Files
tidb/pkg/planner/core/common_plans.go

1473 lines
44 KiB
Go

// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"bytes"
"encoding/json"
"fmt"
"strconv"
"strings"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/pkg/expression"
"github.com/pingcap/tidb/pkg/kv"
"github.com/pingcap/tidb/pkg/meta/model"
"github.com/pingcap/tidb/pkg/parser/ast"
pmodel "github.com/pingcap/tidb/pkg/parser/model"
"github.com/pingcap/tidb/pkg/parser/mysql"
"github.com/pingcap/tidb/pkg/planner/core/base"
"github.com/pingcap/tidb/pkg/planner/core/operator/physicalop"
"github.com/pingcap/tidb/pkg/planner/core/resolve"
"github.com/pingcap/tidb/pkg/planner/property"
"github.com/pingcap/tidb/pkg/planner/util"
"github.com/pingcap/tidb/pkg/planner/util/costusage"
"github.com/pingcap/tidb/pkg/planner/util/optimizetrace"
"github.com/pingcap/tidb/pkg/sessionctx/variable"
"github.com/pingcap/tidb/pkg/statistics"
"github.com/pingcap/tidb/pkg/table"
"github.com/pingcap/tidb/pkg/table/tables"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/execdetails"
"github.com/pingcap/tidb/pkg/util/hint"
"github.com/pingcap/tidb/pkg/util/memory"
"github.com/pingcap/tidb/pkg/util/plancodec"
"github.com/pingcap/tidb/pkg/util/size"
"github.com/pingcap/tidb/pkg/util/texttree"
"github.com/pingcap/tipb/go-tipb"
)
// ShowDDL is for showing DDL information.
type ShowDDL struct {
baseSchemaProducer
}
// ShowSlow is for showing slow queries.
type ShowSlow struct {
baseSchemaProducer
*ast.ShowSlow
}
// ShowDDLJobQueries is for showing DDL job queries sql.
type ShowDDLJobQueries struct {
baseSchemaProducer
JobIDs []int64
}
// ShowDDLJobQueriesWithRange is for showing DDL job queries sql with specified limit and offset.
type ShowDDLJobQueriesWithRange struct {
baseSchemaProducer
Limit uint64
Offset uint64
}
// ShowNextRowID is for showing the next global row ID.
type ShowNextRowID struct {
baseSchemaProducer
TableName *ast.TableName
}
// CheckTable is used for checking table data, built from the 'admin check table' statement.
type CheckTable struct {
baseSchemaProducer
DBName string
Table table.Table
IndexInfos []*model.IndexInfo
IndexLookUpReaders []*PhysicalIndexLookUpReader
CheckIndex bool
}
// RecoverIndex is used for backfilling corrupted index data.
type RecoverIndex struct {
baseSchemaProducer
Table *resolve.TableNameW
IndexName string
}
// CleanupIndex is used to delete dangling index data.
type CleanupIndex struct {
baseSchemaProducer
Table *resolve.TableNameW
IndexName string
}
// CheckIndexRange is used for checking index data, output the index values that handle within begin and end.
type CheckIndexRange struct {
baseSchemaProducer
Table *ast.TableName
IndexName string
HandleRanges []ast.HandleRange
}
// ChecksumTable is used for calculating table checksum, built from the `admin checksum table` statement.
type ChecksumTable struct {
baseSchemaProducer
Tables []*resolve.TableNameW
}
// CancelDDLJobs represents a cancel DDL jobs plan.
type CancelDDLJobs struct {
baseSchemaProducer
JobIDs []int64
}
// PauseDDLJobs indicates a plan to pause the Running DDL Jobs.
type PauseDDLJobs struct {
baseSchemaProducer
JobIDs []int64
}
// ResumeDDLJobs indicates a plan to resume the Paused DDL Jobs.
type ResumeDDLJobs struct {
baseSchemaProducer
JobIDs []int64
}
// ReloadExprPushdownBlacklist reloads the data from expr_pushdown_blacklist table.
type ReloadExprPushdownBlacklist struct {
baseSchemaProducer
}
// ReloadOptRuleBlacklist reloads the data from opt_rule_blacklist table.
type ReloadOptRuleBlacklist struct {
baseSchemaProducer
}
// AdminPluginsAction indicate action will be taken on plugins.
type AdminPluginsAction int
const (
// Enable indicates enable plugins.
Enable AdminPluginsAction = iota + 1
// Disable indicates disable plugins.
Disable
)
// AdminPlugins administrates tidb plugins.
type AdminPlugins struct {
baseSchemaProducer
Action AdminPluginsAction
Plugins []string
}
// Change represents a change plan.
type Change struct {
baseSchemaProducer
*ast.ChangeStmt
}
// Prepare represents prepare plan.
type Prepare struct {
baseSchemaProducer
Name string
SQLText string
}
// Execute represents prepare plan.
type Execute struct {
baseSchemaProducer
Name string
Params []expression.Expression
PrepStmt *PlanCacheStmt
Stmt ast.StmtNode
Plan base.Plan
}
// Check if result of GetVar expr is BinaryLiteral
// Because GetVar use String to represent BinaryLiteral, here we need to convert string back to BinaryLiteral.
func isGetVarBinaryLiteral(sctx base.PlanContext, expr expression.Expression) (res bool) {
scalarFunc, ok := expr.(*expression.ScalarFunction)
if ok && scalarFunc.FuncName.L == ast.GetVar {
name, isNull, err := scalarFunc.GetArgs()[0].EvalString(sctx.GetExprCtx().GetEvalCtx(), chunk.Row{})
if err != nil || isNull {
res = false
} else if dt, ok2 := sctx.GetSessionVars().GetUserVarVal(name); ok2 {
res = dt.Kind() == types.KindBinaryLiteral
}
}
return res
}
// Deallocate represents deallocate plan.
type Deallocate struct {
baseSchemaProducer
Name string
}
// Set represents a plan for set stmt.
type Set struct {
baseSchemaProducer
VarAssigns []*expression.VarAssignment
}
// SetConfig represents a plan for set config stmt.
type SetConfig struct {
baseSchemaProducer
Type string
Instance string
Name string
Value expression.Expression
}
// RecommendIndexPlan represents a plan for recommend index stmt.
type RecommendIndexPlan struct {
baseSchemaProducer
Action string
SQL string
AdviseID int64
Option string
Value ast.ValueExpr
}
// SQLBindOpType repreents the SQL bind type
type SQLBindOpType int
const (
// OpSQLBindCreate represents the operation to create a SQL bind.
OpSQLBindCreate SQLBindOpType = iota
// OpSQLBindDrop represents the operation to drop a SQL bind.
OpSQLBindDrop
// OpFlushBindings is used to flush plan bindings.
OpFlushBindings
// OpCaptureBindings is used to capture plan bindings.
OpCaptureBindings
// OpEvolveBindings is used to evolve plan binding.
OpEvolveBindings
// OpReloadBindings is used to reload plan binding.
OpReloadBindings
// OpSetBindingStatus is used to set binding status.
OpSetBindingStatus
// OpSQLBindDropByDigest is used to drop SQL binds by digest
OpSQLBindDropByDigest
// OpSetBindingStatusByDigest represents the operation to set SQL binding status by sql digest.
OpSetBindingStatusByDigest
)
// SQLBindPlan represents a plan for SQL bind.
// One SQLBindPlan can be either global or session, and can only contain one type of operation, but can contain multiple
// operations of that type.
type SQLBindPlan struct {
baseSchemaProducer
IsGlobal bool
SQLBindOp SQLBindOpType
Details []*SQLBindOpDetail
}
// SQLBindOpDetail represents the detail of an operation on a single binding.
// Different SQLBindOpType use different fields in this struct.
type SQLBindOpDetail struct {
NormdOrigSQL string
BindSQL string
BindStmt ast.StmtNode
Db string
Charset string
Collation string
NewStatus string
Source string // Source indicate how this binding was created, eg: bindinfo.Manual or bindinfo.History
SQLDigest string
PlanDigest string
}
// Simple represents a simple statement plan which doesn't need any optimization.
type Simple struct {
baseSchemaProducer
Statement ast.StmtNode
// IsFromRemote indicates whether the statement IS FROM REMOTE TiDB instance in cluster,
// and executing in co-processor.
// Used for `global kill`. See https://github.com/pingcap/tidb/blob/master/docs/design/2020-06-01-global-kill.md.
IsFromRemote bool
// StaleTxnStartTS is the StartTS that is used to build a staleness transaction by 'START TRANSACTION READ ONLY' statement.
StaleTxnStartTS uint64
ResolveCtx *resolve.Context
}
// MemoryUsage return the memory usage of Simple
func (s *Simple) MemoryUsage() (sum int64) {
if s == nil {
return
}
sum = s.baseSchemaProducer.MemoryUsage() + size.SizeOfInterface + size.SizeOfBool + size.SizeOfUint64
return
}
// PhysicalSimpleWrapper is a wrapper of `Simple` to implement physical plan interface.
//
// Used for simple statements executing in coprocessor.
type PhysicalSimpleWrapper struct {
physicalop.BasePhysicalPlan
Inner Simple
}
// MemoryUsage return the memory usage of PhysicalSimpleWrapper
func (p *PhysicalSimpleWrapper) MemoryUsage() (sum int64) {
if p == nil {
return
}
sum = p.BasePhysicalPlan.MemoryUsage() + p.Inner.MemoryUsage()
return
}
// InsertGeneratedColumns is for completing generated columns in Insert.
// We resolve generation expressions in plan, and eval those in executor.
type InsertGeneratedColumns struct {
Exprs []expression.Expression
OnDuplicates []*expression.Assignment
}
// Copy clones InsertGeneratedColumns.
func (i InsertGeneratedColumns) Copy() InsertGeneratedColumns {
return InsertGeneratedColumns{
Exprs: util.CloneExpressions(i.Exprs),
OnDuplicates: util.CloneAssignments(i.OnDuplicates),
}
}
// MemoryUsage return the memory usage of InsertGeneratedColumns
func (i *InsertGeneratedColumns) MemoryUsage() (sum int64) {
if i == nil {
return
}
sum = size.SizeOfSlice*3 + int64(cap(i.OnDuplicates))*size.SizeOfPointer + int64(cap(i.Exprs))*size.SizeOfInterface
for _, expr := range i.Exprs {
sum += expr.MemoryUsage()
}
for _, as := range i.OnDuplicates {
sum += as.MemoryUsage()
}
return
}
// Insert represents an insert plan.
type Insert struct {
baseSchemaProducer
Table table.Table `plan-cache-clone:"shallow"`
tableSchema *expression.Schema `plan-cache-clone:"shallow"`
tableColNames types.NameSlice `plan-cache-clone:"shallow"`
Columns []*ast.ColumnName `plan-cache-clone:"shallow"`
Lists [][]expression.Expression
OnDuplicate []*expression.Assignment
Schema4OnDuplicate *expression.Schema `plan-cache-clone:"shallow"`
names4OnDuplicate types.NameSlice `plan-cache-clone:"shallow"`
GenCols InsertGeneratedColumns
SelectPlan base.PhysicalPlan
IsReplace bool
IgnoreErr bool
// NeedFillDefaultValue is true when expr in value list reference other column.
NeedFillDefaultValue bool
AllAssignmentsAreConstant bool
RowLen int
FKChecks []*FKCheck `plan-cache-clone:"must-nil"`
FKCascades []*FKCascade `plan-cache-clone:"must-nil"`
}
// MemoryUsage return the memory usage of Insert
func (p *Insert) MemoryUsage() (sum int64) {
if p == nil {
return
}
sum = p.baseSchemaProducer.MemoryUsage() + size.SizeOfInterface + size.SizeOfSlice*7 + int64(cap(p.tableColNames)+
cap(p.Columns)+cap(p.OnDuplicate)+cap(p.names4OnDuplicate)+cap(p.FKChecks))*size.SizeOfPointer +
p.GenCols.MemoryUsage() + size.SizeOfInterface + size.SizeOfBool*4 + size.SizeOfInt
if p.tableSchema != nil {
sum += p.tableSchema.MemoryUsage()
}
if p.Schema4OnDuplicate != nil {
sum += p.Schema4OnDuplicate.MemoryUsage()
}
if p.SelectPlan != nil {
sum += p.SelectPlan.MemoryUsage()
}
for _, name := range p.tableColNames {
sum += name.MemoryUsage()
}
for _, exprs := range p.Lists {
sum += size.SizeOfSlice + int64(cap(exprs))*size.SizeOfInterface
for _, expr := range exprs {
sum += expr.MemoryUsage()
}
}
for _, as := range p.OnDuplicate {
sum += as.MemoryUsage()
}
for _, name := range p.names4OnDuplicate {
sum += name.MemoryUsage()
}
for _, fkC := range p.FKChecks {
sum += fkC.MemoryUsage()
}
return
}
// Update represents Update plan.
type Update struct {
baseSchemaProducer
OrderedList []*expression.Assignment
AllAssignmentsAreConstant bool
IgnoreError bool
VirtualAssignmentsOffset int
SelectPlan base.PhysicalPlan
// TblColPosInfos is for multi-table update statement.
// It records the column position of each related table.
TblColPosInfos TblColPosInfoSlice `plan-cache-clone:"shallow"`
// Used when partition sets are given.
// e.g. update t partition(p0) set a = 1;
PartitionedTable []table.PartitionedTable `plan-cache-clone:"must-nil"`
// tblID2Table stores related tables' info of this Update statement.
tblID2Table map[int64]table.Table `plan-cache-clone:"shallow"`
FKChecks map[int64][]*FKCheck `plan-cache-clone:"must-nil"`
FKCascades map[int64][]*FKCascade `plan-cache-clone:"must-nil"`
}
// MemoryUsage return the memory usage of Update
func (p *Update) MemoryUsage() (sum int64) {
if p == nil {
return
}
sum = p.baseSchemaProducer.MemoryUsage() + size.SizeOfSlice*3 + int64(cap(p.OrderedList))*size.SizeOfPointer +
size.SizeOfBool + size.SizeOfInt + size.SizeOfInterface + int64(cap(p.PartitionedTable))*size.SizeOfInterface +
int64(len(p.tblID2Table))*(size.SizeOfInt64+size.SizeOfInterface)
if p.SelectPlan != nil {
sum += p.SelectPlan.MemoryUsage()
}
for _, as := range p.OrderedList {
sum += as.MemoryUsage()
}
for _, colInfo := range p.TblColPosInfos {
sum += colInfo.MemoryUsage()
}
for _, v := range p.FKChecks {
sum += size.SizeOfInt64 + size.SizeOfSlice + int64(cap(v))*size.SizeOfPointer
for _, fkc := range v {
sum += fkc.MemoryUsage()
}
}
return
}
// Delete represents a delete plan.
type Delete struct {
baseSchemaProducer
IsMultiTable bool
SelectPlan base.PhysicalPlan
TblColPosInfos TblColPosInfoSlice `plan-cache-clone:"shallow"`
FKChecks map[int64][]*FKCheck `plan-cache-clone:"must-nil"`
FKCascades map[int64][]*FKCascade `plan-cache-clone:"must-nil"`
}
// MemoryUsage return the memory usage of Delete
func (p *Delete) MemoryUsage() (sum int64) {
if p == nil {
return
}
sum = p.baseSchemaProducer.MemoryUsage() + size.SizeOfBool + size.SizeOfInterface + size.SizeOfSlice
if p.SelectPlan != nil {
sum += p.SelectPlan.MemoryUsage()
}
for _, colInfo := range p.TblColPosInfos {
sum += colInfo.MemoryUsage()
}
return
}
// AnalyzeInfo is used to store the database name, table name and partition name of analyze task.
type AnalyzeInfo struct {
DBName string
TableName string
PartitionName string
TableID statistics.AnalyzeTableID
StatsVersion int
V2Options *V2AnalyzeOptions
}
// V2AnalyzeOptions is used to hold analyze options information.
type V2AnalyzeOptions struct {
PhyTableID int64
RawOpts map[ast.AnalyzeOptionType]uint64
FilledOpts map[ast.AnalyzeOptionType]uint64
ColChoice pmodel.ColumnChoice
ColumnList []*model.ColumnInfo
IsPartition bool
}
// AnalyzeColumnsTask is used for analyze columns.
type AnalyzeColumnsTask struct {
HandleCols util.HandleCols
CommonHandleInfo *model.IndexInfo
ColsInfo []*model.ColumnInfo
TblInfo *model.TableInfo
Indexes []*model.IndexInfo
AnalyzeInfo
}
// AnalyzeIndexTask is used for analyze index.
type AnalyzeIndexTask struct {
IndexInfo *model.IndexInfo
TblInfo *model.TableInfo
AnalyzeInfo
}
// Analyze represents an analyze plan
type Analyze struct {
baseSchemaProducer
ColTasks []AnalyzeColumnsTask
IdxTasks []AnalyzeIndexTask
Opts map[ast.AnalyzeOptionType]uint64
// OptionsMap is used to store the options for each partition.
OptionsMap map[int64]V2AnalyzeOptions
}
// LoadData represents a loaddata plan.
type LoadData struct {
baseSchemaProducer
FileLocRef ast.FileLocRefTp
OnDuplicate ast.OnDuplicateKeyHandlingType
Path string
Format *string
Table *resolve.TableNameW
Charset *string
Columns []*ast.ColumnName
FieldsInfo *ast.FieldsClause
LinesInfo *ast.LinesClause
IgnoreLines *uint64
ColumnAssignments []*ast.Assignment
ColumnsAndUserVars []*ast.ColumnNameOrUserVar
Options []*LoadDataOpt
GenCols InsertGeneratedColumns
}
// LoadDataOpt represents load data option.
type LoadDataOpt struct {
// Name is the name of the option, converted to lower case during parse.
Name string
Value expression.Expression
}
// ImportInto represents a ingest into plan.
type ImportInto struct {
baseSchemaProducer
Table *resolve.TableNameW
ColumnAssignments []*ast.Assignment
ColumnsAndUserVars []*ast.ColumnNameOrUserVar
Path string
Format *string
Options []*LoadDataOpt
GenCols InsertGeneratedColumns
Stmt string
SelectPlan base.PhysicalPlan
}
// LoadStats represents a load stats plan.
type LoadStats struct {
baseSchemaProducer
Path string
}
// LockStats represents a lock stats for table
type LockStats struct {
baseSchemaProducer
Tables []*ast.TableName
}
// UnlockStats represents a unlock stats for table
type UnlockStats struct {
baseSchemaProducer
Tables []*ast.TableName
}
// PlanReplayer represents a plan replayer plan.
type PlanReplayer struct {
baseSchemaProducer
ExecStmt ast.StmtNode
Analyze bool
Load bool
File string
HistoricalStatsTS uint64
Capture bool
Remove bool
SQLDigest string
PlanDigest string
}
// SplitRegion represents a split regions plan.
type SplitRegion struct {
baseSchemaProducer
TableInfo *model.TableInfo
PartitionNames []pmodel.CIStr
IndexInfo *model.IndexInfo
Lower []types.Datum
Upper []types.Datum
Num int
ValueLists [][]types.Datum
}
// SplitRegionStatus represents a split regions status plan.
type SplitRegionStatus struct {
baseSchemaProducer
Table table.Table
IndexInfo *model.IndexInfo
}
// CompactTable represents a "ALTER TABLE [NAME] COMPACT ..." plan.
type CompactTable struct {
baseSchemaProducer
ReplicaKind ast.CompactReplicaKind
TableInfo *model.TableInfo
PartitionNames []pmodel.CIStr
}
// DDL represents a DDL statement plan.
type DDL struct {
baseSchemaProducer
Statement ast.DDLNode
}
// SelectInto represents a select-into plan.
type SelectInto struct {
baseSchemaProducer
TargetPlan base.Plan
IntoOpt *ast.SelectIntoOption
LineFieldsInfo
}
// LineFieldsInfo used in load-data/select-into/index-advise stmt.
type LineFieldsInfo struct {
FieldsTerminatedBy string
FieldsEnclosedBy string // length always <= 1, see parser.y
FieldsEscapedBy string // length always <= 1, see parser.y
FieldsOptEnclosed bool
LinesStartingBy string
LinesTerminatedBy string
}
// NewLineFieldsInfo new LineFieldsInfo from FIELDS/LINES info.
func NewLineFieldsInfo(fieldsInfo *ast.FieldsClause, linesInfo *ast.LinesClause) LineFieldsInfo {
e := LineFieldsInfo{
FieldsTerminatedBy: "\t",
FieldsEnclosedBy: "",
FieldsEscapedBy: "\\",
FieldsOptEnclosed: false,
LinesStartingBy: "",
LinesTerminatedBy: "\n",
}
if fieldsInfo != nil {
if fieldsInfo.Terminated != nil {
e.FieldsTerminatedBy = *fieldsInfo.Terminated
}
if fieldsInfo.Enclosed != nil {
e.FieldsEnclosedBy = *fieldsInfo.Enclosed
}
if fieldsInfo.Escaped != nil {
e.FieldsEscapedBy = *fieldsInfo.Escaped
}
e.FieldsOptEnclosed = fieldsInfo.OptEnclosed
}
if linesInfo != nil {
if linesInfo.Starting != nil {
e.LinesStartingBy = *linesInfo.Starting
}
if linesInfo.Terminated != nil {
e.LinesTerminatedBy = *linesInfo.Terminated
}
}
return e
}
// ExplainInfoForEncode store explain info for JSON encode
type ExplainInfoForEncode struct {
ID string `json:"id"`
EstRows string `json:"estRows"`
ActRows string `json:"actRows,omitempty"`
TaskType string `json:"taskType"`
AccessObject string `json:"accessObject,omitempty"`
ExecuteInfo string `json:"executeInfo,omitempty"`
OperatorInfo string `json:"operatorInfo,omitempty"`
EstCost string `json:"estCost,omitempty"`
CostFormula string `json:"costFormula,omitempty"`
MemoryInfo string `json:"memoryInfo,omitempty"`
DiskInfo string `json:"diskInfo,omitempty"`
TotalMemoryConsumed string `json:"totalMemoryConsumed,omitempty"`
SubOperators []*ExplainInfoForEncode `json:"subOperators,omitempty"`
}
// JSONToString convert json to string
func JSONToString(j []*ExplainInfoForEncode) (string, error) {
byteBuffer := bytes.NewBuffer([]byte{})
encoder := json.NewEncoder(byteBuffer)
// avoid wrongly embedding
encoder.SetEscapeHTML(false)
encoder.SetIndent("", " ")
err := encoder.Encode(j)
if err != nil {
return "", err
}
return byteBuffer.String(), nil
}
// Explain represents a explain plan.
type Explain struct {
baseSchemaProducer
TargetPlan base.Plan
Format string
Analyze bool
ExecStmt ast.StmtNode
RuntimeStatsColl *execdetails.RuntimeStatsColl
Rows [][]string
ExplainRows [][]string
}
// GetExplainRowsForPlan get explain rows for plan.
func GetExplainRowsForPlan(plan base.Plan) (rows [][]string) {
explain := &Explain{
TargetPlan: plan,
Format: types.ExplainFormatROW,
Analyze: false,
}
if err := explain.RenderResult(); err != nil {
return rows
}
return explain.Rows
}
// GetExplainAnalyzeRowsForPlan get explain rows for plan.
func GetExplainAnalyzeRowsForPlan(plan *Explain) (rows [][]string) {
if err := plan.prepareSchema(); err != nil {
return rows
}
if err := plan.RenderResult(); err != nil {
return rows
}
return plan.Rows
}
// prepareSchema prepares explain's result schema.
func (e *Explain) prepareSchema() error {
var fieldNames []string
format := strings.ToLower(e.Format)
if format == types.ExplainFormatTraditional {
format = types.ExplainFormatROW
e.Format = types.ExplainFormatROW
}
switch {
case (format == types.ExplainFormatROW || format == types.ExplainFormatBrief || format == types.ExplainFormatPlanCache) && (!e.Analyze && e.RuntimeStatsColl == nil):
fieldNames = []string{"id", "estRows", "task", "access object", "operator info"}
case format == types.ExplainFormatVerbose:
if e.Analyze || e.RuntimeStatsColl != nil {
fieldNames = []string{"id", "estRows", "estCost", "actRows", "task", "access object", "execution info", "operator info", "memory", "disk"}
} else {
fieldNames = []string{"id", "estRows", "estCost", "task", "access object", "operator info"}
}
case format == types.ExplainFormatTrueCardCost:
fieldNames = []string{"id", "estRows", "estCost", "costFormula", "actRows", "task", "access object", "execution info", "operator info", "memory", "disk"}
case format == types.ExplainFormatCostTrace:
if e.Analyze || e.RuntimeStatsColl != nil {
fieldNames = []string{"id", "estRows", "estCost", "costFormula", "actRows", "task", "access object", "execution info", "operator info", "memory", "disk"}
} else {
fieldNames = []string{"id", "estRows", "estCost", "costFormula", "task", "access object", "operator info"}
}
case (format == types.ExplainFormatROW || format == types.ExplainFormatBrief || format == types.ExplainFormatPlanCache) && (e.Analyze || e.RuntimeStatsColl != nil):
fieldNames = []string{"id", "estRows", "actRows", "task", "access object", "execution info", "operator info", "memory", "disk"}
case format == types.ExplainFormatDOT:
fieldNames = []string{"dot contents"}
case format == types.ExplainFormatHint:
fieldNames = []string{"hint"}
case format == types.ExplainFormatBinary:
fieldNames = []string{"binary plan"}
case format == types.ExplainFormatTiDBJSON:
fieldNames = []string{"TiDB_JSON"}
default:
return errors.Errorf("explain format '%s' is not supported now", e.Format)
}
cwn := &columnsWithNames{
cols: make([]*expression.Column, 0, len(fieldNames)),
names: make([]*types.FieldName, 0, len(fieldNames)),
}
for _, fieldName := range fieldNames {
cwn.Append(buildColumnWithName("", fieldName, mysql.TypeString, mysql.MaxBlobWidth))
}
e.SetSchema(cwn.col2Schema())
e.names = cwn.names
return nil
}
// RenderResult renders the explain result as specified format.
func (e *Explain) RenderResult() error {
if e.TargetPlan == nil {
return nil
}
if e.Analyze && e.Format == types.ExplainFormatTrueCardCost {
// true_card_cost mode is used to calibrate the cost model.
pp, ok := e.TargetPlan.(base.PhysicalPlan)
if ok {
if _, err := getPlanCost(pp, property.RootTaskType,
optimizetrace.NewDefaultPlanCostOption().WithCostFlag(costusage.CostFlagRecalculate|costusage.CostFlagUseTrueCardinality|costusage.CostFlagTrace)); err != nil {
return err
}
if pp.SCtx().GetSessionVars().CostModelVersion == modelVer2 {
// output cost formula and factor costs through warning under model ver2 and true_card_cost mode for cost calibration.
cost, _ := pp.GetPlanCostVer2(property.RootTaskType, optimizetrace.NewDefaultPlanCostOption())
if cost.GetTrace() != nil {
trace := cost.GetTrace()
pp.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("cost formula: %v", trace.GetFormula()))
data, err := json.Marshal(trace.GetFactorCosts())
if err != nil {
pp.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("marshal factor costs error %v", err))
}
pp.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("factor costs: %v", string(data)))
// output cost factor weights for cost calibration
factors := defaultVer2Factors.tolist()
weights := make(map[string]float64)
for _, factor := range factors {
if factorCost, ok := trace.GetFactorCosts()[factor.Name]; ok && factor.Value > 0 {
weights[factor.Name] = factorCost / factor.Value // cost = [factors] * [weights]
}
}
if wstr, err := json.Marshal(weights); err != nil {
pp.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("marshal weights error %v", err))
} else {
pp.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("factor weights: %v", string(wstr)))
}
}
}
} else {
e.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackError("'explain format=true_card_cost' cannot support this plan"))
}
}
if strings.ToLower(e.Format) == types.ExplainFormatCostTrace {
if pp, ok := e.TargetPlan.(base.PhysicalPlan); ok {
// trigger getPlanCost again with CostFlagTrace to record all cost formulas
if _, err := getPlanCost(pp, property.RootTaskType,
optimizetrace.NewDefaultPlanCostOption().WithCostFlag(costusage.CostFlagRecalculate|costusage.CostFlagTrace)); err != nil {
return err
}
}
}
switch strings.ToLower(e.Format) {
case types.ExplainFormatROW, types.ExplainFormatBrief, types.ExplainFormatVerbose, types.ExplainFormatTrueCardCost, types.ExplainFormatCostTrace, types.ExplainFormatPlanCache:
if e.Rows == nil || e.Analyze {
flat := FlattenPhysicalPlan(e.TargetPlan, true)
e.explainFlatPlanInRowFormat(flat)
if e.Analyze &&
e.SCtx().GetSessionVars().MemoryDebugModeMinHeapInUse != 0 &&
e.SCtx().GetSessionVars().MemoryDebugModeAlarmRatio > 0 {
row := e.Rows[0]
tracker := e.SCtx().GetSessionVars().MemTracker
row[7] = row[7] + "(Total: " + tracker.FormatBytes(tracker.MaxConsumed()) + ")"
}
}
case types.ExplainFormatDOT:
if physicalPlan, ok := e.TargetPlan.(base.PhysicalPlan); ok {
e.prepareDotInfo(physicalPlan)
}
case types.ExplainFormatHint:
flat := FlattenPhysicalPlan(e.TargetPlan, false)
hints := GenHintsFromFlatPlan(flat)
hints = append(hints, hint.ExtractTableHintsFromStmtNode(e.ExecStmt, nil)...)
e.Rows = append(e.Rows, []string{hint.RestoreOptimizerHints(hints)})
case types.ExplainFormatBinary:
flat := FlattenPhysicalPlan(e.TargetPlan, false)
str := BinaryPlanStrFromFlatPlan(e.SCtx(), flat)
e.Rows = append(e.Rows, []string{str})
case types.ExplainFormatTiDBJSON:
flat := FlattenPhysicalPlan(e.TargetPlan, true)
encodes := e.explainFlatPlanInJSONFormat(flat)
if e.Analyze && len(encodes) > 0 &&
e.SCtx().GetSessionVars().MemoryDebugModeMinHeapInUse != 0 &&
e.SCtx().GetSessionVars().MemoryDebugModeAlarmRatio > 0 {
encodeRoot := encodes[0]
tracker := e.SCtx().GetSessionVars().MemTracker
encodeRoot.TotalMemoryConsumed = tracker.FormatBytes(tracker.MaxConsumed())
}
str, err := JSONToString(encodes)
if err != nil {
return err
}
e.Rows = append(e.Rows, []string{str})
default:
return errors.Errorf("explain format '%s' is not supported now", e.Format)
}
return nil
}
func (e *Explain) explainFlatPlanInRowFormat(flat *FlatPhysicalPlan) {
if flat == nil || len(flat.Main) == 0 || flat.InExplain {
return
}
for _, flatOp := range flat.Main {
e.explainFlatOpInRowFormat(flatOp)
}
for _, cte := range flat.CTEs {
for _, flatOp := range cte {
e.explainFlatOpInRowFormat(flatOp)
}
}
for _, subQ := range flat.ScalarSubQueries {
for _, flatOp := range subQ {
e.explainFlatOpInRowFormat(flatOp)
}
}
}
func (e *Explain) explainFlatPlanInJSONFormat(flat *FlatPhysicalPlan) (encodes []*ExplainInfoForEncode) {
if flat == nil || len(flat.Main) == 0 || flat.InExplain {
return
}
// flat.Main[0] must be the root node of tree
encodes = append(encodes, e.explainOpRecursivelyInJSONFormat(flat.Main[0], flat.Main))
for _, cte := range flat.CTEs {
encodes = append(encodes, e.explainOpRecursivelyInJSONFormat(cte[0], cte))
}
for _, subQ := range flat.ScalarSubQueries {
encodes = append(encodes, e.explainOpRecursivelyInJSONFormat(subQ[0], subQ))
}
return
}
func (e *Explain) explainOpRecursivelyInJSONFormat(flatOp *FlatOperator, flats FlatPlanTree) *ExplainInfoForEncode {
taskTp := ""
if flatOp.IsRoot {
taskTp = "root"
} else {
taskTp = flatOp.ReqType.Name() + "[" + flatOp.StoreType.Name() + "]"
}
explainID := flatOp.Origin.ExplainID().String() + flatOp.Label.String()
textTreeExplainID := texttree.PrettyIdentifier(explainID, flatOp.TextTreeIndent, flatOp.IsLastChild)
cur := e.prepareOperatorInfoForJSONFormat(flatOp.Origin, taskTp, textTreeExplainID, explainID)
for _, idx := range flatOp.ChildrenIdx {
cur.SubOperators = append(cur.SubOperators,
e.explainOpRecursivelyInJSONFormat(flats[idx], flats))
}
return cur
}
func (e *Explain) explainFlatOpInRowFormat(flatOp *FlatOperator) {
taskTp := ""
if flatOp.IsRoot {
taskTp = "root"
} else {
taskTp = flatOp.ReqType.Name() + "[" + flatOp.StoreType.Name() + "]"
}
textTreeExplainID := texttree.PrettyIdentifier(flatOp.Origin.ExplainID().String()+flatOp.Label.String(),
flatOp.TextTreeIndent,
flatOp.IsLastChild)
e.prepareOperatorInfo(flatOp.Origin, taskTp, textTreeExplainID)
}
func getRuntimeInfoStr(ctx base.PlanContext, p base.Plan, runtimeStatsColl *execdetails.RuntimeStatsColl) (actRows, analyzeInfo, memoryInfo, diskInfo string) {
if runtimeStatsColl == nil {
runtimeStatsColl = ctx.GetSessionVars().StmtCtx.RuntimeStatsColl
if runtimeStatsColl == nil {
return
}
}
rootStats, copStats, memTracker, diskTracker := getRuntimeInfo(ctx, p, runtimeStatsColl)
actRows = "0"
memoryInfo = "N/A"
diskInfo = "N/A"
if rootStats != nil {
actRows = strconv.FormatInt(rootStats.GetActRows(), 10)
analyzeInfo = rootStats.String()
}
if copStats != nil {
if len(analyzeInfo) > 0 {
analyzeInfo += ", "
}
analyzeInfo += copStats.String()
actRows = strconv.FormatInt(copStats.GetActRows(), 10)
}
if memTracker != nil {
memoryInfo = memTracker.FormatBytes(memTracker.MaxConsumed())
}
if diskTracker != nil {
diskInfo = diskTracker.FormatBytes(diskTracker.MaxConsumed())
}
return
}
func getRuntimeInfo(ctx base.PlanContext, p base.Plan, runtimeStatsColl *execdetails.RuntimeStatsColl) (
rootStats *execdetails.RootRuntimeStats,
copStats *execdetails.CopRuntimeStats,
memTracker *memory.Tracker,
diskTracker *memory.Tracker,
) {
if runtimeStatsColl == nil {
runtimeStatsColl = ctx.GetSessionVars().StmtCtx.RuntimeStatsColl
}
explainID := p.ID()
// There maybe some mock information for cop task to let runtimeStatsColl.Exists(p.ExplainID()) is true.
// So check copTaskExecDetail first and print the real cop task information if it's not empty.
if runtimeStatsColl != nil && runtimeStatsColl.ExistsRootStats(explainID) {
rootStats = runtimeStatsColl.GetRootStats(explainID)
}
if runtimeStatsColl != nil && runtimeStatsColl.ExistsCopStats(explainID) {
copStats = runtimeStatsColl.GetCopStats(explainID)
}
memTracker = ctx.GetSessionVars().StmtCtx.MemTracker.SearchTrackerWithoutLock(p.ID())
diskTracker = ctx.GetSessionVars().StmtCtx.DiskTracker.SearchTrackerWithoutLock(p.ID())
return
}
// prepareOperatorInfo generates the following information for every plan:
// operator id, estimated rows, task type, access object and other operator info.
func (e *Explain) prepareOperatorInfo(p base.Plan, taskType, id string) {
if p.ExplainID().String() == "_0" {
return
}
estRows, estCost, costFormula, accessObject, operatorInfo := e.getOperatorInfo(p, id)
var row []string
if e.Analyze || e.RuntimeStatsColl != nil {
row = []string{id, estRows}
if e.Format == types.ExplainFormatVerbose || e.Format == types.ExplainFormatTrueCardCost || e.Format == types.ExplainFormatCostTrace {
row = append(row, estCost)
}
if e.Format == types.ExplainFormatTrueCardCost || e.Format == types.ExplainFormatCostTrace {
row = append(row, costFormula)
}
actRows, analyzeInfo, memoryInfo, diskInfo := getRuntimeInfoStr(e.SCtx(), p, e.RuntimeStatsColl)
row = append(row, actRows, taskType, accessObject, analyzeInfo, operatorInfo, memoryInfo, diskInfo)
} else {
row = []string{id, estRows}
if e.Format == types.ExplainFormatVerbose || e.Format == types.ExplainFormatTrueCardCost ||
e.Format == types.ExplainFormatCostTrace {
row = append(row, estCost)
}
if e.Format == types.ExplainFormatCostTrace {
row = append(row, costFormula)
}
row = append(row, taskType, accessObject, operatorInfo)
}
e.Rows = append(e.Rows, row)
}
func (e *Explain) prepareOperatorInfoForJSONFormat(p base.Plan, taskType, id string, explainID string) *ExplainInfoForEncode {
if p.ExplainID().String() == "_0" {
return nil
}
estRows, _, _, accessObject, operatorInfo := e.getOperatorInfo(p, id)
jsonRow := &ExplainInfoForEncode{
ID: explainID,
EstRows: estRows,
TaskType: taskType,
AccessObject: accessObject,
OperatorInfo: operatorInfo,
SubOperators: make([]*ExplainInfoForEncode, 0),
}
if e.Analyze || e.RuntimeStatsColl != nil {
jsonRow.ActRows, jsonRow.ExecuteInfo, jsonRow.MemoryInfo, jsonRow.DiskInfo = getRuntimeInfoStr(e.SCtx(), p, e.RuntimeStatsColl)
}
return jsonRow
}
func (e *Explain) getOperatorInfo(p base.Plan, id string) (estRows, estCost, costFormula, accessObject, operatorInfo string) {
// For `explain for connection` statement, `e.ExplainRows` will be set.
for _, row := range e.ExplainRows {
if len(row) < 5 {
panic("should never happen")
}
if row[0] == id {
return row[1], "N/A", "N/A", row[3], row[4]
}
}
pp, isPhysicalPlan := p.(base.PhysicalPlan)
estRows = "N/A"
estCost = "N/A"
costFormula = "N/A"
if isPhysicalPlan {
estRows = strconv.FormatFloat(pp.GetEstRowCountForDisplay(), 'f', 2, 64)
if e.SCtx() != nil && e.SCtx().GetSessionVars().CostModelVersion == modelVer2 {
costVer2, _ := pp.GetPlanCostVer2(property.RootTaskType, optimizetrace.NewDefaultPlanCostOption())
estCost = strconv.FormatFloat(costVer2.GetCost(), 'f', 2, 64)
if costVer2.GetTrace() != nil {
costFormula = costVer2.GetTrace().GetFormula()
}
} else {
planCost, _ := getPlanCost(pp, property.RootTaskType, optimizetrace.NewDefaultPlanCostOption())
estCost = strconv.FormatFloat(planCost, 'f', 2, 64)
}
} else if si := p.StatsInfo(); si != nil {
estRows = strconv.FormatFloat(si.RowCount, 'f', 2, 64)
}
if plan, ok := p.(dataAccesser); ok {
accessObject = plan.AccessObject().String()
operatorInfo = plan.OperatorInfo(false)
} else {
if pa, ok := p.(partitionAccesser); ok && e.SCtx() != nil {
accessObject = pa.accessObject(e.SCtx()).String()
}
operatorInfo = p.ExplainInfo()
}
return estRows, estCost, costFormula, accessObject, operatorInfo
}
// BinaryPlanStrFromFlatPlan generates the compressed and encoded binary plan from a FlatPhysicalPlan.
func BinaryPlanStrFromFlatPlan(explainCtx base.PlanContext, flat *FlatPhysicalPlan) string {
binary := binaryDataFromFlatPlan(explainCtx, flat)
if binary == nil {
return ""
}
proto, err := binary.Marshal()
if err != nil {
return ""
}
str := plancodec.Compress(proto)
return str
}
func binaryDataFromFlatPlan(explainCtx base.PlanContext, flat *FlatPhysicalPlan) *tipb.ExplainData {
if len(flat.Main) == 0 {
return nil
}
// Please see comments in EncodeFlatPlan() for this case.
// We keep consistency with EncodeFlatPlan() here.
if flat.InExecute {
return nil
}
res := &tipb.ExplainData{}
for _, op := range flat.Main {
// We assume that runtime stats are available to this plan tree if any operator in the "Main" has runtime stats.
rootStats, copStats, _, _ := getRuntimeInfo(explainCtx, op.Origin, nil)
if rootStats != nil || copStats != nil {
res.WithRuntimeStats = true
break
}
}
res.Main = binaryOpTreeFromFlatOps(explainCtx, flat.Main)
for _, explainedCTE := range flat.CTEs {
res.Ctes = append(res.Ctes, binaryOpTreeFromFlatOps(explainCtx, explainedCTE))
}
return res
}
func binaryOpTreeFromFlatOps(explainCtx base.PlanContext, ops FlatPlanTree) *tipb.ExplainOperator {
s := make([]tipb.ExplainOperator, len(ops))
for i, op := range ops {
binaryOpFromFlatOp(explainCtx, op, &s[i])
for _, idx := range op.ChildrenIdx {
s[i].Children = append(s[i].Children, &s[idx])
}
}
return &s[0]
}
func binaryOpFromFlatOp(explainCtx base.PlanContext, fop *FlatOperator, out *tipb.ExplainOperator) {
out.Name = fop.Origin.ExplainID().String()
switch fop.Label {
case BuildSide:
out.Labels = []tipb.OperatorLabel{tipb.OperatorLabel_buildSide}
case ProbeSide:
out.Labels = []tipb.OperatorLabel{tipb.OperatorLabel_probeSide}
case SeedPart:
out.Labels = []tipb.OperatorLabel{tipb.OperatorLabel_seedPart}
case RecursivePart:
out.Labels = []tipb.OperatorLabel{tipb.OperatorLabel_recursivePart}
}
switch fop.StoreType {
case kv.TiDB:
out.StoreType = tipb.StoreType_tidb
case kv.TiKV:
out.StoreType = tipb.StoreType_tikv
case kv.TiFlash:
out.StoreType = tipb.StoreType_tiflash
}
if fop.IsRoot {
out.TaskType = tipb.TaskType_root
} else {
switch fop.ReqType {
case Cop:
out.TaskType = tipb.TaskType_cop
case BatchCop:
out.TaskType = tipb.TaskType_batchCop
case MPP:
out.TaskType = tipb.TaskType_mpp
}
}
if fop.IsPhysicalPlan {
p := fop.Origin.(base.PhysicalPlan)
out.Cost, _ = getPlanCost(p, property.RootTaskType, optimizetrace.NewDefaultPlanCostOption())
out.EstRows = p.GetEstRowCountForDisplay()
} else if statsInfo := fop.Origin.StatsInfo(); statsInfo != nil {
out.EstRows = statsInfo.RowCount
}
// Runtime info
rootStats, copStats, memTracker, diskTracker := getRuntimeInfo(explainCtx, fop.Origin, nil)
if rootStats != nil {
basic, groups := rootStats.MergeStats()
if basic != nil {
out.RootBasicExecInfo = basic.String()
}
for _, group := range groups {
str := group.String()
if len(str) > 0 {
out.RootGroupExecInfo = append(out.RootGroupExecInfo, str)
}
}
out.ActRows = uint64(rootStats.GetActRows())
}
if copStats != nil {
out.CopExecInfo = copStats.String()
out.ActRows = uint64(copStats.GetActRows())
}
if memTracker != nil {
out.MemoryBytes = memTracker.MaxConsumed()
} else {
out.MemoryBytes = -1
}
if diskTracker != nil {
out.DiskBytes = diskTracker.MaxConsumed()
} else {
out.DiskBytes = -1
}
// Operator info
if plan, ok := fop.Origin.(dataAccesser); ok {
out.OperatorInfo = plan.OperatorInfo(false)
} else {
out.OperatorInfo = fop.Origin.ExplainInfo()
}
// Access object
switch p := fop.Origin.(type) {
case dataAccesser:
ao := p.AccessObject()
if ao != nil {
ao.SetIntoPB(out)
}
case partitionAccesser:
ao := p.accessObject(explainCtx)
if ao != nil {
ao.SetIntoPB(out)
}
}
}
func (e *Explain) prepareDotInfo(p base.PhysicalPlan) {
buffer := bytes.NewBufferString("")
fmt.Fprintf(buffer, "\ndigraph %s {\n", p.ExplainID())
e.prepareTaskDot(p, "root", buffer)
buffer.WriteString("}\n")
e.Rows = append(e.Rows, []string{buffer.String()})
}
func (e *Explain) prepareTaskDot(p base.PhysicalPlan, taskTp string, buffer *bytes.Buffer) {
fmt.Fprintf(buffer, "subgraph cluster%v{\n", p.ID())
buffer.WriteString("node [style=filled, color=lightgrey]\n")
buffer.WriteString("color=black\n")
fmt.Fprintf(buffer, "label = \"%s\"\n", taskTp)
if len(p.Children()) == 0 {
if taskTp == "cop" {
fmt.Fprintf(buffer, "\"%s\"\n}\n", p.ExplainID())
return
}
fmt.Fprintf(buffer, "\"%s\"\n", p.ExplainID())
}
var copTasks []base.PhysicalPlan
var pipelines []string
for planQueue := []base.PhysicalPlan{p}; len(planQueue) > 0; planQueue = planQueue[1:] {
curPlan := planQueue[0]
switch copPlan := curPlan.(type) {
case *PhysicalTableReader:
pipelines = append(pipelines, fmt.Sprintf("\"%s\" -> \"%s\"\n", copPlan.ExplainID(), copPlan.tablePlan.ExplainID()))
copTasks = append(copTasks, copPlan.tablePlan)
case *PhysicalIndexReader:
pipelines = append(pipelines, fmt.Sprintf("\"%s\" -> \"%s\"\n", copPlan.ExplainID(), copPlan.indexPlan.ExplainID()))
copTasks = append(copTasks, copPlan.indexPlan)
case *PhysicalIndexLookUpReader:
pipelines = append(pipelines, fmt.Sprintf("\"%s\" -> \"%s\"\n", copPlan.ExplainID(), copPlan.tablePlan.ExplainID()))
pipelines = append(pipelines, fmt.Sprintf("\"%s\" -> \"%s\"\n", copPlan.ExplainID(), copPlan.indexPlan.ExplainID()))
copTasks = append(copTasks, copPlan.tablePlan)
copTasks = append(copTasks, copPlan.indexPlan)
case *PhysicalIndexMergeReader:
for i := 0; i < len(copPlan.partialPlans); i++ {
pipelines = append(pipelines, fmt.Sprintf("\"%s\" -> \"%s\"\n", copPlan.ExplainID(), copPlan.partialPlans[i].ExplainID()))
copTasks = append(copTasks, copPlan.partialPlans[i])
}
if copPlan.tablePlan != nil {
pipelines = append(pipelines, fmt.Sprintf("\"%s\" -> \"%s\"\n", copPlan.ExplainID(), copPlan.tablePlan.ExplainID()))
copTasks = append(copTasks, copPlan.tablePlan)
}
}
for _, child := range curPlan.Children() {
fmt.Fprintf(buffer, "\"%s\" -> \"%s\"\n", curPlan.ExplainID(), child.ExplainID())
planQueue = append(planQueue, child)
}
}
buffer.WriteString("}\n")
for _, cop := range copTasks {
e.prepareTaskDot(cop, "cop", buffer)
}
for i := range pipelines {
buffer.WriteString(pipelines[i])
}
}
// IsPointGetWithPKOrUniqueKeyByAutoCommit returns true when meets following conditions:
// 1. ctx is auto commit tagged
// 2. session is not InTxn
// 3. plan is point get by pk, or point get by unique index (no double read)
func IsPointGetWithPKOrUniqueKeyByAutoCommit(vars *variable.SessionVars, p base.Plan) bool {
if !IsAutoCommitTxn(vars) {
return false
}
// check plan
if proj, ok := p.(*PhysicalProjection); ok {
p = proj.Children()[0]
}
switch v := p.(type) {
case *PhysicalIndexReader:
indexScan := v.IndexPlans[0].(*PhysicalIndexScan)
return indexScan.IsPointGetByUniqueKey(vars.StmtCtx.TypeCtx())
case *PhysicalTableReader:
tableScan, ok := v.TablePlans[0].(*PhysicalTableScan)
if !ok {
return false
}
isPointRange := len(tableScan.Ranges) == 1 && tableScan.Ranges[0].IsPointNonNullable(vars.StmtCtx.TypeCtx())
if !isPointRange {
return false
}
pkLength := 1
if tableScan.Table.IsCommonHandle {
pkIdx := tables.FindPrimaryIndex(tableScan.Table)
pkLength = len(pkIdx.Columns)
}
return len(tableScan.Ranges[0].LowVal) == pkLength
case *PointGetPlan:
// If the PointGetPlan needs to read data using unique index (double read), we
// can't use max uint64, because using math.MaxUint64 can't guarantee repeatable-read
// and the data and index would be inconsistent!
// If the PointGetPlan needs to read data from Cache Table, we can't use max uint64,
// because math.MaxUint64 always make cacheData invalid.
noSecondRead := v.IndexInfo == nil || (v.IndexInfo.Primary && v.TblInfo.IsCommonHandle)
if !noSecondRead {
return false
}
if v.TblInfo != nil && (v.TblInfo.TableCacheStatusType != model.TableCacheStatusDisable) {
return false
}
return true
default:
return false
}
}
// IsAutoCommitTxn checks if session is in autocommit mode and not InTxn
// used for fast plan like point get
func IsAutoCommitTxn(vars *variable.SessionVars) bool {
return vars.IsAutocommit() && !vars.InTxn()
}
// AdminShowBDRRole represents a show bdr role plan.
type AdminShowBDRRole struct {
baseSchemaProducer
}