost float64) { if ts, ok := p.(*PhysicalTableScan); ok { return float64(len(ts.Ranges)) * float64(len(ts.Columns)) * ts.SCtx().GetSessionVars().GetSeekFactor(ts.Table) } for _, c := range p.Children() { cost += accumulateNetSeekCost4MPP(c) } return } func (t *mppTask) convertToRootTaskImpl(ctx sessionctx.Context) *rootTask { sender := PhysicalExchangeSender{ ExchangeType: tipb.ExchangeType_PassThrough, }.Init(ctx, t.p.statsInfo()) sender.SetChildren(t.p) p := PhysicalTableReader{ tablePlan: sender, StoreType: kv.TiFlash, }.Init(ctx, t.p.SelectBlockOffset()) p.stats = t.p.statsInfo() collectPartitionInfosFromMPPPlan(p, t.p) rt := &rootTask{ p: p, } if len(t.rootTaskConds) > 0 { // Some Filter cannot be pushed down to TiFlash, need to add Selection in rootTask, // so this Selection will be executed in TiDB. _, isTableScan := t.p.(*PhysicalTableScan) _, isSelection := t.p.(*PhysicalSelection) if isSelection { _, isTableScan = t.p.Children()[0].(*PhysicalTableScan) } if !isTableScan { // Need to make sure oriTaskPlan is TableScan, because rootTaskConds is part of TableScan.FilterCondition. // It's only for TableScan. This is ensured by converting mppTask to rootTask just after TableScan is built, // so no other operators are added into this mppTask. logutil.BgLogger().Error("expect Selection or TableScan for mppTask.p", zap.String("mppTask.p", t.p.TP())) return invalidTask } selectivity, _, err := t.tblColHists.Selectivity(ctx, t.rootTaskConds, nil) if err != nil { logutil.BgLogger().Debug("calculate selectivity failed, use selection factor", zap.Error(err)) selectivity = SelectionFactor } sel := PhysicalSelection{Conditions: t.rootTaskConds}.Init(ctx, rt.p.statsInfo().Scale(selectivity), rt.p.SelectBlockOffset()) sel.fromDataSource = true sel.SetChildren(rt.p) rt.p = sel } return rt } func (t *mppTask) needEnforceExchanger(prop *property.PhysicalProperty) bool { switch prop.MPPPartitionTp { case property.AnyType: return false case property.BroadcastType: return true case property.SinglePartitionType: return t.partTp != property.SinglePartitionType default: if t.partTp != property.HashType { return true } // TODO: consider equalivant class // TODO: `prop.IsSubsetOf` is enough, instead of equal. // for example, if already partitioned by hash(B,C), then same (A,B,C) must distribute on a same node. if len(prop.MPPPartitionCols) != len(t.hashCols) { return true } for i, col := range prop.MPPPartitionCols { if !col.Equal(t.hashCols[i]) { return true } } return false } } func (t *mppTask) enforceExchanger(prop *property.PhysicalProperty) *mppTask { if !t.needEnforceExchanger(prop) { return t } return t.copy().(*mppTask).enforceExchangerImpl(prop) } func (t *mppTask) enforceExchangerImpl(prop *property.PhysicalProperty) *mppTask { if collate.NewCollationEnabled() && !t.p.SCtx().GetSessionVars().HashExchangeWithNewCollation && prop.MPPPartitionTp == property.HashType { for _, col := range prop.MPPPartitionCols { if types.IsString(col.Col.RetType.GetType()) { t.p.SCtx().GetSessionVars().RaiseWarningWhenMPPEnforced("MPP mode may be blocked because when `new_collation_enabled` is true, HashJoin or HashAgg with string key is not supported now.") return &mppTask{} } } } ctx := t.p.SCtx() sender := PhysicalExchangeSender{ ExchangeType: prop.MPPPartitionTp.ToExchangeType(), HashCols: prop.MPPPartitionCols, }.Init(ctx, t.p.statsInfo()) sender.SetChildren(t.p) receiver := PhysicalExchangeReceiver{}.Init(ctx, t.p.statsInfo()) receiver.SetChildren(sender) return &mppTask{ p: receiver, partTp: prop.MPPPartitionTp, hashCols: prop.MPPPartitionCols, } }