728 lines
23 KiB
Go
728 lines
23 KiB
Go
// Copyright 2015 PingCAP, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package core
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"strconv"
|
|
|
|
"github.com/cznic/mathutil"
|
|
"github.com/pingcap/errors"
|
|
"github.com/pingcap/tidb/expression"
|
|
"github.com/pingcap/tidb/kv"
|
|
"github.com/pingcap/tidb/planner/property"
|
|
"github.com/pingcap/tidb/planner/util"
|
|
"github.com/pingcap/tidb/sessionctx"
|
|
"github.com/pingcap/tidb/types"
|
|
"github.com/pingcap/tidb/util/stringutil"
|
|
"github.com/pingcap/tidb/util/tracing"
|
|
"github.com/pingcap/tipb/go-tipb"
|
|
)
|
|
|
|
// Plan is the description of an execution flow.
|
|
// It is created from ast.Node first, then optimized by the optimizer,
|
|
// finally used by the executor to create a Cursor which executes the statement.
|
|
type Plan interface {
|
|
// Get the schema.
|
|
Schema() *expression.Schema
|
|
|
|
// Get the ID.
|
|
ID() int
|
|
|
|
// TP get the plan type.
|
|
TP() string
|
|
|
|
// Get the ID in explain statement
|
|
ExplainID() fmt.Stringer
|
|
|
|
// ExplainInfo returns operator information to be explained.
|
|
ExplainInfo() string
|
|
|
|
// replaceExprColumns replace all the column reference in the plan's expression node.
|
|
replaceExprColumns(replace map[string]*expression.Column)
|
|
|
|
SCtx() sessionctx.Context
|
|
|
|
// property.StatsInfo will return the property.StatsInfo for this plan.
|
|
statsInfo() *property.StatsInfo
|
|
|
|
// OutputNames returns the outputting names of each column.
|
|
OutputNames() types.NameSlice
|
|
|
|
// SetOutputNames sets the outputting name by the given slice.
|
|
SetOutputNames(names types.NameSlice)
|
|
|
|
SelectBlockOffset() int
|
|
|
|
buildPlanTrace() *tracing.PlanTrace
|
|
}
|
|
|
|
func enforceProperty(p *property.PhysicalProperty, tsk task, ctx sessionctx.Context) task {
|
|
if p.TaskTp == property.MppTaskType {
|
|
if mpp, ok := tsk.(*mppTask); ok && !mpp.invalid() {
|
|
return mpp.enforceExchanger(p)
|
|
}
|
|
return &mppTask{}
|
|
}
|
|
if p.IsEmpty() || tsk.plan() == nil {
|
|
return tsk
|
|
}
|
|
tsk = tsk.convertToRootTask(ctx)
|
|
sortReqProp := &property.PhysicalProperty{TaskTp: property.RootTaskType, SortItems: p.SortItems, ExpectedCnt: math.MaxFloat64}
|
|
sort := PhysicalSort{ByItems: make([]*util.ByItems, 0, len(p.SortItems))}.Init(ctx, tsk.plan().statsInfo(), tsk.plan().SelectBlockOffset(), sortReqProp)
|
|
for _, col := range p.SortItems {
|
|
sort.ByItems = append(sort.ByItems, &util.ByItems{Expr: col.Col, Desc: col.Desc})
|
|
}
|
|
return sort.attach2Task(tsk)
|
|
}
|
|
|
|
// optimizeByShuffle insert `PhysicalShuffle` to optimize performance by running in a parallel manner.
|
|
func optimizeByShuffle(tsk task, ctx sessionctx.Context) task {
|
|
if tsk.plan() == nil {
|
|
return tsk
|
|
}
|
|
|
|
switch p := tsk.plan().(type) {
|
|
case *PhysicalWindow:
|
|
if shuffle := optimizeByShuffle4Window(p, ctx); shuffle != nil {
|
|
return shuffle.attach2Task(tsk)
|
|
}
|
|
case *PhysicalMergeJoin:
|
|
if shuffle := optimizeByShuffle4MergeJoin(p, ctx); shuffle != nil {
|
|
return shuffle.attach2Task(tsk)
|
|
}
|
|
case *PhysicalStreamAgg:
|
|
if shuffle := optimizeByShuffle4StreamAgg(p, ctx); shuffle != nil {
|
|
return shuffle.attach2Task(tsk)
|
|
}
|
|
}
|
|
return tsk
|
|
}
|
|
|
|
func optimizeByShuffle4Window(pp *PhysicalWindow, ctx sessionctx.Context) *PhysicalShuffle {
|
|
concurrency := ctx.GetSessionVars().WindowConcurrency()
|
|
if concurrency <= 1 {
|
|
return nil
|
|
}
|
|
|
|
sort, ok := pp.Children()[0].(*PhysicalSort)
|
|
if !ok {
|
|
// Multi-thread executing on SORTED data source is not effective enough by current implementation.
|
|
// TODO: Implement a better one.
|
|
return nil
|
|
}
|
|
tail, dataSource := sort, sort.Children()[0]
|
|
|
|
partitionBy := make([]*expression.Column, 0, len(pp.PartitionBy))
|
|
for _, item := range pp.PartitionBy {
|
|
partitionBy = append(partitionBy, item.Col)
|
|
}
|
|
NDV := int(getColsNDV(partitionBy, dataSource.Schema(), dataSource.statsInfo()))
|
|
if NDV <= 1 {
|
|
return nil
|
|
}
|
|
concurrency = mathutil.Min(concurrency, NDV)
|
|
|
|
byItems := make([]expression.Expression, 0, len(pp.PartitionBy))
|
|
for _, item := range pp.PartitionBy {
|
|
byItems = append(byItems, item.Col)
|
|
}
|
|
reqProp := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
|
|
shuffle := PhysicalShuffle{
|
|
Concurrency: concurrency,
|
|
Tails: []PhysicalPlan{tail},
|
|
DataSources: []PhysicalPlan{dataSource},
|
|
SplitterType: PartitionHashSplitterType,
|
|
ByItemArrays: [][]expression.Expression{byItems},
|
|
}.Init(ctx, pp.statsInfo(), pp.SelectBlockOffset(), reqProp)
|
|
return shuffle
|
|
}
|
|
|
|
func optimizeByShuffle4StreamAgg(pp *PhysicalStreamAgg, ctx sessionctx.Context) *PhysicalShuffle {
|
|
concurrency := ctx.GetSessionVars().StreamAggConcurrency()
|
|
if concurrency <= 1 {
|
|
return nil
|
|
}
|
|
|
|
sort, ok := pp.Children()[0].(*PhysicalSort)
|
|
if !ok {
|
|
// Multi-thread executing on SORTED data source is not effective enough by current implementation.
|
|
// TODO: Implement a better one.
|
|
return nil
|
|
}
|
|
tail, dataSource := sort, sort.Children()[0]
|
|
|
|
partitionBy := make([]*expression.Column, 0, len(pp.GroupByItems))
|
|
for _, item := range pp.GroupByItems {
|
|
if col, ok := item.(*expression.Column); ok {
|
|
partitionBy = append(partitionBy, col)
|
|
}
|
|
}
|
|
NDV := int(getColsNDV(partitionBy, dataSource.Schema(), dataSource.statsInfo()))
|
|
if NDV <= 1 {
|
|
return nil
|
|
}
|
|
concurrency = mathutil.Min(concurrency, NDV)
|
|
|
|
reqProp := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
|
|
shuffle := PhysicalShuffle{
|
|
Concurrency: concurrency,
|
|
Tails: []PhysicalPlan{tail},
|
|
DataSources: []PhysicalPlan{dataSource},
|
|
SplitterType: PartitionHashSplitterType,
|
|
ByItemArrays: [][]expression.Expression{cloneExprs(pp.GroupByItems)},
|
|
}.Init(ctx, pp.statsInfo(), pp.SelectBlockOffset(), reqProp)
|
|
return shuffle
|
|
}
|
|
|
|
func optimizeByShuffle4MergeJoin(pp *PhysicalMergeJoin, ctx sessionctx.Context) *PhysicalShuffle {
|
|
concurrency := ctx.GetSessionVars().MergeJoinConcurrency()
|
|
if concurrency <= 1 {
|
|
return nil
|
|
}
|
|
|
|
children := pp.Children()
|
|
dataSources := make([]PhysicalPlan, len(children))
|
|
tails := make([]PhysicalPlan, len(children))
|
|
|
|
for i := range children {
|
|
sort, ok := children[i].(*PhysicalSort)
|
|
if !ok {
|
|
// Multi-thread executing on SORTED data source is not effective enough by current implementation.
|
|
// TODO: Implement a better one.
|
|
return nil
|
|
}
|
|
tails[i], dataSources[i] = sort, sort.Children()[0]
|
|
}
|
|
|
|
leftByItemArray := make([]expression.Expression, 0, len(pp.LeftJoinKeys))
|
|
for _, col := range pp.LeftJoinKeys {
|
|
leftByItemArray = append(leftByItemArray, col.Clone())
|
|
}
|
|
rightByItemArray := make([]expression.Expression, 0, len(pp.RightJoinKeys))
|
|
for _, col := range pp.RightJoinKeys {
|
|
rightByItemArray = append(rightByItemArray, col.Clone())
|
|
}
|
|
reqProp := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
|
|
shuffle := PhysicalShuffle{
|
|
Concurrency: concurrency,
|
|
Tails: tails,
|
|
DataSources: dataSources,
|
|
SplitterType: PartitionHashSplitterType,
|
|
ByItemArrays: [][]expression.Expression{leftByItemArray, rightByItemArray},
|
|
}.Init(ctx, pp.statsInfo(), pp.SelectBlockOffset(), reqProp)
|
|
return shuffle
|
|
}
|
|
|
|
// LogicalPlan is a tree of logical operators.
|
|
// We can do a lot of logical optimizations to it, like predicate pushdown and column pruning.
|
|
type LogicalPlan interface {
|
|
Plan
|
|
|
|
// HashCode encodes a LogicalPlan to fast compare whether a LogicalPlan equals to another.
|
|
// We use a strict encode method here which ensures there is no conflict.
|
|
HashCode() []byte
|
|
|
|
// PredicatePushDown pushes down the predicates in the where/on/having clauses as deeply as possible.
|
|
// It will accept a predicate that is an expression slice, and return the expressions that can't be pushed.
|
|
// Because it might change the root if the having clause exists, we need to return a plan that represents a new root.
|
|
PredicatePushDown([]expression.Expression, *logicalOptimizeOp) ([]expression.Expression, LogicalPlan)
|
|
|
|
// PruneColumns prunes the unused columns.
|
|
PruneColumns([]*expression.Column, *logicalOptimizeOp) error
|
|
|
|
// findBestTask converts the logical plan to the physical plan. It's a new interface.
|
|
// It is called recursively from the parent to the children to create the result physical plan.
|
|
// Some logical plans will convert the children to the physical plans in different ways, and return the one
|
|
// With the lowest cost and how many plans are found in this function.
|
|
// planCounter is a counter for planner to force a plan.
|
|
// If planCounter > 0, the clock_th plan generated in this function will be returned.
|
|
// If planCounter = 0, the plan generated in this function will not be considered.
|
|
// If planCounter = -1, then we will not force plan.
|
|
findBestTask(prop *property.PhysicalProperty, planCounter *PlanCounterTp, op *physicalOptimizeOp) (task, int64, error)
|
|
|
|
// BuildKeyInfo will collect the information of unique keys into schema.
|
|
// Because this method is also used in cascades planner, we cannot use
|
|
// things like `p.schema` or `p.children` inside it. We should use the `selfSchema`
|
|
// and `childSchema` instead.
|
|
BuildKeyInfo(selfSchema *expression.Schema, childSchema []*expression.Schema)
|
|
|
|
// pushDownTopN will push down the topN or limit operator during logical optimization.
|
|
pushDownTopN(topN *LogicalTopN, opt *logicalOptimizeOp) LogicalPlan
|
|
|
|
// recursiveDeriveStats derives statistic info between plans.
|
|
recursiveDeriveStats(colGroups [][]*expression.Column) (*property.StatsInfo, error)
|
|
|
|
// DeriveStats derives statistic info for current plan node given child stats.
|
|
// We need selfSchema, childSchema here because it makes this method can be used in
|
|
// cascades planner, where LogicalPlan might not record its children or schema.
|
|
DeriveStats(childStats []*property.StatsInfo, selfSchema *expression.Schema, childSchema []*expression.Schema, colGroups [][]*expression.Column) (*property.StatsInfo, error)
|
|
|
|
// ExtractColGroups extracts column groups from child operator whose DNVs are required by the current operator.
|
|
// For example, if current operator is LogicalAggregation of `Group By a, b`, we indicate the child operators to maintain
|
|
// and propagate the NDV info of column group (a, b), to improve the row count estimation of current LogicalAggregation.
|
|
// The parameter colGroups are column groups required by upper operators, besides from the column groups derived from
|
|
// current operator, we should pass down parent colGroups to child operator as many as possible.
|
|
ExtractColGroups(colGroups [][]*expression.Column) [][]*expression.Column
|
|
|
|
// PreparePossibleProperties is only used for join and aggregation. Like group by a,b,c, all permutation of (a,b,c) is
|
|
// valid, but the ordered indices in leaf plan is limited. So we can get all possible order properties by a pre-walking.
|
|
PreparePossibleProperties(schema *expression.Schema, childrenProperties ...[][]*expression.Column) [][]*expression.Column
|
|
|
|
// exhaustPhysicalPlans generates all possible plans that can match the required property.
|
|
// It will return:
|
|
// 1. All possible plans that can match the required property.
|
|
// 2. Whether the SQL hint can work. Return true if there is no hint.
|
|
exhaustPhysicalPlans(*property.PhysicalProperty) (physicalPlans []PhysicalPlan, hintCanWork bool, err error)
|
|
|
|
// ExtractCorrelatedCols extracts correlated columns inside the LogicalPlan.
|
|
ExtractCorrelatedCols() []*expression.CorrelatedColumn
|
|
|
|
// MaxOneRow means whether this operator only returns max one row.
|
|
MaxOneRow() bool
|
|
|
|
// Get all the children.
|
|
Children() []LogicalPlan
|
|
|
|
// SetChildren sets the children for the plan.
|
|
SetChildren(...LogicalPlan)
|
|
|
|
// SetChild sets the ith child for the plan.
|
|
SetChild(i int, child LogicalPlan)
|
|
|
|
// rollBackTaskMap roll back all taskMap's logs after TimeStamp TS.
|
|
rollBackTaskMap(TS uint64)
|
|
|
|
// canPushToCop check if we might push this plan to a specific store.
|
|
canPushToCop(store kv.StoreType) bool
|
|
}
|
|
|
|
// PhysicalPlan is a tree of the physical operators.
|
|
type PhysicalPlan interface {
|
|
Plan
|
|
|
|
// attach2Task makes the current physical plan as the father of task's physicalPlan and updates the cost of
|
|
// current task. If the child's task is cop task, some operator may close this task and return a new rootTask.
|
|
attach2Task(...task) task
|
|
|
|
// ToPB converts physical plan to tipb executor.
|
|
ToPB(ctx sessionctx.Context, storeType kv.StoreType) (*tipb.Executor, error)
|
|
|
|
// getChildReqProps gets the required property by child index.
|
|
GetChildReqProps(idx int) *property.PhysicalProperty
|
|
|
|
// StatsCount returns the count of property.StatsInfo for this plan.
|
|
StatsCount() float64
|
|
|
|
// ExtractCorrelatedCols extracts correlated columns inside the PhysicalPlan.
|
|
ExtractCorrelatedCols() []*expression.CorrelatedColumn
|
|
|
|
// Get all the children.
|
|
Children() []PhysicalPlan
|
|
|
|
// SetChildren sets the children for the plan.
|
|
SetChildren(...PhysicalPlan)
|
|
|
|
// SetChild sets the ith child for the plan.
|
|
SetChild(i int, child PhysicalPlan)
|
|
|
|
// ResolveIndices resolves the indices for columns. After doing this, the columns can evaluate the rows by their indices.
|
|
ResolveIndices() error
|
|
|
|
// Stats returns the StatsInfo of the plan.
|
|
Stats() *property.StatsInfo
|
|
|
|
// Cost returns the estimated cost of the subplan.
|
|
Cost() float64
|
|
|
|
// SetCost set the cost of the subplan.
|
|
SetCost(cost float64)
|
|
|
|
// ExplainNormalizedInfo returns operator normalized information for generating digest.
|
|
ExplainNormalizedInfo() string
|
|
|
|
// Clone clones this physical plan.
|
|
Clone() (PhysicalPlan, error)
|
|
}
|
|
|
|
type baseLogicalPlan struct {
|
|
basePlan
|
|
|
|
taskMap map[string]task
|
|
// taskMapBak forms a backlog stack of taskMap, used to roll back the taskMap.
|
|
taskMapBak []string
|
|
// taskMapBakTS stores the timestamps of logs.
|
|
taskMapBakTS []uint64
|
|
self LogicalPlan
|
|
maxOneRow bool
|
|
children []LogicalPlan
|
|
}
|
|
|
|
func (p *baseLogicalPlan) MaxOneRow() bool {
|
|
return p.maxOneRow
|
|
}
|
|
|
|
// ExplainInfo implements Plan interface.
|
|
func (p *baseLogicalPlan) ExplainInfo() string {
|
|
return ""
|
|
}
|
|
|
|
type basePhysicalPlan struct {
|
|
basePlan
|
|
|
|
childrenReqProps []*property.PhysicalProperty
|
|
self PhysicalPlan
|
|
children []PhysicalPlan
|
|
cost float64
|
|
}
|
|
|
|
// Cost implements PhysicalPlan interface.
|
|
func (p *basePhysicalPlan) Cost() float64 {
|
|
return p.cost
|
|
}
|
|
|
|
// SetCost implements PhysicalPlan interface.
|
|
func (p *basePhysicalPlan) SetCost(cost float64) {
|
|
p.cost = cost
|
|
}
|
|
|
|
func (p *basePhysicalPlan) cloneWithSelf(newSelf PhysicalPlan) (*basePhysicalPlan, error) {
|
|
base := &basePhysicalPlan{
|
|
basePlan: p.basePlan,
|
|
self: newSelf,
|
|
}
|
|
for _, child := range p.children {
|
|
cloned, err := child.Clone()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
base.children = append(base.children, cloned)
|
|
}
|
|
for _, prop := range p.childrenReqProps {
|
|
if prop == nil {
|
|
continue
|
|
}
|
|
base.childrenReqProps = append(base.childrenReqProps, prop.CloneEssentialFields())
|
|
}
|
|
return base, nil
|
|
}
|
|
|
|
// Clone implements PhysicalPlan interface.
|
|
func (p *basePhysicalPlan) Clone() (PhysicalPlan, error) {
|
|
return nil, errors.Errorf("%T doesn't support cloning", p.self)
|
|
}
|
|
|
|
// ExplainInfo implements Plan interface.
|
|
func (p *basePhysicalPlan) ExplainInfo() string {
|
|
return ""
|
|
}
|
|
|
|
// ExplainNormalizedInfo implements PhysicalPlan interface.
|
|
func (p *basePhysicalPlan) ExplainNormalizedInfo() string {
|
|
return ""
|
|
}
|
|
|
|
func (p *basePhysicalPlan) GetChildReqProps(idx int) *property.PhysicalProperty {
|
|
return p.childrenReqProps[idx]
|
|
}
|
|
|
|
// ExtractCorrelatedCols implements PhysicalPlan interface.
|
|
func (p *basePhysicalPlan) ExtractCorrelatedCols() []*expression.CorrelatedColumn {
|
|
return nil
|
|
}
|
|
|
|
// GetLogicalTS4TaskMap get the logical TimeStamp now to help rollback the TaskMap changes after that.
|
|
func (p *baseLogicalPlan) GetLogicalTS4TaskMap() uint64 {
|
|
p.ctx.GetSessionVars().StmtCtx.TaskMapBakTS += 1
|
|
return p.ctx.GetSessionVars().StmtCtx.TaskMapBakTS
|
|
}
|
|
|
|
func (p *baseLogicalPlan) rollBackTaskMap(TS uint64) {
|
|
if !p.ctx.GetSessionVars().StmtCtx.StmtHints.TaskMapNeedBackUp() {
|
|
return
|
|
}
|
|
if len(p.taskMapBak) > 0 {
|
|
// Rollback all the logs with TimeStamp TS.
|
|
N := len(p.taskMapBak)
|
|
for i := 0; i < N; i++ {
|
|
cur := p.taskMapBak[i]
|
|
if p.taskMapBakTS[i] < TS {
|
|
continue
|
|
}
|
|
|
|
// Remove the i_th log.
|
|
p.taskMapBak = append(p.taskMapBak[:i], p.taskMapBak[i+1:]...)
|
|
p.taskMapBakTS = append(p.taskMapBakTS[:i], p.taskMapBakTS[i+1:]...)
|
|
i--
|
|
N--
|
|
|
|
// Roll back taskMap.
|
|
p.taskMap[cur] = nil
|
|
}
|
|
}
|
|
for _, child := range p.children {
|
|
child.rollBackTaskMap(TS)
|
|
}
|
|
}
|
|
|
|
func (p *baseLogicalPlan) getTask(prop *property.PhysicalProperty) task {
|
|
key := prop.HashCode()
|
|
return p.taskMap[string(key)]
|
|
}
|
|
|
|
func (p *baseLogicalPlan) storeTask(prop *property.PhysicalProperty, task task) {
|
|
key := prop.HashCode()
|
|
if p.ctx.GetSessionVars().StmtCtx.StmtHints.TaskMapNeedBackUp() {
|
|
// Empty string for useless change.
|
|
TS := p.GetLogicalTS4TaskMap()
|
|
p.taskMapBakTS = append(p.taskMapBakTS, TS)
|
|
p.taskMapBak = append(p.taskMapBak, string(key))
|
|
}
|
|
p.taskMap[string(key)] = task
|
|
}
|
|
|
|
// HasMaxOneRow returns if the LogicalPlan will output at most one row.
|
|
func HasMaxOneRow(p LogicalPlan, childMaxOneRow []bool) bool {
|
|
if len(childMaxOneRow) == 0 {
|
|
// The reason why we use this check is that, this function
|
|
// is used both in planner/core and planner/cascades.
|
|
// In cascades planner, LogicalPlan may have no `children`.
|
|
return false
|
|
}
|
|
switch x := p.(type) {
|
|
case *LogicalLock, *LogicalLimit, *LogicalSort, *LogicalSelection,
|
|
*LogicalApply, *LogicalProjection, *LogicalWindow, *LogicalAggregation:
|
|
return childMaxOneRow[0]
|
|
case *LogicalMaxOneRow:
|
|
return true
|
|
case *LogicalJoin:
|
|
switch x.JoinType {
|
|
case SemiJoin, AntiSemiJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin:
|
|
return childMaxOneRow[0]
|
|
default:
|
|
return childMaxOneRow[0] && childMaxOneRow[1]
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// BuildKeyInfo implements LogicalPlan BuildKeyInfo interface.
|
|
func (p *baseLogicalPlan) BuildKeyInfo(selfSchema *expression.Schema, childSchema []*expression.Schema) {
|
|
childMaxOneRow := make([]bool, len(p.children))
|
|
for i := range p.children {
|
|
childMaxOneRow[i] = p.children[i].MaxOneRow()
|
|
}
|
|
p.maxOneRow = HasMaxOneRow(p.self, childMaxOneRow)
|
|
}
|
|
|
|
// BuildKeyInfo implements LogicalPlan BuildKeyInfo interface.
|
|
func (p *logicalSchemaProducer) BuildKeyInfo(selfSchema *expression.Schema, childSchema []*expression.Schema) {
|
|
selfSchema.Keys = nil
|
|
p.baseLogicalPlan.BuildKeyInfo(selfSchema, childSchema)
|
|
|
|
// default implementation for plans has only one child: proprgate child keys
|
|
// multi-children plans are likely to have particular implementation.
|
|
if len(childSchema) == 1 {
|
|
for _, key := range childSchema[0].Keys {
|
|
indices := selfSchema.ColumnsIndices(key)
|
|
if indices == nil {
|
|
continue
|
|
}
|
|
newKey := make([]*expression.Column, 0, len(key))
|
|
for _, i := range indices {
|
|
newKey = append(newKey, selfSchema.Columns[i])
|
|
}
|
|
selfSchema.Keys = append(selfSchema.Keys, newKey)
|
|
}
|
|
}
|
|
}
|
|
|
|
func newBasePlan(ctx sessionctx.Context, tp string, offset int) basePlan {
|
|
ctx.GetSessionVars().PlanID++
|
|
id := ctx.GetSessionVars().PlanID
|
|
return basePlan{
|
|
tp: tp,
|
|
id: id,
|
|
ctx: ctx,
|
|
blockOffset: offset,
|
|
}
|
|
}
|
|
|
|
func newBaseLogicalPlan(ctx sessionctx.Context, tp string, self LogicalPlan, offset int) baseLogicalPlan {
|
|
return baseLogicalPlan{
|
|
taskMap: make(map[string]task),
|
|
taskMapBak: make([]string, 0, 10),
|
|
taskMapBakTS: make([]uint64, 0, 10),
|
|
basePlan: newBasePlan(ctx, tp, offset),
|
|
self: self,
|
|
}
|
|
}
|
|
|
|
func newBasePhysicalPlan(ctx sessionctx.Context, tp string, self PhysicalPlan, offset int) basePhysicalPlan {
|
|
return basePhysicalPlan{
|
|
basePlan: newBasePlan(ctx, tp, offset),
|
|
self: self,
|
|
}
|
|
}
|
|
|
|
func (p *baseLogicalPlan) ExtractCorrelatedCols() []*expression.CorrelatedColumn {
|
|
return nil
|
|
}
|
|
|
|
// PruneColumns implements LogicalPlan interface.
|
|
func (p *baseLogicalPlan) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
|
|
if len(p.children) == 0 {
|
|
return nil
|
|
}
|
|
return p.children[0].PruneColumns(parentUsedCols, opt)
|
|
}
|
|
|
|
// basePlan implements base Plan interface.
|
|
// Should be used as embedded struct in Plan implementations.
|
|
type basePlan struct {
|
|
tp string
|
|
id int
|
|
ctx sessionctx.Context
|
|
stats *property.StatsInfo
|
|
blockOffset int
|
|
}
|
|
|
|
// OutputNames returns the outputting names of each column.
|
|
func (p *basePlan) OutputNames() types.NameSlice {
|
|
return nil
|
|
}
|
|
|
|
func (p *basePlan) SetOutputNames(names types.NameSlice) {
|
|
}
|
|
|
|
func (p *basePlan) replaceExprColumns(replace map[string]*expression.Column) {
|
|
}
|
|
|
|
// ID implements Plan ID interface.
|
|
func (p *basePlan) ID() int {
|
|
return p.id
|
|
}
|
|
|
|
// property.StatsInfo implements the Plan interface.
|
|
func (p *basePlan) statsInfo() *property.StatsInfo {
|
|
return p.stats
|
|
}
|
|
|
|
// ExplainInfo implements Plan interface.
|
|
func (p *basePlan) ExplainInfo() string {
|
|
return "N/A"
|
|
}
|
|
|
|
func (p *basePlan) ExplainID() fmt.Stringer {
|
|
return stringutil.MemoizeStr(func() string {
|
|
if p.ctx != nil && p.ctx.GetSessionVars().StmtCtx.IgnoreExplainIDSuffix {
|
|
return p.tp
|
|
}
|
|
return p.tp + "_" + strconv.Itoa(p.id)
|
|
})
|
|
}
|
|
|
|
// TP implements Plan interface.
|
|
func (p *basePlan) TP() string {
|
|
return p.tp
|
|
}
|
|
|
|
func (p *basePlan) SelectBlockOffset() int {
|
|
return p.blockOffset
|
|
}
|
|
|
|
// Stats implements Plan Stats interface.
|
|
func (p *basePlan) Stats() *property.StatsInfo {
|
|
return p.stats
|
|
}
|
|
|
|
// Schema implements Plan Schema interface.
|
|
func (p *baseLogicalPlan) Schema() *expression.Schema {
|
|
return p.children[0].Schema()
|
|
}
|
|
|
|
func (p *baseLogicalPlan) OutputNames() types.NameSlice {
|
|
return p.children[0].OutputNames()
|
|
}
|
|
|
|
func (p *baseLogicalPlan) SetOutputNames(names types.NameSlice) {
|
|
p.children[0].SetOutputNames(names)
|
|
}
|
|
|
|
// Schema implements Plan Schema interface.
|
|
func (p *basePhysicalPlan) Schema() *expression.Schema {
|
|
return p.children[0].Schema()
|
|
}
|
|
|
|
// Children implements LogicalPlan Children interface.
|
|
func (p *baseLogicalPlan) Children() []LogicalPlan {
|
|
return p.children
|
|
}
|
|
|
|
// Children implements PhysicalPlan Children interface.
|
|
func (p *basePhysicalPlan) Children() []PhysicalPlan {
|
|
return p.children
|
|
}
|
|
|
|
// SetChildren implements LogicalPlan SetChildren interface.
|
|
func (p *baseLogicalPlan) SetChildren(children ...LogicalPlan) {
|
|
p.children = children
|
|
}
|
|
|
|
// SetChildren implements PhysicalPlan SetChildren interface.
|
|
func (p *basePhysicalPlan) SetChildren(children ...PhysicalPlan) {
|
|
p.children = children
|
|
}
|
|
|
|
// SetChild implements LogicalPlan SetChild interface.
|
|
func (p *baseLogicalPlan) SetChild(i int, child LogicalPlan) {
|
|
p.children[i] = child
|
|
}
|
|
|
|
// SetChild implements PhysicalPlan SetChild interface.
|
|
func (p *basePhysicalPlan) SetChild(i int, child PhysicalPlan) {
|
|
p.children[i] = child
|
|
}
|
|
|
|
// Context implements Plan Context interface.
|
|
func (p *basePlan) SCtx() sessionctx.Context {
|
|
return p.ctx
|
|
}
|
|
|
|
// buildPlanTrace implements Plan
|
|
func (p *basePhysicalPlan) buildPlanTrace() *tracing.PlanTrace {
|
|
planTrace := &tracing.PlanTrace{ID: p.ID(), TP: p.TP(), ExplainInfo: p.self.ExplainInfo(), Cost: p.Cost()}
|
|
for _, child := range p.Children() {
|
|
planTrace.Children = append(planTrace.Children, child.buildPlanTrace())
|
|
}
|
|
return planTrace
|
|
}
|
|
|
|
// buildPlanTrace implements Plan
|
|
func (p *baseLogicalPlan) buildPlanTrace() *tracing.PlanTrace {
|
|
planTrace := &tracing.PlanTrace{ID: p.ID(), TP: p.TP(), ExplainInfo: p.self.ExplainInfo()}
|
|
for _, child := range p.Children() {
|
|
planTrace.Children = append(planTrace.Children, child.buildPlanTrace())
|
|
}
|
|
return planTrace
|
|
}
|
|
|
|
// buildPlanTrace implements Plan
|
|
func (p *basePlan) buildPlanTrace() *tracing.PlanTrace {
|
|
planTrace := &tracing.PlanTrace{ID: p.ID(), TP: p.TP()}
|
|
return planTrace
|
|
}
|