Files
tidb/pkg/statistics/histogram.go

1926 lines
68 KiB
Go

// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"bytes"
"cmp"
"fmt"
"math"
"slices"
"strings"
"sync"
"time"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/tidb/pkg/kv"
"github.com/pingcap/tidb/pkg/parser/charset"
"github.com/pingcap/tidb/pkg/parser/mysql"
"github.com/pingcap/tidb/pkg/parser/terror"
"github.com/pingcap/tidb/pkg/planner/planctx"
"github.com/pingcap/tidb/pkg/sessionctx/stmtctx"
"github.com/pingcap/tidb/pkg/sessionctx/vardef"
"github.com/pingcap/tidb/pkg/sessionctx/variable"
statslogutil "github.com/pingcap/tidb/pkg/statistics/handle/logutil"
"github.com/pingcap/tidb/pkg/tablecodec"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/codec"
"github.com/pingcap/tidb/pkg/util/collate"
"github.com/pingcap/tidb/pkg/util/intest"
"github.com/pingcap/tidb/pkg/util/mathutil"
"github.com/pingcap/tidb/pkg/util/ranger"
"github.com/pingcap/tipb/go-tipb"
"github.com/twmb/murmur3"
"go.uber.org/zap"
)
const (
outOfRangeBetweenRate float64 = 100
)
var (
// Global static chunk for pseudo histograms to avoid chunk allocation
globalPseudoChunkOnce sync.Once
globalPseudoChunk *chunk.Chunk
)
// Histogram represents statistics for a column or index.
type Histogram struct {
Tp *types.FieldType
// Histogram elements.
//
// A bucket bound is the smallest and greatest values stored in the bucket. The lower and upper bound
// are stored in one column.
//
// A bucket count is the number of items stored in all previous buckets and the current bucket.
// Bucket counts are always in increasing order.
//
// A bucket repeat is the number of repeats of the bucket value, it can be used to find popular values.
Bounds *chunk.Chunk
Buckets []Bucket
// Used for estimating fraction of the interval [lower, upper] that lies within the [lower, value].
// For some types like `Int`, we do not build it because we can get them directly from `Bounds`.
Scalars []scalar
ID int64 // Column ID.
NDV int64 // Number of distinct values. Note that It contains the NDV of the TopN which is excluded from histogram.
NullCount int64 // Number of null values.
// LastUpdateVersion is the version that this histogram updated last time.
LastUpdateVersion uint64
// TotColSize is the total column size for the histogram.
// For unfixed-len types, it includes LEN and BYTE.
TotColSize int64
// Correlation is the statistical correlation between physical row ordering and logical ordering of
// the column values. This ranges from -1 to +1, and it is only valid for Column histogram, not for
// Index histogram.
Correlation float64
}
// EmptyHistogramSize is the size of empty histogram, about 112 = 8*6 for int64 & float64, 24*2 for arrays, 8*2 for references.
const EmptyHistogramSize = int64(unsafe.Sizeof(Histogram{}))
// Bucket store the bucket count and repeat.
type Bucket struct {
// Count is the number of items till this bucket.
Count int64
// Repeat is the number of times the upper-bound value of the bucket appears in the data.
// For example, in the range [x, y], Repeat indicates how many times y appears.
// It is used to estimate the row count of values equal to the upper bound of the bucket, similar to TopN.
Repeat int64
// NDV is the number of distinct values in the bucket.
NDV int64
}
// EmptyBucketSize is the size of empty bucket, 3*8=24 now.
const EmptyBucketSize = int64(unsafe.Sizeof(Bucket{}))
type scalar struct {
lower float64
upper float64
commonPfxLen int // commonPfxLen is the common prefix length of the lower bound and upper bound when the value type is KindString or KindBytes.
}
// EmptyScalarSize is the size of empty scalar.
const EmptyScalarSize = int64(unsafe.Sizeof(scalar{}))
// initGlobalPseudoChunk initializes the global static chunk for pseudo histograms
func initGlobalPseudoChunk() {
// Create a minimal empty chunk that can be shared across all pseudo histograms
// Use a basic field type that won't cause issues when shared
globalPseudoChunk = chunk.NewEmptyChunk([]*types.FieldType{types.NewFieldType(mysql.TypeBlob)})
}
// getGlobalPseudoChunk returns the shared static chunk for pseudo histograms
// WARNING: The returned chunk MUST NOT be modified. It is shared across all pseudo histograms.
// Pseudo histograms should never have buckets added or bounds modified.
func getGlobalPseudoChunk() *chunk.Chunk {
globalPseudoChunkOnce.Do(initGlobalPseudoChunk)
return globalPseudoChunk
}
// prepareFieldTypeForHistogram prepares the field type for histogram usage.
// For string types, it clones the field type and sets the collation to binary
// to avoid decoding issues with the histogram's key representation.
func prepareFieldTypeForHistogram(tp *types.FieldType) *types.FieldType {
if tp.EvalType() == types.ETString {
// The histogram will store the string value's 'sort key' representation of its collation.
// If we directly set the field type's collation to its original one, we would decode the Key representation using its collation.
// This would cause panic. So we apply a little trick here to avoid decoding it by explicitly changing the collation to 'CollationBin'.
tp = tp.Clone()
tp.SetCollate(charset.CollationBin)
}
return tp
}
// NewPseudoHistogram creates a pseudo histogram that reuses global static components
// This avoids chunk allocation while preserving field type semantics.
func NewPseudoHistogram(id int64, tp *types.FieldType) *Histogram {
tp = prepareFieldTypeForHistogram(tp)
return &Histogram{
ID: id,
NDV: 0,
NullCount: 0,
LastUpdateVersion: 0,
Tp: tp,
Bounds: getGlobalPseudoChunk(),
Buckets: make([]Bucket, 0),
TotColSize: 0,
Correlation: 0,
}
}
// NewHistogram creates a new histogram.
func NewHistogram(id, ndv, nullCount int64, version uint64, tp *types.FieldType, bucketSize int, totColSize int64) *Histogram {
tp = prepareFieldTypeForHistogram(tp)
return &Histogram{
ID: id,
NDV: ndv,
NullCount: nullCount,
LastUpdateVersion: version,
Tp: tp,
Bounds: chunk.NewChunkFromPoolWithCapacity([]*types.FieldType{tp}, 2*bucketSize),
Buckets: make([]Bucket, 0, bucketSize),
TotColSize: totColSize,
}
}
// GetLower gets the lower bound of bucket `idx`.
func (hg *Histogram) GetLower(idx int) *types.Datum {
d := hg.Bounds.GetRow(2*idx).GetDatum(0, hg.Tp)
return &d
}
// LowerToDatum gets the lower bound of bucket `idx` to datum.
func (hg *Histogram) LowerToDatum(idx int, d *types.Datum) {
hg.Bounds.GetRow(2*idx).DatumWithBuffer(0, hg.Tp, d)
}
// GetUpper gets the upper bound of bucket `idx`.
func (hg *Histogram) GetUpper(idx int) *types.Datum {
d := hg.Bounds.GetRow(2*idx+1).GetDatum(0, hg.Tp)
return &d
}
// UpperToDatum gets the upper bound of bucket `idx` to datum.
func (hg *Histogram) UpperToDatum(idx int, d *types.Datum) {
hg.Bounds.GetRow(2*idx+1).DatumWithBuffer(0, hg.Tp, d)
}
// MemoryUsage returns the total memory usage of this Histogram.
func (hg *Histogram) MemoryUsage() (sum int64) {
if hg == nil {
return
}
if len(hg.Buckets) == 0 && len(hg.Scalars) == 0 && hg.Bounds.Capacity() == 0 {
return
}
sum = EmptyHistogramSize + hg.Bounds.MemoryUsage() + int64(cap(hg.Buckets))*EmptyBucketSize + int64(cap(hg.Scalars))*EmptyScalarSize
return sum
}
// AppendBucket appends a bucket into `hg`.
func (hg *Histogram) AppendBucket(lower *types.Datum, upper *types.Datum, count, repeat int64) {
hg.AppendBucketWithNDV(lower, upper, count, repeat, 0)
}
// AppendBucketWithNDV appends a bucket into `hg` and set value for field `NDV`.
func (hg *Histogram) AppendBucketWithNDV(lower *types.Datum, upper *types.Datum, count, repeat, ndv int64) {
hg.Buckets = append(hg.Buckets, Bucket{Count: count, Repeat: repeat, NDV: ndv})
hg.Bounds.AppendDatum(0, lower)
hg.Bounds.AppendDatum(0, upper)
}
func (hg *Histogram) updateLastBucket(upper *types.Datum, count, repeat int64, needBucketNDV bool) {
l := hg.Len()
hg.Bounds.TruncateTo(2*l - 1)
hg.Bounds.AppendDatum(0, upper)
// The sampling case doesn't hold NDV since the low sampling rate. So check the NDV here.
bucket := &hg.Buckets[l-1]
if needBucketNDV && bucket.NDV > 0 {
bucket.NDV++
}
bucket.Count = count
bucket.Repeat = repeat
}
// DecodeTo decodes the histogram bucket values into `tp`.
func (hg *Histogram) DecodeTo(tp *types.FieldType, timeZone *time.Location) error {
oldIter := chunk.NewIterator4Chunk(hg.Bounds)
hg.Bounds = chunk.NewChunkWithCapacity([]*types.FieldType{tp}, oldIter.Len())
hg.Tp = tp
for row := oldIter.Begin(); row != oldIter.End(); row = oldIter.Next() {
datum, err := tablecodec.DecodeColumnValue(row.GetBytes(0), tp, timeZone)
if err != nil {
return errors.Trace(err)
}
hg.Bounds.AppendDatum(0, &datum)
}
return nil
}
// ConvertTo converts the histogram bucket values into `tp`.
func (hg *Histogram) ConvertTo(tctx types.Context, tp *types.FieldType) (*Histogram, error) {
hist := NewHistogram(hg.ID, hg.NDV, hg.NullCount, hg.LastUpdateVersion, tp, hg.Len(), hg.TotColSize)
hist.Correlation = hg.Correlation
iter := chunk.NewIterator4Chunk(hg.Bounds)
for row := iter.Begin(); row != iter.End(); row = iter.Next() {
d := row.GetDatum(0, hg.Tp)
d, err := d.ConvertTo(tctx, tp)
if err != nil {
return nil, errors.Trace(err)
}
hist.Bounds.AppendDatum(0, &d)
}
hist.Buckets = hg.Buckets
return hist, nil
}
// Len is the number of buckets in the histogram.
func (hg *Histogram) Len() int {
return len(hg.Buckets)
}
// DestroyAndPutToPool resets the FMSketch and puts it to the pool.
func (hg *Histogram) DestroyAndPutToPool() {
if hg == nil {
return
}
hg.Bounds.Destroy(len(hg.Buckets), []*types.FieldType{hg.Tp})
}
// HistogramEqual tests if two histograms are equal.
func HistogramEqual(a, b *Histogram, ignoreID bool) bool {
if ignoreID {
old := b.ID
b.ID = a.ID
defer func() { b.ID = old }()
}
return bytes.Equal([]byte(a.ToString(0)), []byte(b.ToString(0)))
}
// constants for stats version. These const can be used for solving compatibility issue.
const (
// Version0 is the state that no statistics is actually collected, only the meta info.(the total count and the average col size)
Version0 = 0
// Version1 maintains the statistics in the following way.
// Column stats: CM Sketch is built in TiKV using full data. Histogram is built from samples. TopN is extracted from CM Sketch.
// TopN + CM Sketch represent all data. Histogram also represents all data.
// Index stats: CM Sketch and Histogram is built in TiKV using full data. TopN is extracted from histogram. Then values covered by TopN is removed from CM Sketch.
// TopN + CM Sketch represent all data. Histogram also represents all data.
// Int PK column stats is always Version1 because it only has histogram built from full data.
// Fast analyze is always Version1 currently.
Version1 = 1
// Version2 maintains the statistics in the following way.
// Column stats: CM Sketch is not used. TopN and Histogram are built from samples. TopN + Histogram represent all data.(The values covered by TopN is removed from Histogram.)
// Index stats: CM SKetch is not used. TopN and Histograms are built from samples. TopN + Histogram represent all data.(The values covered by TopN is removed from Histogram.)
// Both Column and Index's NDVs are collected by full scan.
Version2 = 2
)
// IsAnalyzed checks whether statistics are analyzed based on stats version.
func IsAnalyzed(statsVer int64) bool {
return statsVer != Version0
}
// IsColumnAnalyzedOrSynthesized checks whether column statistics are available based on raw storage values.
// This includes both analyzed stats (statsVer != Version0) and synthesized stats from default values
// (which have statsVer == Version0 but ndv > 0 or nullCount > 0).
// This function is used to determine the 'analyzed' flag when inserting column stats into ColAndIdxExistenceMap.
// NOTE: Synthesized stats are only applicable to column stats, not index stats.
// They are only created when adding a column with a default value. See: InsertColStats2KV
func IsColumnAnalyzedOrSynthesized(statsVer int64, ndv int64, nullCount int64) bool {
return IsAnalyzed(statsVer) || ndv > 0 || nullCount > 0
}
// ValueToString converts a possible encoded value to a formatted string. If the value is encoded, then
// idxCols equals to number of origin values, else idxCols is 0.
func ValueToString(vars *variable.SessionVars, value *types.Datum, idxCols int, idxColumnTypes []byte) (string, error) {
if idxCols == 0 {
return value.ToString()
}
var loc *time.Location
if vars != nil {
loc = vars.Location()
}
// Ignore the error and treat remaining part that cannot decode successfully as bytes.
decodedVals, remained, err := codec.DecodeRange(value.GetBytes(), idxCols, idxColumnTypes, loc)
// Ignore err explicit to pass errcheck.
_ = err
if len(remained) > 0 {
decodedVals = append(decodedVals, types.NewBytesDatum(remained))
}
str, err := types.DatumsToString(decodedVals, true)
return str, err
}
// BucketToString change the given bucket to string format.
func (hg *Histogram) BucketToString(bktID, idxCols int) string {
upperVal, err := ValueToString(nil, hg.GetUpper(bktID), idxCols, nil)
terror.Log(errors.Trace(err))
lowerVal, err := ValueToString(nil, hg.GetLower(bktID), idxCols, nil)
terror.Log(errors.Trace(err))
return fmt.Sprintf("num: %d lower_bound: %s upper_bound: %s repeats: %d ndv: %d", hg.BucketCount(bktID), lowerVal, upperVal, hg.Buckets[bktID].Repeat, hg.Buckets[bktID].NDV)
}
// BinarySearchRemoveVal removes the value from the TopN using binary search.
func (hg *Histogram) BinarySearchRemoveVal(val *types.Datum, count int64) {
lowIdx, highIdx := 0, hg.Len()-1
// if hg is too small, we don't need to check the branch. because the cost is more than binary search.
if hg.Len() > 4 {
if cmpResult := chunk.Compare(hg.Bounds.GetRow(highIdx*2+1), 0, val); cmpResult < 0 {
return
}
if cmpResult := chunk.Compare(hg.Bounds.GetRow(lowIdx), 0, val); cmpResult > 0 {
return
}
}
var midIdx = 0
var found bool
for lowIdx <= highIdx {
midIdx = (lowIdx + highIdx) / 2
cmpResult := chunk.Compare(hg.Bounds.GetRow(midIdx*2), 0, val)
if cmpResult > 0 {
highIdx = midIdx - 1
continue
}
cmpResult = chunk.Compare(hg.Bounds.GetRow(midIdx*2+1), 0, val)
if cmpResult < 0 {
lowIdx = midIdx + 1
continue
}
midbucket := &hg.Buckets[midIdx]
if midbucket.NDV > 0 {
midbucket.NDV--
}
if cmpResult == 0 {
midbucket.Repeat = 0
}
midbucket.Count -= count
if midbucket.Count < 0 {
midbucket.Count = 0
}
found = true
break
}
if found {
for midIdx++; midIdx <= hg.Len()-1; midIdx++ {
hg.Buckets[midIdx].Count -= count
if hg.Buckets[midIdx].Count < 0 {
hg.Buckets[midIdx].Count = 0
}
}
}
}
// RemoveVals remove the given values from the histogram.
// This function contains an **ASSUMPTION**: valCntPairs is sorted in ascending order.
func (hg *Histogram) RemoveVals(valCntPairs []TopNMeta) {
totalSubCnt := int64(0)
var cmpResult int
for bktIdx, pairIdx := 0, 0; bktIdx < hg.Len(); bktIdx++ {
for pairIdx < len(valCntPairs) {
// If the current val smaller than current bucket's lower bound, skip it.
cmpResult = bytes.Compare(hg.Bounds.Column(0).GetRaw(bktIdx*2), valCntPairs[pairIdx].Encoded)
if cmpResult > 0 {
pairIdx++
continue
}
// If the current val bigger than current bucket's upper bound, break.
cmpResult = bytes.Compare(hg.Bounds.Column(0).GetRaw(bktIdx*2+1), valCntPairs[pairIdx].Encoded)
if cmpResult < 0 {
break
}
totalSubCnt += int64(valCntPairs[pairIdx].Count)
if hg.Buckets[bktIdx].NDV > 0 {
hg.Buckets[bktIdx].NDV--
}
pairIdx++
if cmpResult == 0 {
hg.Buckets[bktIdx].Repeat = 0
break
}
}
hg.Buckets[bktIdx].Count -= totalSubCnt
if hg.Buckets[bktIdx].Count < 0 {
hg.Buckets[bktIdx].Count = 0
}
}
}
// StandardizeForV2AnalyzeIndex fixes some "irregular" places in the Histogram, which come from current implementation of
// analyze index task in v2.
// For now, it does two things: 1. Remove empty buckets. 2. Reset Bucket.NDV to 0.
func (hg *Histogram) StandardizeForV2AnalyzeIndex() {
if hg == nil || len(hg.Buckets) == 0 {
return
}
// Note that hg.Buckets is []Bucket instead of []*Bucket, so we avoid extra memory allocation for the struct Bucket
// in the process below.
// remainedBktIdxs are the positions of the eventually remained buckets in the original hg.Buckets slice.
remainedBktIdxs := make([]int, 0, len(hg.Buckets))
// We use two pointers here.
// checkingIdx is the "fast" one, and it iterates the hg.Buckets and check if they are empty one by one.
// When we find a non-empty bucket, we move it to the position where nextRemainedBktIdx, which is the "slow"
// pointer, points to.
nextRemainedBktIdx := 0
for checkingIdx := range hg.Buckets {
if hg.BucketCount(checkingIdx) <= 0 && hg.Buckets[checkingIdx].Repeat <= 0 {
continue
}
remainedBktIdxs = append(remainedBktIdxs, checkingIdx)
if nextRemainedBktIdx != checkingIdx {
hg.Buckets[nextRemainedBktIdx] = hg.Buckets[checkingIdx]
}
hg.Buckets[nextRemainedBktIdx].NDV = 0
nextRemainedBktIdx++
}
hg.Buckets = hg.Buckets[:nextRemainedBktIdx]
// Get the new Bounds from the original Bounds according to the indexes we collect.
c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp}, len(remainedBktIdxs))
for _, i := range remainedBktIdxs {
c.AppendDatum(0, hg.GetLower(i))
c.AppendDatum(0, hg.GetUpper(i))
}
hg.Bounds = c
}
// ToString gets the string representation for the histogram.
func (hg *Histogram) ToString(idxCols int) string {
strs := make([]string, 0, hg.Len()+1)
if idxCols > 0 {
strs = append(strs, fmt.Sprintf("index:%d ndv:%d", hg.ID, hg.NDV))
} else {
strs = append(strs, fmt.Sprintf("column:%d ndv:%d totColSize:%d", hg.ID, hg.NDV, hg.TotColSize))
}
for i := range hg.Len() {
strs = append(strs, hg.BucketToString(i, idxCols))
}
return strings.Join(strs, "\n")
}
// EqualRowCount estimates the row count where the column equals to value.
// matched: return true if this returned row count is from Bucket.Repeat or bucket NDV, which is more accurate than if not.
// The input sctx is just for debug trace, you can pass nil safely if that's not needed.
func (hg *Histogram) EqualRowCount(sctx planctx.PlanContext, value types.Datum, hasBucketNDV bool) (count float64, matched bool) {
_, bucketIdx, inBucket, match := hg.LocateBucket(sctx, value)
if !inBucket {
return 0, false
}
if match {
return float64(hg.Buckets[bucketIdx].Repeat), true
}
if hasBucketNDV && hg.Buckets[bucketIdx].NDV > 1 {
return float64(hg.BucketCount(bucketIdx)-hg.Buckets[bucketIdx].Repeat) / float64(hg.Buckets[bucketIdx].NDV-1), true
}
return hg.NotNullCount() / float64(hg.NDV), false
}
// GreaterRowCount estimates the row count where the column greater than value.
// It's deprecated. Only used for test.
func (hg *Histogram) GreaterRowCount(value types.Datum) float64 {
histRowCount, _ := hg.EqualRowCount(nil, value, false)
gtCount := hg.NotNullCount() - hg.LessRowCount(nil, value) - histRowCount
return math.Max(0, gtCount)
}
// LocateBucket locates where a value falls in the range of the Histogram.
// The input sctx is just for debug trace, you can pass nil safely if that's not needed.
//
// Return value:
// exceed: if the value is larger than the upper bound of the last Bucket of the Histogram.
// bucketIdx: assuming exceed if false, which Bucket does this value fall in (note: the range before a Bucket is also
// considered belong to this Bucket).
// inBucket: assuming exceed if false, whether this value falls in this Bucket, instead of falls between
// this Bucket and the previous Bucket.
// matchLastValue: assuming inBucket is true, if this value is the last value in this Bucket, which has a counter (Bucket.Repeat).
//
// Examples:
// val0 |<-[bkt0]->| |<-[bkt1]->val1(last value)| val2 |<--val3--[bkt2]->| |<-[bkt3]->| val4
// locateBucket(val0): false, 0, false, false
// locateBucket(val1): false, 1, true, true
// locateBucket(val2): false, 2, false, false
// locateBucket(val3): false, 2, true, false
// locateBucket(val4): true, 3, false, false
func (hg *Histogram) LocateBucket(_ planctx.PlanContext, value types.Datum) (exceed bool, bucketIdx int, inBucket, matchLastValue bool) {
// Empty histogram
if hg == nil || hg.Bounds.NumRows() == 0 {
return true, 0, false, false
}
index, match := hg.Bounds.LowerBound(0, &value)
// The value is larger than the max value in the histogram (exceed is true)
if index >= hg.Bounds.NumRows() {
return true, hg.Len() - 1, false, false
}
bucketIdx = index / 2
// The value is before this bucket
if index%2 == 0 && !match {
return false, bucketIdx, false, false
}
// The value matches the last value in this bucket
// case 1: The LowerBound()'s return value tells us the value matches an upper bound of a bucket
// case 2: We compare and find that the value is equal to the upper bound of this bucket. This might happen when
// the bucket's lower bound is equal to its upper bound.
if (index%2 == 1 && match) || chunk.Compare(hg.Bounds.GetRow(bucketIdx*2+1), 0, &value) == 0 {
return false, bucketIdx, true, true
}
// The value is in the bucket and isn't the last value in this bucket
return false, bucketIdx, true, false
}
// LessRowCountWithBktIdx estimates the row count where the column less than value.
// The input sctx is just for debug trace, you can pass nil safely if that's not needed.
func (hg *Histogram) LessRowCountWithBktIdx(sctx planctx.PlanContext, value types.Datum) (result float64, bucketIdx int) {
// All the values are null.
if hg.Bounds.NumRows() == 0 {
return 0, 0
}
exceed, bucketIdx, inBucket, match := hg.LocateBucket(sctx, value)
if exceed {
return hg.NotNullCount(), hg.Len() - 1
}
preCount := float64(0)
if bucketIdx > 0 {
preCount = float64(hg.Buckets[bucketIdx-1].Count)
}
if !inBucket {
return preCount, bucketIdx
}
curCount, curRepeat := float64(hg.Buckets[bucketIdx].Count), float64(hg.Buckets[bucketIdx].Repeat)
if match {
return curCount - curRepeat, bucketIdx
}
return preCount + hg.calcFraction(bucketIdx, &value)*(curCount-curRepeat-preCount), bucketIdx
}
// LessRowCount estimates the row count where the column less than value.
// The input sctx is just for debug trace, you can pass nil safely if that's not needed.
func (hg *Histogram) LessRowCount(sctx planctx.PlanContext, value types.Datum) float64 {
result, _ := hg.LessRowCountWithBktIdx(sctx, value)
return result
}
// BetweenRowCount estimates the row count where column greater or equal to a and less than b.
// The input sctx is required for stats version 2. For version 1, it is just for debug trace, you can pass nil safely.
func (hg *Histogram) BetweenRowCount(sctx planctx.PlanContext, a, b types.Datum) RowEstimate {
lessCountA, bktIndexA := hg.LessRowCountWithBktIdx(sctx, a)
lessCountB, bktIndexB := hg.LessRowCountWithBktIdx(sctx, b)
rangeEst := lessCountB - lessCountA
lowEqual, _ := hg.EqualRowCount(sctx, a, false)
ndvAvg := hg.NotNullCount() / float64(hg.NDV)
// If values fall in the same bucket, we may underestimate the fractional result. So estimate the low value (a) as an equals, and
// estimate the high value as the default (because the input high value may be "larger" than the true high value). The range should
// not be less than both the low+high - or the lesser of the estimate for the individual range of a or b is used as a bound.
if rangeEst < max(lowEqual, ndvAvg) && hg.NDV > 0 {
result := min(lessCountB, hg.NotNullCount()-lessCountA)
rangeEst = min(result, lowEqual+ndvAvg)
}
// LessCounts are equal only if no valid buckets or both values are out of range
isInValidBucket := lessCountA != lessCountB
// If values in the same bucket, use skewRatio to adjust the range estimate to account for potential skew.
if isInValidBucket && bktIndexA == bktIndexB {
// sctx may be nil for stats version 1
if sctx != nil {
skewRatio := sctx.GetSessionVars().RiskRangeSkewRatio
sctx.GetSessionVars().RecordRelevantOptVar(vardef.TiDBOptRiskRangeSkewRatio)
if skewRatio > 0 {
// Worst case skew is if the range includes all the rows in the bucket
skewEstimate := hg.Buckets[bktIndexA].Count
if bktIndexA > 0 {
skewEstimate -= hg.Buckets[bktIndexA-1].Count
}
// If range does not include last value of its bucket, remove the repeat count from the skew estimate.
if lessCountB <= float64(hg.Buckets[bktIndexA].Count-hg.Buckets[bktIndexA].Repeat) {
skewEstimate -= hg.Buckets[bktIndexA].Repeat
}
return CalculateSkewRatioCounts(rangeEst, float64(skewEstimate), skewRatio)
}
}
}
return DefaultRowEst(rangeEst)
}
// CalculateSkewRatioCounts calculates the default, min, and max skew estimates given a skew ratio.
func CalculateSkewRatioCounts(estimate, skewEstimate, skewRatio float64) RowEstimate {
skewDiff := skewEstimate - estimate
// Add a "ratio" of the skewEstimate to adjust the default row estimate.
skewAmt := max(0, skewDiff*skewRatio)
maxSkewAmt := min(skewDiff, 2*skewAmt)
return RowEstimate{estimate + skewAmt, estimate, estimate + maxSkewAmt}
}
// RowEstimate stores the min, default, and max row count estimates.
type RowEstimate struct {
Est float64
MinEst float64
MaxEst float64
}
// DefaultRowEst returns a RowEstimate with same value for all three fields
func DefaultRowEst(est float64) RowEstimate {
return RowEstimate{est, est, est}
}
// Add adds two RowEstimates together, storing result in the first RowEstimate.
func (r *RowEstimate) Add(r1 RowEstimate) {
r.Est += r1.Est
r.MinEst += r1.MinEst
r.MaxEst += r1.MaxEst
}
// AddAll adds a float64 value to all three fields of the RowEstimate and stores the result.
func (r *RowEstimate) AddAll(f float64) {
r.Est += f
r.MinEst += f
r.MaxEst += f
}
// Subtract subtracts two RowEstimates together, storing result in the first RowEstimate.
func (r *RowEstimate) Subtract(r1 RowEstimate) {
r.Est -= r1.Est
r.MinEst -= r1.MinEst
r.MaxEst -= r1.MaxEst
}
// MultiplyAll multiplies all three fields of the RowEstimate by a float64 value and stores the result.
func (r *RowEstimate) MultiplyAll(f float64) {
r.Est *= f
r.MinEst *= f
r.MaxEst *= f
}
// DivideAll divides all three fields of the RowEstimate by a float64 value and stores the result.
func (r *RowEstimate) DivideAll(f float64) {
r.Est /= f
r.MinEst /= f
r.MaxEst /= f
}
// Clamp clamps all three fields of the RowEstimate to the given min and max values.
// Don't allow MinEst to be greater than Est, or MaxEst to be less than Est.
func (r *RowEstimate) Clamp(f1, f2 float64) {
r.Est = mathutil.Clamp(r.Est, f1, f2)
r.MinEst = min(r.MinEst, r.Est)
r.MinEst = mathutil.Clamp(r.MinEst, f1, f2)
r.MaxEst = max(r.MaxEst, r.Est)
r.MaxEst = mathutil.Clamp(r.MaxEst, f1, f2)
}
// TotalRowCount returns the total count of this histogram.
func (hg *Histogram) TotalRowCount() float64 {
return hg.NotNullCount() + float64(hg.NullCount)
}
// AbsRowCountDifference returns the absolute difference between the realtime row count
// and the histogram's total row count, representing data changes since the last ANALYZE.
func (hg *Histogram) AbsRowCountDifference(realtimeRowCount int64) float64 {
return math.Abs(float64(realtimeRowCount) - hg.TotalRowCount())
}
// NotNullCount indicates the count of non-null values in column histogram and single-column index histogram,
// for multi-column index histogram, since we cannot define null for the row, we treat all rows as non-null, that means,
// notNullCount would return same value as TotalRowCount for multi-column index histograms.
func (hg *Histogram) NotNullCount() float64 {
if hg.Len() == 0 {
return 0
}
return float64(hg.Buckets[hg.Len()-1].Count)
}
// mergeBuckets is used to Merge every two neighbor buckets.
func (hg *Histogram) mergeBuckets(bucketIdx int) {
curBuck := 0
c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp}, bucketIdx)
for i := 0; i+1 <= bucketIdx; i += 2 {
hg.Buckets[curBuck].NDV = hg.Buckets[i+1].NDV + hg.Buckets[i].NDV
hg.Buckets[curBuck].Count = hg.Buckets[i+1].Count
hg.Buckets[curBuck].Repeat = hg.Buckets[i+1].Repeat
c.AppendDatum(0, hg.GetLower(i))
c.AppendDatum(0, hg.GetUpper(i+1))
curBuck++
}
if bucketIdx%2 == 0 {
hg.Buckets[curBuck] = hg.Buckets[bucketIdx]
c.AppendDatum(0, hg.GetLower(bucketIdx))
c.AppendDatum(0, hg.GetUpper(bucketIdx))
curBuck++
}
hg.Bounds = c
hg.Buckets = hg.Buckets[:curBuck]
}
// GetIncreaseFactor will return a factor of data increasing after the last analysis.
func (hg *Histogram) GetIncreaseFactor(totalCount int64) float64 {
columnCount := hg.TotalRowCount()
if columnCount == 0 {
// avoid dividing by 0
return 1.0
}
return float64(totalCount) / columnCount
}
// validRange checks if the range is Valid, it is used by `SplitRange` to remove the invalid range,
// the possible types of range are index key range and handle key range.
func validRange(sc *stmtctx.StatementContext, ran *ranger.Range, encoded bool) bool {
var low, high []byte
if encoded {
low, high = ran.LowVal[0].GetBytes(), ran.HighVal[0].GetBytes()
} else {
var err error
low, err = codec.EncodeKey(sc.TimeZone(), nil, ran.LowVal[0])
err = sc.HandleError(err)
if err != nil {
return false
}
high, err = codec.EncodeKey(sc.TimeZone(), nil, ran.HighVal[0])
err = sc.HandleError(err)
if err != nil {
return false
}
}
if ran.LowExclude {
low = kv.Key(low).PrefixNext()
}
if !ran.HighExclude {
high = kv.Key(high).PrefixNext()
}
return bytes.Compare(low, high) < 0
}
func checkKind(vals []types.Datum, kind byte) bool {
if kind == types.KindString {
kind = types.KindBytes
}
for _, val := range vals {
valKind := val.Kind()
if valKind == types.KindNull || valKind == types.KindMinNotNull || valKind == types.KindMaxValue {
continue
}
if valKind == types.KindString {
valKind = types.KindBytes
}
if valKind != kind {
return false
}
// Only check the first non-null value.
break
}
return true
}
func (hg *Histogram) typeMatch(ranges []*ranger.Range) bool {
kind := hg.GetLower(0).Kind()
for _, ran := range ranges {
if !checkKind(ran.LowVal, kind) || !checkKind(ran.HighVal, kind) {
return false
}
}
return true
}
// SplitRange splits the range according to the histogram lower bound. Note that we treat first bucket's lower bound
// as -inf and last bucket's upper bound as +inf, so all the split ranges will totally fall in one of the (-inf, l(1)),
// [l(1), l(2)),...[l(n-2), l(n-1)), [l(n-1), +inf), where n is the number of buckets, l(i) is the i-th bucket's lower bound.
func (hg *Histogram) SplitRange(sc *stmtctx.StatementContext, oldRanges []*ranger.Range, encoded bool) ([]*ranger.Range, bool) {
if !hg.typeMatch(oldRanges) {
return oldRanges, false
}
// Treat the only buckets as (-inf, +inf), so we do not need split it.
if hg.Len() == 1 {
return oldRanges, true
}
ranges := make([]*ranger.Range, 0, len(oldRanges))
for _, ran := range oldRanges {
ranges = append(ranges, ran.Clone())
}
split := make([]*ranger.Range, 0, len(ranges))
for len(ranges) > 0 {
// Find the first bound that greater than the LowVal.
idx := hg.Bounds.UpperBound(0, &ranges[0].LowVal[0])
// Treat last bucket's upper bound as +inf, so we do not need split any more.
if idx >= hg.Bounds.NumRows()-1 {
split = append(split, ranges...)
break
}
// Treat first buckets's lower bound as -inf, just increase it to the next lower bound.
if idx == 0 {
idx = 2
}
// Get the next lower bound.
if idx%2 == 1 {
idx++
}
lowerBound := hg.Bounds.GetRow(idx)
var i int
// Find the first range that need to be split by the lower bound.
for ; i < len(ranges); i++ {
if chunk.Compare(lowerBound, 0, &ranges[i].HighVal[0]) <= 0 {
break
}
}
split = append(split, ranges[:i]...)
ranges = ranges[i:]
if len(ranges) == 0 {
break
}
// Split according to the lower bound.
cmp := chunk.Compare(lowerBound, 0, &ranges[0].LowVal[0])
if cmp > 0 {
lower := lowerBound.GetDatum(0, hg.Tp)
newRange := &ranger.Range{
LowExclude: ranges[0].LowExclude,
LowVal: []types.Datum{ranges[0].LowVal[0]},
HighVal: []types.Datum{lower},
HighExclude: true,
Collators: ranges[0].Collators,
}
if validRange(sc, newRange, encoded) {
split = append(split, newRange)
}
ranges[0].LowVal[0] = lower
ranges[0].LowExclude = false
if !validRange(sc, ranges[0], encoded) {
ranges = ranges[1:]
}
}
}
return split, true
}
// BucketCount returns the count of the bucket with index idx.
func (hg *Histogram) BucketCount(idx int) int64 {
if idx == 0 {
return hg.Buckets[0].Count
}
return hg.Buckets[idx].Count - hg.Buckets[idx-1].Count
}
// HistogramToProto converts Histogram to its protobuf representation.
// Note that when this is used, the lower/upper bound in the bucket must be BytesDatum.
func HistogramToProto(hg *Histogram) *tipb.Histogram {
protoHg := &tipb.Histogram{
Ndv: hg.NDV,
}
for i := range hg.Len() {
bkt := &tipb.Bucket{
Count: hg.Buckets[i].Count,
LowerBound: DeepSlice(hg.GetLower(i).GetBytes()),
UpperBound: DeepSlice(hg.GetUpper(i).GetBytes()),
Repeats: hg.Buckets[i].Repeat,
Ndv: &hg.Buckets[i].NDV,
}
protoHg.Buckets = append(protoHg.Buckets, bkt)
}
return protoHg
}
// DeepSlice sallowly clones a slice.
func DeepSlice[T any](s []T) []T {
r := make([]T, len(s))
copy(r, s)
return r
}
// HistogramFromProto converts Histogram from its protobuf representation.
// Note that we will set BytesDatum for the lower/upper bound in the bucket, the decode will
// be after all histograms merged.
func HistogramFromProto(protoHg *tipb.Histogram) *Histogram {
tp := types.NewFieldType(mysql.TypeBlob)
hg := NewHistogram(0, protoHg.Ndv, 0, 0, tp, len(protoHg.Buckets), 0)
for _, bucket := range protoHg.Buckets {
lower, upper := types.NewBytesDatum(bucket.LowerBound), types.NewBytesDatum(bucket.UpperBound)
if bucket.Ndv != nil {
hg.AppendBucketWithNDV(&lower, &upper, bucket.Count, bucket.Repeats, *bucket.Ndv)
} else {
hg.AppendBucket(&lower, &upper, bucket.Count, bucket.Repeats)
}
}
return hg
}
func (hg *Histogram) popFirstBucket() {
hg.Buckets = hg.Buckets[1:]
c := chunk.NewChunkWithCapacity([]*types.FieldType{hg.Tp, hg.Tp}, hg.Bounds.NumRows()-2)
c.Append(hg.Bounds, 2, hg.Bounds.NumRows())
hg.Bounds = c
}
// IsIndexHist checks whether current histogram is one for index.
func (hg *Histogram) IsIndexHist() bool {
return hg.Tp.GetType() == mysql.TypeBlob
}
// MergeHistograms merges two histograms.
func MergeHistograms(sc *stmtctx.StatementContext, lh *Histogram, rh *Histogram, bucketSize int, statsVer int) (*Histogram, error) {
if lh.Len() == 0 {
return rh, nil
}
if rh.Len() == 0 {
return lh, nil
}
lh.NDV += rh.NDV
lLen := lh.Len()
cmp, err := lh.GetUpper(lLen-1).Compare(sc.TypeCtx(), rh.GetLower(0), collate.GetBinaryCollator())
if err != nil {
return nil, errors.Trace(err)
}
offset := int64(0)
if cmp == 0 {
lh.NDV--
lh.Buckets[lLen-1].NDV += rh.Buckets[0].NDV
// There's an overlapped one. So we need to subtract it if needed.
if rh.Buckets[0].NDV > 0 && lh.Buckets[lLen-1].Repeat > 0 {
lh.Buckets[lLen-1].NDV--
}
lh.updateLastBucket(rh.GetUpper(0), lh.Buckets[lLen-1].Count+rh.Buckets[0].Count, rh.Buckets[0].Repeat, false)
offset = rh.Buckets[0].Count
rh.popFirstBucket()
}
for lh.Len() > bucketSize {
lh.mergeBuckets(lh.Len() - 1)
}
if rh.Len() == 0 {
return lh, nil
}
for rh.Len() > bucketSize {
rh.mergeBuckets(rh.Len() - 1)
}
lCount := lh.Buckets[lh.Len()-1].Count
rCount := rh.Buckets[rh.Len()-1].Count - offset
lAvg := float64(lCount) / float64(lh.Len())
rAvg := float64(rCount) / float64(rh.Len())
for lh.Len() > 1 && lAvg*2 <= rAvg {
lh.mergeBuckets(lh.Len() - 1)
lAvg *= 2
}
for rh.Len() > 1 && rAvg*2 <= lAvg {
rh.mergeBuckets(rh.Len() - 1)
rAvg *= 2
}
for i := range rh.Len() {
if statsVer >= Version2 {
lh.AppendBucketWithNDV(rh.GetLower(i), rh.GetUpper(i), rh.Buckets[i].Count+lCount-offset, rh.Buckets[i].Repeat, rh.Buckets[i].NDV)
continue
}
lh.AppendBucket(rh.GetLower(i), rh.GetUpper(i), rh.Buckets[i].Count+lCount-offset, rh.Buckets[i].Repeat)
}
for lh.Len() > bucketSize {
lh.mergeBuckets(lh.Len() - 1)
}
return lh, nil
}
// AvgCountPerNotNullValue gets the average row count per value by the data of histogram.
func (hg *Histogram) AvgCountPerNotNullValue(totalCount int64) float64 {
factor := hg.GetIncreaseFactor(totalCount)
totalNotNull := hg.NotNullCount() * factor
curNDV := float64(hg.NDV) * factor
curNDV = math.Max(curNDV, 1)
return totalNotNull / curNDV
}
// OutOfRange checks if the datum is out of range.
func (hg *Histogram) OutOfRange(val types.Datum) bool {
if hg.Len() == 0 {
return false
}
return chunk.Compare(hg.Bounds.GetRow(0), 0, &val) > 0 ||
chunk.Compare(hg.Bounds.GetRow(hg.Bounds.NumRows()-1), 0, &val) < 0
}
// OutOfRangeRowCount estimate the row count of part of [lDatum, rDatum] which is out of range of the histogram.
// Here we assume the density of data is decreasing from the lower/upper bound of the histogram toward outside.
// The maximum row count it can get is the modifyCount. It reaches the maximum when out-of-range width reaches histogram range width.
// As it shows below. To calculate the out-of-range row count, we need to calculate the percentage of the shaded area.
// Note that we assume histL-boundL == histR-histL == boundR-histR here.
/*
/│ │\
/ │ │ \
/x│ │◄─histogram─►│ \
/ xx│ │ range │ \
/ │xxx│ │ │ \
/ │xxx│ │ │ \
────┴────┴───┴──┴─────────────┴───────────┴─────
▲ ▲ ▲ ▲ ▲ ▲
│ │ │ │ │ │
boundL │ │histL histR boundR
│ │
lDatum rDatum
*/
// The percentage of shaded area on the left side calculation formula is:
// leftPercent = (math.Pow(actualR-boundL, 2) - math.Pow(actualL-boundL, 2)) / math.Pow(histWidth, 2)
// You can find more details at https://github.com/pingcap/tidb/pull/47966#issuecomment-1778866876
func (hg *Histogram) OutOfRangeRowCount(
sctx planctx.PlanContext,
lDatum, rDatum *types.Datum,
realtimeRowCount, modifyCount, histNDV int64,
) (result RowEstimate) {
if hg.Len() == 0 {
return DefaultRowEst(0)
}
// oneValue assumes "one value qualifes", and is used as a lower bound.
oneValue := float64(0)
if histNDV > 0 {
oneValue = max(1, hg.NotNullCount()/max(float64(histNDV), outOfRangeBetweenRate)) // avoid inaccurate selectivity caused by small NDV
}
// In OptObjectiveDeterminate mode, we can't rely on real time statistics, so default to assuming
// one value qualifies.
allowUseModifyCount := sctx.GetSessionVars().GetOptObjective() != vardef.OptObjectiveDeterminate
if !allowUseModifyCount {
return RowEstimate{Est: oneValue, MinEst: oneValue, MaxEst: oneValue}
}
// For bytes and string type, we need to cut the common prefix when converting them to scalar value.
// Here we calculate the length of common prefix.
commonPrefix := 0
if hg.GetLower(0).Kind() == types.KindBytes || hg.GetLower(0).Kind() == types.KindString {
// Calculate the common prefix length among the lower and upper bound of histogram and the range we want to estimate.
commonPrefix = commonPrefixLength(hg.GetLower(0).GetBytes(),
hg.GetUpper(hg.Len()-1).GetBytes(),
lDatum.GetBytes(),
rDatum.GetBytes())
}
// Convert the range we want to estimate to scalar value(float64)
l := convertDatumToScalar(lDatum, commonPrefix)
r := convertDatumToScalar(rDatum, commonPrefix)
unsigned := mysql.HasUnsignedFlag(hg.Tp.GetFlag())
// If this is an unsigned column, we need to make sure values are not negative.
// Normal negative value should have become 0. But this still might happen when met MinNotNull here.
// Maybe it's better to do this transformation in the ranger like the normal negative value.
if unsigned {
if l < 0 {
l = 0
}
if r < 0 {
r = 0
}
}
// make sure l < r
if l >= r {
return DefaultRowEst(0)
}
// Convert the lower and upper bound of the histogram to scalar value(float64)
histL := convertDatumToScalar(hg.GetLower(0), commonPrefix)
histR := convertDatumToScalar(hg.GetUpper(hg.Len()-1), commonPrefix)
histWidth := histR - histL
// If we find that the histogram width is too small or too large - we still may need to consider
// the impact of modifications to the table
histInvalid := false
if histWidth <= 0 {
histInvalid = true
}
if math.IsInf(histWidth, 1) {
histInvalid = true
}
boundL := histL - histWidth
boundR := histR + histWidth
var leftPercent, rightPercent, avgRowCount float64
// keep l and r unchanged, use actualL and actualR to calculate.
actualL := l
actualR := r
// Only attempt to calculate the ranges if the histogram is valid
if !histInvalid {
// If the range overlaps with (boundL,histL), we need to handle the out-of-range part on the left of the histogram range
if actualL < histL && actualR > boundL {
// make sure boundL <= actualL < actualR <= histL
if actualL < boundL {
actualL = boundL
}
if actualR > histL {
actualR = histL
}
// Calculate the percentage of "the shaded area" on the left side.
leftPercent = (math.Pow(actualR-boundL, 2) - math.Pow(actualL-boundL, 2)) / math.Pow(histWidth, 2)
}
actualL = l
actualR = r
// If the range overlaps with (histR,boundR), we need to handle the out-of-range part on the right of the histogram range
if actualL < boundR && actualR > histR {
// make sure histR <= actualL < actualR <= boundR
if actualL < histR {
actualL = histR
}
if actualR > boundR {
actualR = boundR
}
// Calculate the percentage of "the shaded area" on the right side.
rightPercent = (math.Pow(boundR-actualL, 2) - math.Pow(boundR-actualR, 2)) / math.Pow(histWidth, 2)
}
}
// Use absolute value to account for the case where rows may have been added on one side,
// but deleted from the other, resulting in qualifying out of range rows even though
// realtimeRowCount is less than histogram count
addedRows := hg.AbsRowCountDifference(realtimeRowCount)
// percentInHist is the percentage of rows that were included in the histogram.
// This is used to scale back the out-of-range estimate.
percentInHist := hg.NotNullCount() / hg.TotalRowCount()
addedOutOfRangePct := min(1.0-percentInHist, 0.5)
totalPercent := min(leftPercent*0.5+rightPercent*0.5, 1.0)
// Assume on average, half of newly added rows are within the histogram range, and the other
// half are distributed out of range according to the diagram in the function description.
avgRowCount = (addedRows * addedOutOfRangePct) * totalPercent
// We may have missed the true lowest/highest values due to sampling OR there could be a delay in
// updates to modifyCount (meaning modifyCount is incorrectly set to 0). So ensure we always
// account for at least 1% of the total row count as a worst case for "addedRows".
// We inflate this here so ONLY to impact the MaxEst value.
if modifyCount == 0 || addedRows == 0 {
if realtimeRowCount <= 0 {
realtimeRowCount = int64(hg.TotalRowCount())
}
// Use outOfRangeBetweenRate as a divisor to get a small percentage of the approximate
// modifyCount (since outOfRangeBetweenRate has a default value of 100).
addedRows = max(addedRows, float64(realtimeRowCount)/outOfRangeBetweenRate)
}
skewRatio := sctx.GetSessionVars().RiskRangeSkewRatio
sctx.GetSessionVars().RecordRelevantOptVar(vardef.TiDBOptRiskRangeSkewRatio)
if skewRatio > 0 {
// Add "ratio" of the maximum row count that could be out of range, i.e. all newly added rows
result := CalculateSkewRatioCounts(avgRowCount, addedRows, skewRatio)
result.Est = max(result.Est, oneValue)
result.MinEst = 1
result.MaxEst = max(result.Est, addedRows)
return result
}
// Use oneValue as lower bound and provide meaningful min/max estimates
finalEst := max(avgRowCount, oneValue)
// Maximum could be as high as all added rows.
maxEst := max(finalEst, addedRows)
return RowEstimate{
Est: finalEst,
MinEst: 1, // Assume a minimum of 1 row qualifies
MaxEst: maxEst,
}
}
// Copy deep copies the histogram.
func (hg *Histogram) Copy() *Histogram {
if hg == nil {
return nil
}
newHist := *hg
if hg.Bounds != nil {
newHist.Bounds = hg.Bounds.CopyConstruct()
}
newHist.Buckets = make([]Bucket, 0, len(hg.Buckets))
newHist.Buckets = append(newHist.Buckets, hg.Buckets...)
return &newHist
}
// TruncateHistogram truncates the histogram to `numBkt` buckets.
func (hg *Histogram) TruncateHistogram(numBkt int) *Histogram {
hist := hg.Copy()
hist.Buckets = hist.Buckets[:numBkt]
hist.Bounds.TruncateTo(numBkt * 2)
return hist
}
type dataCnt struct {
data []byte
cnt uint64
}
// GetIndexPrefixLens returns an array representing
func GetIndexPrefixLens(data []byte, numCols int) (prefixLens []int, err error) {
prefixLens = make([]int, 0, numCols)
var colData []byte
prefixLen := 0
for len(data) > 0 {
colData, data, err = codec.CutOne(data)
if err != nil {
return nil, err
}
prefixLen += len(colData)
prefixLens = append(prefixLens, prefixLen)
}
return prefixLens, nil
}
// ExtractTopN extracts topn from histogram.
func (hg *Histogram) ExtractTopN(cms *CMSketch, topN *TopN, numCols int, numTopN uint32) error {
if hg.Len() == 0 || cms == nil || numTopN == 0 {
return nil
}
dataSet := make(map[string]struct{}, hg.Bounds.NumRows())
dataCnts := make([]dataCnt, 0, hg.Bounds.NumRows())
hg.PreCalculateScalar()
// Set a limit on the frequency of boundary values to avoid extract values with low frequency.
limit := hg.NotNullCount() / float64(hg.Len())
// Since our histogram are equal depth, they must occurs on the boundaries of buckets.
for i := range hg.Bounds.NumRows() {
data := hg.Bounds.GetRow(i).GetBytes(0)
prefixLens, err := GetIndexPrefixLens(data, numCols)
if err != nil {
return err
}
for _, prefixLen := range prefixLens {
prefixColData := data[:prefixLen]
_, ok := dataSet[string(prefixColData)]
if ok {
continue
}
dataSet[string(prefixColData)] = struct{}{}
res := hg.BetweenRowCount(nil, types.NewBytesDatum(prefixColData), types.NewBytesDatum(kv.Key(prefixColData).PrefixNext())).Est
if res >= limit {
dataCnts = append(dataCnts, dataCnt{prefixColData, uint64(res)})
}
}
}
slices.SortStableFunc(dataCnts, func(a, b dataCnt) int { return -cmp.Compare(a.cnt, b.cnt) })
if len(dataCnts) > int(numTopN) {
dataCnts = dataCnts[:numTopN]
}
topN.TopN = make([]TopNMeta, 0, len(dataCnts))
for _, dataCnt := range dataCnts {
h1, h2 := murmur3.Sum128(dataCnt.data)
realCnt := cms.queryHashValue(nil, h1, h2)
cms.SubValue(h1, h2, realCnt)
topN.AppendTopN(dataCnt.data, realCnt)
}
topN.Sort()
return nil
}
var bucket4MergingPool = sync.Pool{
New: func() any {
return newBucket4Meging()
},
}
func newbucket4MergingForRecycle() *bucket4Merging {
return bucket4MergingPool.Get().(*bucket4Merging)
}
func releasebucket4MergingForRecycle(b *bucket4Merging) {
b.disjointNDV = 0
b.Repeat = 0
b.NDV = 0
b.Count = 0
bucket4MergingPool.Put(b)
}
// bucket4Merging is only used for merging partition hists to global hist.
type bucket4Merging struct {
lower *types.Datum
upper *types.Datum
Bucket
// disjointNDV is used for merging bucket NDV, see mergeBucketNDV for more details.
disjointNDV int64
}
// newBucket4Meging creates a new bucket4Merging.
// but we create it from bucket4MergingPool as soon as possible to reduce the cost of GC.
func newBucket4Meging() *bucket4Merging {
return &bucket4Merging{
lower: new(types.Datum),
upper: new(types.Datum),
Bucket: Bucket{
Repeat: 0,
NDV: 0,
Count: 0,
},
disjointNDV: 0,
}
}
// buildBucket4Merging builds bucket4Merging from Histogram
// Notice: Count in Histogram.Buckets is prefix sum but in bucket4Merging is not.
func (hg *Histogram) buildBucket4Merging() []*bucket4Merging {
buckets := make([]*bucket4Merging, 0, hg.Len())
for i := range hg.Len() {
b := newbucket4MergingForRecycle()
hg.LowerToDatum(i, b.lower)
hg.UpperToDatum(i, b.upper)
b.Repeat = hg.Buckets[i].Repeat
b.NDV = hg.Buckets[i].NDV
b.Count = hg.Buckets[i].Count
if i != 0 {
b.Count -= hg.Buckets[i-1].Count
}
buckets = append(buckets, b)
}
return buckets
}
func (b *bucket4Merging) Clone() bucket4Merging {
result := newbucket4MergingForRecycle()
result.Repeat = b.Repeat
result.NDV = b.NDV
b.upper.Copy(result.upper)
b.lower.Copy(result.lower)
result.Count = b.Count
result.disjointNDV = b.disjointNDV
return *result
}
// mergeBucketNDV merges bucket NDV from tow bucket `right` & `left`.
// Before merging, you need to make sure that when using (upper, lower) as the comparison key, `right` is greater than `left`
func mergeBucketNDV(sc *stmtctx.StatementContext, left *bucket4Merging, right *bucket4Merging) (*bucket4Merging, error) {
res := right.Clone()
if left.Count == 0 {
return &res, nil
}
if right.Count == 0 {
left.lower.Copy(res.lower)
left.upper.Copy(res.upper)
res.NDV = left.NDV
return &res, nil
}
upperCompare, err := right.upper.Compare(sc.TypeCtx(), left.upper, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// __right__|
// _______left____|
// illegal order.
if upperCompare < 0 {
err := errors.Errorf("illegal bucket order")
statslogutil.StatsLogger().Warn("fail to mergeBucketNDV", zap.Error(err))
return nil, err
}
// ___right_|
// ___left__|
// They have the same upper.
if upperCompare == 0 {
lowerCompare, err := right.lower.Compare(sc.TypeCtx(), left.lower, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// |____right____|
// |__left____|
// illegal order.
if lowerCompare < 0 {
err := errors.Errorf("illegal bucket order")
statslogutil.StatsLogger().Warn("fail to mergeBucketNDV", zap.Error(err))
return nil, err
}
// |___right___|
// |____left___|
// ndv = max(right.ndv, left.ndv)
if lowerCompare == 0 {
if left.NDV > right.NDV {
res.NDV = left.NDV
}
return &res, nil
}
// |_right_|
// |_____left______|
// |-ratio-|
// ndv = ratio * left.ndv + max((1-ratio) * left.ndv, right.ndv)
ratio := calcFraction4Datums(left.lower, left.upper, right.lower)
res.NDV = int64(ratio*float64(left.NDV) + math.Max((1-ratio)*float64(left.NDV), float64(right.NDV)))
res.lower = left.lower.Clone()
return &res, nil
}
// ____right___|
// ____left__|
// right.upper > left.upper
lowerCompareUpper, err := right.lower.Compare(sc.TypeCtx(), left.upper, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// |_right_|
// |___left____|
// `left` and `right` do not intersect
// We add right.ndv in `disjointNDV`, and let `right.ndv = left.ndv` be used for subsequent merge.
// This is because, for the merging of many buckets, we merge them from back to front.
if lowerCompareUpper >= 0 {
left.upper.Copy(res.upper)
left.lower.Copy(res.lower)
res.disjointNDV += right.NDV
res.NDV = left.NDV
return &res, nil
}
upperRatio := calcFraction4Datums(right.lower, right.upper, left.upper)
lowerCompare, err := right.lower.Compare(sc.TypeCtx(), left.lower, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// |-upperRatio-|
// |_______right_____|
// |_______left______________|
// |-lowerRatio-|
// ndv = lowerRatio * left.ndv
// + max((1-lowerRatio) * left.ndv, upperRatio * right.ndv)
// + (1-upperRatio) * right.ndv
if lowerCompare >= 0 {
lowerRatio := calcFraction4Datums(left.lower, left.upper, right.lower)
res.NDV = int64(lowerRatio*float64(left.NDV) +
math.Max((1-lowerRatio)*float64(left.NDV), upperRatio*float64(right.NDV)) +
(1-upperRatio)*float64(right.NDV))
res.lower = left.lower.Clone()
return &res, nil
}
// |------upperRatio--------|
// |-lowerRatio-|
// |____________right______________|
// |___left____|
// ndv = lowerRatio * right.ndv
// + max(left.ndv + (upperRatio - lowerRatio) * right.ndv)
// + (1-upperRatio) * right.ndv
lowerRatio := calcFraction4Datums(right.lower, right.upper, left.lower)
res.NDV = int64(lowerRatio*float64(right.NDV) +
math.Max(float64(left.NDV), (upperRatio-lowerRatio)*float64(right.NDV)) +
(1-upperRatio)*float64(right.NDV))
return &res, nil
}
// mergeParitionBuckets merges buckets[l...r) to one global bucket.
// global bucket:
//
// upper = buckets[r-1].upper
// count = sum of buckets[l...r).count
// repeat = sum of buckets[i] (buckets[i].upper == global bucket.upper && i in [l...r))
// ndv = merge bucket ndv from r-1 to l by mergeBucketNDV
//
// Notice: lower is not calculated here.
func mergePartitionBuckets(sc *stmtctx.StatementContext, buckets []*bucket4Merging) (*bucket4Merging, error) {
if len(buckets) == 0 {
return nil, errors.Errorf("not enough buckets to merge")
}
res := newbucket4MergingForRecycle()
buckets[len(buckets)-1].upper.Copy(res.upper)
right := buckets[len(buckets)-1].Clone()
totNDV := int64(0)
intest.Assert(res.Count == 0, "Count in the new bucket4Merging should be 0")
intest.Assert(res.Repeat == 0, "Repeat in the new bucket4Merging should be 0")
intest.Assert(res.NDV == 0, "NDV in the new bucket4Merging bucket4Merging should be 0")
for i := len(buckets) - 1; i >= 0; i-- {
totNDV += buckets[i].NDV
res.Count += buckets[i].Count
compare, err := buckets[i].upper.Compare(sc.TypeCtx(), res.upper, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
if compare == 0 {
res.Repeat += buckets[i].Repeat
}
if i != len(buckets)-1 {
tmp, err := mergeBucketNDV(sc, buckets[i], &right)
if err != nil {
return nil, err
}
right = *tmp
}
}
res.NDV = right.NDV + right.disjointNDV
// since `mergeBucketNDV` is based on uniform and inclusion assumptions, it has the trend to under-estimate,
// and as the number of buckets increases, these assumptions become weak,
// so to mitigate this problem, a damping factor based on the number of buckets is introduced.
res.NDV = min(int64(float64(res.NDV)*math.Pow(1.15, float64(len(buckets)-1))), totNDV)
return res, nil
}
func (t *TopNMeta) buildBucket4Merging(d *types.Datum, analyzeVer int) *bucket4Merging {
res := newbucket4MergingForRecycle()
d.Copy(res.lower)
d.Copy(res.upper)
res.Count = int64(t.Count)
res.Repeat = int64(t.Count)
if analyzeVer <= Version2 {
res.NDV = 0
}
failpoint.Inject("github.com/pingcap/pkg/statistics/enableTopNNDV", func(_ failpoint.Value) {
res.NDV = 1
})
intest.Assert(analyzeVer <= Version2)
return res
}
// MergePartitionHist2GlobalHist merges hists (partition-level Histogram) to a global-level Histogram
func MergePartitionHist2GlobalHist(sc *stmtctx.StatementContext, hists []*Histogram, popedTopN []TopNMeta, expBucketNumber int64, isIndex bool, analyzeVer int) (*Histogram, error) {
var totCount, totNull, totColSize int64
var bucketNumber int
if expBucketNumber == 0 {
return nil, errors.Errorf("expBucketNumber can not be zero")
}
// This only occurs when there are no histogram records in the histogram system table.
// It happens only to tables whose DDL events haven't been processed yet and that have no indexes or keys,
// with the predicate column feature enabled.
if len(hists) == 0 {
return nil, nil
}
for _, hist := range hists {
totColSize += hist.TotColSize
totNull += hist.NullCount
histLen := hist.Len()
if histLen > 0 {
bucketNumber += histLen
totCount += hist.Buckets[hist.Len()-1].Count
}
}
// If all the hist and the topn is empty, return a empty hist.
if bucketNumber+len(popedTopN) == 0 {
return NewHistogram(hists[0].ID, 0, totNull, hists[0].LastUpdateVersion, hists[0].Tp, 0, totColSize), nil
}
bucketNumber += len(popedTopN)
buckets := make([]*bucket4Merging, 0, bucketNumber)
globalBuckets := make([]*bucket4Merging, 0, expBucketNumber)
// init `buckets`.
for _, hist := range hists {
buckets = append(buckets, hist.buildBucket4Merging()...)
}
for _, meta := range popedTopN {
totCount += int64(meta.Count)
d, err := topNMetaToDatum(meta, hists[0].Tp.GetType(), isIndex, sc.TimeZone())
if err != nil {
return nil, err
}
buckets = append(buckets, meta.buildBucket4Merging(&d, analyzeVer))
}
// Remove empty buckets
tail := 0
for i := range buckets {
if buckets[i].Count != 0 {
// Because we will reuse the tail of the slice in `releasebucket4MergingForRecycle`,
// we need to shift the non-empty buckets to the front.
buckets[tail], buckets[i] = buckets[i], buckets[tail]
tail++
}
}
for n := tail; n < len(buckets); n++ {
releasebucket4MergingForRecycle(buckets[n])
}
buckets = buckets[:tail]
err := sortBucketsByUpperBound(sc.TypeCtx(), buckets)
if err != nil {
return nil, err
}
var sum, prevSum int64
r := len(buckets)
bucketCount := int64(1)
gBucketCountThreshold := (totCount / expBucketNumber) * 80 / 100 // expectedBucketSize * 0.8
mergeBuffer := make([]*bucket4Merging, 0, (len(buckets)+int(expBucketNumber)-1)/int(expBucketNumber))
cutAndFixBuffer := make([]*bucket4Merging, 0, (len(buckets)+int(expBucketNumber))/int(expBucketNumber))
var currentLeftMost *types.Datum
for i := len(buckets) - 1; i >= 0; i-- {
if currentLeftMost == nil {
currentLeftMost = buckets[i].lower
} else {
res, err := currentLeftMost.Compare(sc.TypeCtx(), buckets[i].lower, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
if res > 0 {
currentLeftMost = buckets[i].lower
}
}
sum += buckets[i].Count
if sum >= totCount*bucketCount/expBucketNumber && sum-prevSum >= gBucketCountThreshold {
// If the buckets have the same upper, we merge them into the same new buckets.
// We don't need to update the currentLeftMost in the for loop because the leftmost bucket's lower
// will be the smallest when their upper is the same.
// We just need to update it after the for loop.
for ; i > 0; i-- {
res, err := buckets[i-1].upper.Compare(sc.TypeCtx(), buckets[i].upper, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
if res != 0 {
break
}
sum += buckets[i-1].Count
}
res, err := currentLeftMost.Compare(sc.TypeCtx(), buckets[i].lower, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
if res > 0 {
currentLeftMost = buckets[i].lower
}
// Iterate possible overlapped ones.
// We need to re-sort this part.
mergeBuffer = mergeBuffer[:0]
cutAndFixBuffer = cutAndFixBuffer[:0]
leftMostValidPosForNonOverlapping := i
for ; i > 0; i-- {
res, err := buckets[i-1].upper.Compare(sc.TypeCtx(), currentLeftMost, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// If buckets[i-1].upper < currentLeftMost, this bucket has no overlap with current merging one. Break it.
if res < 0 {
break
}
// Now the bucket[i-1].upper >= currentLeftMost, they are overlapped.
res, err = buckets[i-1].lower.Compare(sc.TypeCtx(), currentLeftMost, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// If buckets[i-1].lower >= currentLeftMost, this bucket is totally inside. So it can be totally merged.
if res >= 0 {
sum += buckets[i-1].Count
mergeBuffer = append(mergeBuffer, buckets[i-1])
continue
}
// Now buckets[i-1].lower < currentLeftMost < buckets[i-1].upper
// calcFraction4Datums calc the value: (currentLeftMost - lower_bound) / (upper_bound - lower_bound)
overlapping := 1 - calcFraction4Datums(buckets[i-1].lower, buckets[i-1].upper, currentLeftMost)
overlappedCount := int64(float64(buckets[i-1].Count) * overlapping)
overlappedNDV := int64(float64(buckets[i-1].NDV) * overlapping)
sum += overlappedCount
buckets[i-1].Count -= overlappedCount
buckets[i-1].NDV -= overlappedNDV
buckets[i-1].Repeat = 0
if buckets[i-1].NDV < 0 {
buckets[i-1].NDV = 0
}
if buckets[i-1].Count < 0 {
buckets[i-1].Count = 0
}
// Cut it.
cutBkt := newbucket4MergingForRecycle()
buckets[i-1].upper.Copy(cutBkt.upper)
currentLeftMost.Copy(cutBkt.lower)
currentLeftMost.Copy(buckets[i-1].upper)
cutBkt.Count = overlappedCount
cutBkt.NDV = overlappedNDV
mergeBuffer = append(mergeBuffer, cutBkt)
cutAndFixBuffer = append(cutAndFixBuffer, cutBkt)
}
var merged *bucket4Merging
if len(cutAndFixBuffer) == 0 {
merged, err = mergePartitionBuckets(sc, buckets[i:r])
if err != nil {
return nil, err
}
} else {
// mergedBuffer is in reverse order, we need to reverse it.
slices.Reverse(mergeBuffer)
// The content in the merge buffer don't need a re-sort since we just fix some lower bound for them.
mergeBuffer = append(mergeBuffer, buckets[leftMostValidPosForNonOverlapping:r]...)
checkBucket4MergingIsSorted(sc.TypeCtx(), mergeBuffer)
merged, err = mergePartitionBuckets(sc, mergeBuffer)
if err != nil {
return nil, err
}
for _, bkt := range cutAndFixBuffer {
releasebucket4MergingForRecycle(bkt)
}
// The buckets in buckets[i:origI] needs a re-sort.
err = sortBucketsByUpperBound(sc.TypeCtx(), buckets[i:leftMostValidPosForNonOverlapping])
if err != nil {
return nil, err
}
// After the operation, the buckets in buckets[i:origI] contains two kinds of buckets:
// 1. The buckets that are totally inside the merged bucket. => lower_bound >= currentLeftMost
// It's not changed. [lower_bound_i, upper_bound_i] with lower_bound_i >= currentLeftMost
// 2. The buckets that are overlapped with the merged bucket. lower_bound < currentLeftMost < upper_bound
// After cutting, the remained part is [lower_bound_i, currentLeftMost]
// To do the next round of merging, we need to kick out the 1st kind of buckets.
// And after the re-sort, the 2nd kind of buckets will be in the front.
leftMostInvalidPosForNextRound := leftMostValidPosForNonOverlapping
for ; leftMostInvalidPosForNextRound > i; leftMostInvalidPosForNextRound-- {
res, err := buckets[leftMostInvalidPosForNextRound-1].lower.Compare(sc.TypeCtx(), currentLeftMost, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
// Once the lower bound < currentLeftMost, we've skipped all the 1st kind of bucket.
// We can break here.
if res < 0 {
break
}
}
checkBucket4MergingIsSorted(sc.TypeCtx(), buckets[i:leftMostInvalidPosForNextRound])
i = leftMostInvalidPosForNextRound
}
currentLeftMost.Copy(merged.lower)
currentLeftMost = nil
globalBuckets = append(globalBuckets, merged)
r = i
bucketCount++
prevSum = sum
}
}
if r > 0 {
leftMost := buckets[0].lower
for i, b := range buckets[:r] {
if i == 0 {
continue
}
res, err := leftMost.Compare(sc.TypeCtx(), b.lower, collate.GetBinaryCollator())
if err != nil {
return nil, err
}
if res > 0 {
leftMost = b.lower
}
}
merged, err := mergePartitionBuckets(sc, buckets[:r])
if err != nil {
return nil, err
}
leftMost.Copy(merged.lower)
globalBuckets = append(globalBuckets, merged)
}
for i := range buckets {
releasebucket4MergingForRecycle(buckets[i])
}
// Because we merge backwards, we need to flip the slices.
slices.Reverse(globalBuckets)
for i := 1; i < len(globalBuckets); i++ {
globalBuckets[i].Count = globalBuckets[i].Count + globalBuckets[i-1].Count
}
// Recalculate repeats
// TODO: optimize it later since it's a simple but not the fastest implementation whose complexity is O(nBkt * nHist * log(nBkt))
for _, bucket := range globalBuckets {
var repeat float64
for _, hist := range hists {
histRowCount, _ := hist.EqualRowCount(nil, *bucket.upper, isIndex)
repeat += histRowCount // only hists of indexes have bucket.NDV
}
if int64(repeat) > bucket.Repeat {
bucket.Repeat = int64(repeat)
}
}
globalHist := NewHistogram(hists[0].ID, 0, totNull, hists[0].LastUpdateVersion, hists[0].Tp, len(globalBuckets), totColSize)
for _, bucket := range globalBuckets {
if !isIndex {
bucket.NDV = 0 // bucket.NDV is not maintained for column histograms
}
globalHist.AppendBucketWithNDV(bucket.lower, bucket.upper, bucket.Count, bucket.Repeat, bucket.NDV)
}
return globalHist, nil
}
// sortBucketsByUpperBound the bucket by upper bound first, then by lower bound.
// If bkt[i].upper = bkt[i+1].upper, then we'll get bkt[i].lower < bkt[i+1].lower.
func sortBucketsByUpperBound(ctx types.Context, buckets []*bucket4Merging) error {
var sortError error
slices.SortFunc(buckets, func(i, j *bucket4Merging) int {
res, err := i.upper.Compare(ctx, j.upper, collate.GetBinaryCollator())
if err != nil {
sortError = err
}
if res != 0 {
return res
}
res, err = i.lower.Compare(ctx, j.lower, collate.GetBinaryCollator())
if err != nil {
sortError = err
}
return res
})
return sortError
}
// checkBucket4MergingIsSorted checks whether the buckets are sorted by upper bound first, then by lower bound.
// using intest.AssertFunc to avoid the check in production.
func checkBucket4MergingIsSorted(ctx types.Context, buckets []*bucket4Merging) {
intest.AssertFunc(func() bool {
var sortErr error
isOrdered := slices.IsSortedFunc(buckets, func(i, j *bucket4Merging) int {
res, err := i.upper.Compare(ctx, j.upper, collate.GetBinaryCollator())
if err != nil {
sortErr = err
}
if res != 0 {
return res
}
res, err = i.lower.Compare(ctx, j.lower, collate.GetBinaryCollator())
if err != nil {
sortErr = err
}
return res
})
return isOrdered && sortErr == nil
}, "the buckets are not sorted actually")
}
const (
// AllLoaded indicates all statistics are loaded
AllLoaded = iota
// AllEvicted indicates all statistics are evicted
AllEvicted
)
// StatsLoadedStatus indicates the status of statistics
type StatsLoadedStatus struct {
statsInitialized bool
evictedStatus int
}
// NewStatsFullLoadStatus returns the status that the column/index fully loaded
func NewStatsFullLoadStatus() StatsLoadedStatus {
return StatsLoadedStatus{
statsInitialized: true,
evictedStatus: AllLoaded,
}
}
// NewStatsAllEvictedStatus returns the status that only loads count/nullCount/NDV and doesn't load CMSketch/TopN/Histogram.
// When we load table stats, column stats is in AllEvicted status by default. CMSketch/TopN/Histogram of column is only
// loaded when we really need column stats.
func NewStatsAllEvictedStatus() StatsLoadedStatus {
return StatsLoadedStatus{
statsInitialized: true,
evictedStatus: AllEvicted,
}
}
// Copy copies the status
func (s *StatsLoadedStatus) Copy() StatsLoadedStatus {
return StatsLoadedStatus{
statsInitialized: s.statsInitialized,
evictedStatus: s.evictedStatus,
}
}
// IsStatsInitialized indicates whether the column/index's statistics was loaded from storage before.
// Note that `IsStatsInitialized` only can be set in initializing
func (s StatsLoadedStatus) IsStatsInitialized() bool {
return s.statsInitialized
}
// IsLoadNeeded indicates whether it needs load statistics during LoadNeededHistograms or sync stats
// If the column/index was loaded and any statistics of it is evicting, it also needs re-load statistics.
func (s StatsLoadedStatus) IsLoadNeeded() bool {
if s.statsInitialized {
return s.evictedStatus > AllLoaded
}
// If statsInitialized is false, it means there is no stats for the column/index in the storage.
// Hence, we don't need to trigger the task of loading the column/index stats.
return false
}
// IsEssentialStatsLoaded indicates whether the essential statistics is loaded.
// If the column/index was loaded, and at least histogram and topN still exists, the necessary statistics is still loaded.
func (s StatsLoadedStatus) IsEssentialStatsLoaded() bool {
return s.statsInitialized && (s.evictedStatus < AllEvicted)
}
// IsAllEvicted indicates whether all the stats got evicted or not.
func (s StatsLoadedStatus) IsAllEvicted() bool {
return s.statsInitialized && s.evictedStatus >= AllEvicted
}
// IsFullLoad indicates whether the stats are full loaded
func (s StatsLoadedStatus) IsFullLoad() bool {
return s.statsInitialized && s.evictedStatus == AllLoaded
}