// Copyright 2017 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // See the License for the specific language governing permissions and // limitations under the License. package executor import ( "math/rand" "strconv" "time" "github.com/juju/errors" "github.com/pingcap/tidb/ast" "github.com/pingcap/tidb/context" "github.com/pingcap/tidb/expression" "github.com/pingcap/tidb/model" "github.com/pingcap/tidb/sessionctx" "github.com/pingcap/tidb/sessionctx/variable" "github.com/pingcap/tidb/sessionctx/varsutil" "github.com/pingcap/tidb/statistics" "github.com/pingcap/tidb/util/types" ) var _ Executor = &AnalyzeExec{} // AnalyzeExec represents Analyze executor. type AnalyzeExec struct { ctx context.Context tasks []*analyzeTask } const ( maxSampleCount = 10000 maxSketchSize = 1000 defaultBucketCount = 256 ) // Schema implements the Executor Schema interface. func (e *AnalyzeExec) Schema() *expression.Schema { return expression.NewSchema() } // Open implements the Executor Open interface. func (e *AnalyzeExec) Open() error { for _, task := range e.tasks { err := task.src.Open() if err != nil { return errors.Trace(err) } } return nil } // Close implements the Executor Close interface. func (e *AnalyzeExec) Close() error { for _, task := range e.tasks { err := task.src.Close() if err != nil { return errors.Trace(err) } } return nil } // Next implements the Executor Next interface. func (e *AnalyzeExec) Next() (*Row, error) { concurrency, err := getBuildStatsConcurrency(e.ctx) if err != nil { return nil, errors.Trace(err) } taskCh := make(chan *analyzeTask, len(e.tasks)) resultCh := make(chan analyzeResult, len(e.tasks)) for i := 0; i < concurrency; i++ { go e.analyzeWorker(taskCh, resultCh) } for _, task := range e.tasks { taskCh <- task } close(taskCh) results := make([]analyzeResult, 0, len(e.tasks)) for i := 0; i < len(e.tasks); i++ { result := <-resultCh results = append(results, result) if result.err != nil { return nil, errors.Trace(err) } } for _, result := range results { for _, hg := range result.hist { err = hg.SaveToStorage(e.ctx, result.tableID, result.count, result.isIndex) if err != nil { return nil, errors.Trace(err) } } } dom := sessionctx.GetDomain(e.ctx) lease := dom.StatsHandle().Lease if lease > 0 { // We sleep two lease to make sure other tidb node has updated this node. time.Sleep(lease * 2) } else { err := dom.StatsHandle().Update(GetInfoSchema(e.ctx)) if err != nil { return nil, errors.Trace(err) } } return nil, nil } func getBuildStatsConcurrency(ctx context.Context) (int, error) { sessionVars := ctx.GetSessionVars() concurrency, err := varsutil.GetSessionSystemVar(sessionVars, variable.TiDBBuildStatsConcurrency) if err != nil { return 0, errors.Trace(err) } c, err := strconv.ParseInt(concurrency, 10, 64) return int(c), errors.Trace(err) } type taskType int const ( colTask taskType = iota idxTask ) type analyzeTask struct { taskType taskType tableInfo *model.TableInfo indexInfo *model.IndexInfo Columns []*model.ColumnInfo PKInfo *model.ColumnInfo src Executor } type analyzeResult struct { tableID int64 hist []*statistics.Histogram count int64 isIndex int err error } func (e *AnalyzeExec) analyzeWorker(taskCh <-chan *analyzeTask, resultCh chan<- analyzeResult) { for task := range taskCh { switch task.taskType { case colTask: resultCh <- e.analyzeColumns(task) case idxTask: resultCh <- e.analyzeIndex(task) } } } func (e *AnalyzeExec) analyzeColumns(task *analyzeTask) analyzeResult { collectors, pkBuilder, err := CollectSamplesAndEstimateNDVs(e.ctx, &recordSet{executor: task.src}, len(task.Columns), task.PKInfo) if err != nil { return analyzeResult{err: err} } result := analyzeResult{tableID: task.tableInfo.ID, isIndex: 0} if task.PKInfo != nil { result.count = pkBuilder.Count result.hist = []*statistics.Histogram{pkBuilder.Hist} } else { result.count = collectors[0].Count + collectors[0].NullCount } for i, col := range task.Columns { hg, err := statistics.BuildColumn(e.ctx, defaultBucketCount, col.ID, collectors[i].Sketch.NDV(), collectors[i].Count, collectors[i].NullCount, collectors[i].samples) result.hist = append(result.hist, hg) if err != nil && result.err == nil { result.err = err } } return result } func (e *AnalyzeExec) analyzeIndex(task *analyzeTask) analyzeResult { count, hg, err := statistics.BuildIndex(e.ctx, defaultBucketCount, task.indexInfo.ID, &recordSet{executor: task.src}) return analyzeResult{tableID: task.tableInfo.ID, hist: []*statistics.Histogram{hg}, count: count, isIndex: 1, err: err} } // SampleCollector will collect samples and calculate the count and ndv of an attribute. type SampleCollector struct { samples []types.Datum NullCount int64 Count int64 Sketch *statistics.FMSketch } func (c *SampleCollector) collect(d types.Datum) error { if d.IsNull() { c.NullCount++ return nil } c.Count++ if len(c.samples) < maxSampleCount { c.samples = append(c.samples, d) } else { shouldAdd := rand.Int63n(c.Count) < maxSampleCount if shouldAdd { idx := rand.Intn(maxSampleCount) c.samples[idx] = d } } return errors.Trace(c.Sketch.InsertValue(d)) } // CollectSamplesAndEstimateNDVs collects sample from the result set using Reservoir Sampling algorithm, // and estimates NDVs using FM Sketch during the collecting process. Also, if pkInfo is not nil, it will directly build // histogram for PK. It returns the sample collectors which contain total count, null count and distinct values count. // It also returns the statistic builder for PK which contains the histogram. // See https://en.wikipedia.org/wiki/Reservoir_sampling // Exported for test. func CollectSamplesAndEstimateNDVs(ctx context.Context, e ast.RecordSet, numCols int, pkInfo *model.ColumnInfo) ([]*SampleCollector, *statistics.SortedBuilder, error) { var pkBuilder *statistics.SortedBuilder if pkInfo != nil { pkBuilder = statistics.NewSortedBuilder(ctx, defaultBucketCount, pkInfo.ID, true) } collectors := make([]*SampleCollector, numCols) for i := range collectors { collectors[i] = &SampleCollector{ Sketch: statistics.NewFMSketch(maxSketchSize), } } for { row, err := e.Next() if err != nil { return nil, nil, errors.Trace(err) } if row == nil { return collectors, pkBuilder, nil } if pkInfo != nil { err := pkBuilder.Iterate(row.Data) if err != nil { return nil, nil, errors.Trace(err) } row.Data = row.Data[1:] } for i, val := range row.Data { err = collectors[i].collect(val) if err != nil { return nil, nil, errors.Trace(err) } } } }