Files
tidb/pkg/statistics/builder_ext_stats.go

143 lines
4.9 KiB
Go

// Copyright 2023 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"context"
"encoding/json"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/pkg/kv"
"github.com/pingcap/tidb/pkg/meta/model"
"github.com/pingcap/tidb/pkg/parser/ast"
"github.com/pingcap/tidb/pkg/sessionctx"
"github.com/pingcap/tidb/pkg/util/logutil"
"go.uber.org/zap"
)
// BuildExtendedStats build extended stats for column groups if needed based on the column samples.
func BuildExtendedStats(sctx sessionctx.Context,
tableID int64, cols []*model.ColumnInfo, collectors []*SampleCollector) (*ExtendedStatsColl, error) {
const sql = "SELECT name, type, column_ids FROM mysql.stats_extended WHERE table_id = %? and status in (%?, %?)"
sqlExec := sctx.GetRestrictedSQLExecutor()
rows, _, err := sqlExec.ExecRestrictedSQL(kv.WithInternalSourceType(context.Background(), kv.InternalTxnStats), nil, sql, tableID, ExtendedStatsAnalyzed, ExtendedStatsInited)
if err != nil {
return nil, errors.Trace(err)
}
if len(rows) == 0 {
return nil, nil
}
statsColl := NewExtendedStatsColl()
for _, row := range rows {
name := row.GetString(0)
item := &ExtendedStatsItem{Tp: uint8(row.GetInt64(1))}
colIDs := row.GetString(2)
err := json.Unmarshal([]byte(colIDs), &item.ColIDs)
if err != nil {
logutil.BgLogger().Error("invalid column_ids in mysql.stats_extended, skip collecting extended stats for this row", zap.String("column_ids", colIDs), zap.Error(err))
continue
}
item = fillExtendedStatsItemVals(sctx, item, cols, collectors)
if item != nil {
statsColl.Stats[name] = item
}
}
if len(statsColl.Stats) == 0 {
return nil, nil
}
return statsColl, nil
}
func fillExtendedStatsItemVals(sctx sessionctx.Context, item *ExtendedStatsItem, cols []*model.ColumnInfo, collectors []*SampleCollector) *ExtendedStatsItem {
switch item.Tp {
case ast.StatsTypeCardinality, ast.StatsTypeDependency:
return nil
case ast.StatsTypeCorrelation:
return fillExtStatsCorrVals(sctx, item, cols, collectors)
}
return nil
}
func fillExtStatsCorrVals(sctx sessionctx.Context, item *ExtendedStatsItem, cols []*model.ColumnInfo, collectors []*SampleCollector) *ExtendedStatsItem {
colOffsets := make([]int, 0, 2)
for _, id := range item.ColIDs {
for i, col := range cols {
if col.ID == id {
colOffsets = append(colOffsets, i)
break
}
}
}
if len(colOffsets) != 2 {
return nil
}
// samplesX and samplesY are in order of handle, i.e, their SampleItem.Ordinals are in order.
samplesX := collectors[colOffsets[0]].Samples
// We would modify Ordinal of samplesY, so we make a deep copy.
samplesY := CopySampleItems(collectors[colOffsets[1]].Samples)
sampleNum := min(len(samplesX), len(samplesY))
if sampleNum == 1 {
item.ScalarVals = 1
return item
}
if sampleNum <= 0 {
item.ScalarVals = 0
return item
}
sc := sctx.GetSessionVars().StmtCtx
var err error
err = sortSampleItems(sc, samplesX)
if err != nil {
return nil
}
samplesYInXOrder := make([]*SampleItem, 0, sampleNum)
for i, itemX := range samplesX {
if itemX.Ordinal >= len(samplesY) {
continue
}
itemY := samplesY[itemX.Ordinal]
itemY.Ordinal = i
samplesYInXOrder = append(samplesYInXOrder, itemY)
}
samplesYInYOrder := make([]*SampleItem, len(samplesYInXOrder))
copy(samplesYInYOrder, samplesYInXOrder)
err = sortSampleItems(sc, samplesYInYOrder)
if err != nil {
return nil
}
var corrXYSum float64
for i := 1; i < len(samplesYInYOrder); i++ {
corrXYSum += float64(i) * float64(samplesYInYOrder[i].Ordinal)
}
// X means the ordinal of the item in original sequence, Y means the oridnal of the item in the
// sorted sequence, we know that X and Y value sets are both:
// 0, 1, ..., sampleNum-1
// we can simply compute sum(X) = sum(Y) =
// (sampleNum-1)*sampleNum / 2
// and sum(X^2) = sum(Y^2) =
// (sampleNum-1)*sampleNum*(2*sampleNum-1) / 6
// We use "Pearson correlation coefficient" to compute the order correlation of columns,
// the formula is based on https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
// Note that (itemsCount*corrX2Sum - corrXSum*corrXSum) would never be zero when sampleNum is larger than 1.
itemsCount := float64(sampleNum)
corrXSum := (itemsCount - 1) * itemsCount / 2.0
corrX2Sum := (itemsCount - 1) * itemsCount * (2*itemsCount - 1) / 6.0
item.ScalarVals = (itemsCount*corrXYSum - corrXSum*corrXSum) / (itemsCount*corrX2Sum - corrXSum*corrXSum)
return item
}