Files
tidb/executor/executor_distsql.go
Haibin Xie 379363266e plan: optimize the filter condition push down logic when do index double read (#2166)
Origin design will put index conditions into table scan, but it can
be pushed down into index scan.
2016-12-07 17:02:16 +08:00

882 lines
25 KiB
Go

// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package executor
import (
"math"
"sort"
"strconv"
"sync"
"time"
"github.com/juju/errors"
"github.com/ngaut/log"
"github.com/pingcap/tidb/context"
"github.com/pingcap/tidb/distsql"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/plan"
"github.com/pingcap/tidb/sessionctx/variable"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/types"
"github.com/pingcap/tipb/go-tipb"
)
const defaultConcurrency int = 10
func resultRowToRow(t table.Table, h int64, data []types.Datum, tableAsName *model.CIStr) *Row {
entry := &RowKeyEntry{
Handle: h,
Tbl: t,
TableAsName: tableAsName,
}
return &Row{Data: data, RowKeys: []*RowKeyEntry{entry}}
}
// BaseLookupTableTaskSize represents base number of handles for a lookupTableTask.
var BaseLookupTableTaskSize = 1024
// MaxLookupTableTaskSize represents max number of handles for a lookupTableTask.
var MaxLookupTableTaskSize = 20480
// lookupTableTask is created from a partial result of an index request which
// contains the handles in those index keys.
type lookupTableTask struct {
handles []int64
rows []*Row
cursor int
done bool
doneCh chan error
// The handles fetched from index is originally ordered by index, but we need handles to be ordered by itself
// to do table request.
// The indexOrder map is used to save the original index order for the handles.
// Without this map, the original index order might be lost.
indexOrder map[int64]int
}
func (task *lookupTableTask) getRow() (*Row, error) {
if !task.done {
err := <-task.doneCh
if err != nil {
return nil, errors.Trace(err)
}
task.done = true
}
if task.cursor < len(task.rows) {
row := task.rows[task.cursor]
task.cursor++
return row, nil
}
return nil, nil
}
// rowsSorter sorts the rows by its index order.
type rowsSorter struct {
order map[int64]int
rows []*Row
}
func (s *rowsSorter) Less(i, j int) bool {
x := s.order[s.rows[i].RowKeys[0].Handle]
y := s.order[s.rows[j].RowKeys[0].Handle]
return x < y
}
func (s *rowsSorter) Len() int {
return len(s.rows)
}
func (s *rowsSorter) Swap(i, j int) {
s.rows[i], s.rows[j] = s.rows[j], s.rows[i]
}
func tableRangesToKVRanges(tid int64, tableRanges []plan.TableRange) []kv.KeyRange {
krs := make([]kv.KeyRange, 0, len(tableRanges))
for _, tableRange := range tableRanges {
startKey := tablecodec.EncodeRowKeyWithHandle(tid, tableRange.LowVal)
hi := tableRange.HighVal
if hi != math.MaxInt64 {
hi++
}
endKey := tablecodec.EncodeRowKeyWithHandle(tid, hi)
krs = append(krs, kv.KeyRange{StartKey: startKey, EndKey: endKey})
}
return krs
}
/*
* Convert sorted handle to kv ranges.
* For continuous handles, we should merge them to a single key range.
*/
func tableHandlesToKVRanges(tid int64, handles []int64) []kv.KeyRange {
krs := make([]kv.KeyRange, 0, len(handles))
i := 0
for i < len(handles) {
h := handles[i]
if h == math.MaxInt64 {
// We can't convert MaxInt64 into an left closed, right open range.
i++
continue
}
j := i + 1
endHandle := h + 1
for ; j < len(handles); j++ {
if handles[j] == endHandle {
endHandle = handles[j] + 1
continue
}
break
}
startKey := tablecodec.EncodeRowKeyWithHandle(tid, h)
endKey := tablecodec.EncodeRowKeyWithHandle(tid, endHandle)
krs = append(krs, kv.KeyRange{StartKey: startKey, EndKey: endKey})
i = j
}
return krs
}
func indexRangesToKVRanges(sc *variable.StatementContext, tid, idxID int64, ranges []*plan.IndexRange, fieldTypes []*types.FieldType) ([]kv.KeyRange, error) {
krs := make([]kv.KeyRange, 0, len(ranges))
for _, ran := range ranges {
err := convertIndexRangeTypes(sc, ran, fieldTypes)
if err != nil {
return nil, errors.Trace(err)
}
low, err := codec.EncodeKey(nil, ran.LowVal...)
if err != nil {
return nil, errors.Trace(err)
}
if ran.LowExclude {
low = []byte(kv.Key(low).PrefixNext())
}
high, err := codec.EncodeKey(nil, ran.HighVal...)
if err != nil {
return nil, errors.Trace(err)
}
if !ran.HighExclude {
high = []byte(kv.Key(high).PrefixNext())
}
startKey := tablecodec.EncodeIndexSeekKey(tid, idxID, low)
endKey := tablecodec.EncodeIndexSeekKey(tid, idxID, high)
krs = append(krs, kv.KeyRange{StartKey: startKey, EndKey: endKey})
}
return krs, nil
}
func convertIndexRangeTypes(sc *variable.StatementContext, ran *plan.IndexRange, fieldTypes []*types.FieldType) error {
for i := range ran.LowVal {
if ran.LowVal[i].Kind() == types.KindMinNotNull {
ran.LowVal[i].SetBytes([]byte{})
continue
}
converted, err := ran.LowVal[i].ConvertTo(sc, fieldTypes[i])
if err != nil {
return errors.Trace(err)
}
cmp, err := converted.CompareDatum(sc, ran.LowVal[i])
if err != nil {
return errors.Trace(err)
}
ran.LowVal[i] = converted
if cmp == 0 {
continue
}
if cmp < 0 && !ran.LowExclude {
// For int column a, a >= 1.1 is converted to a > 1.
ran.LowExclude = true
} else if cmp > 0 && ran.LowExclude {
// For int column a, a > 1.9 is converted to a >= 2.
ran.LowExclude = false
}
// The converted value has changed, the other column values doesn't matter.
// For equal condition, converted value changed means there will be no match.
// For non equal condition, this column would be the last one to build the range.
// Break here to prevent the rest columns modify LowExclude again.
break
}
for i := range ran.HighVal {
if ran.HighVal[i].Kind() == types.KindMaxValue {
continue
}
converted, err := ran.HighVal[i].ConvertTo(sc, fieldTypes[i])
if err != nil {
return errors.Trace(err)
}
cmp, err := converted.CompareDatum(sc, ran.HighVal[i])
if err != nil {
return errors.Trace(err)
}
ran.HighVal[i] = converted
if cmp == 0 {
continue
}
// For int column a, a < 1.1 is converted to a <= 1.
if cmp < 0 && ran.HighExclude {
ran.HighExclude = false
}
// For int column a, a <= 1.9 is converted to a < 2.
if cmp > 0 && !ran.HighExclude {
ran.HighExclude = true
}
break
}
return nil
}
// extractHandlesFromIndexResult gets some handles from SelectResult.
// It should be called in a loop until finished or error happened.
func extractHandlesFromIndexResult(idxResult distsql.SelectResult) (handles []int64, finish bool, err error) {
subResult, e0 := idxResult.Next()
if e0 != nil {
err = errors.Trace(e0)
return
}
if subResult == nil {
finish = true
return
}
handles, err = extractHandlesFromIndexSubResult(subResult)
if err != nil {
err = errors.Trace(err)
}
return
}
func extractHandlesFromIndexSubResult(subResult distsql.PartialResult) ([]int64, error) {
var handles []int64
for {
h, data, err := subResult.Next()
if err != nil {
return nil, errors.Trace(err)
}
if data == nil {
break
}
handles = append(handles, h)
}
return handles, nil
}
type int64Slice []int64
func (p int64Slice) Len() int { return len(p) }
func (p int64Slice) Less(i, j int) bool { return p[i] < p[j] }
func (p int64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Closeable is a interface for closeable structures.
type Closeable interface {
// Close closes the object.
Close() error
}
func closeAll(objs ...Closeable) error {
for _, obj := range objs {
if obj != nil {
err := obj.Close()
if err != nil {
return errors.Trace(err)
}
}
}
return nil
}
// XSelectIndexExec represents the DistSQL select index executor.
// There are two execution modes. One is single-read, in which case we only need to read index keys.
// The other one is double-read, in which case we first do index request to get handles, we use each
// partial result to build a lookupTableTask.
//
// Each lookupTableTask works like XSelectTableExec. It sorts the handles, sends an *tipb.SelectRequest, then
// gets distsql.SelectResult which returns multiple distsql.PartialResults, we fetch all the rows from
// each distsql.PartialResult, then sort the rows by the original index order.
//
// So there might be many tasks built from index request, each task do its own table request.
// If we do it one by one, the execution might be very slow.
//
// To speed up the execution, index request or table request is done concurrently. The concurrency is controlled
// by kv.Client, we only need to pass the concurrency parameter.
//
// We also make a higher level of concurrency by doing index request in a background goroutine. The index goroutine
// starts multple worker goroutines and fetches handles from each index partial request, builds lookup table tasks
// and sends the task to 'workerCh'.
//
// Each worker goroutine receives tasks through the 'workerCh', then executes the task.
// After finishing the task, the workers send the task to a taskChan. At the outer most Executor.Next method,
// we receive the finished task through taskChan, and return each row in that task until no more tasks to receive.
type XSelectIndexExec struct {
tableInfo *model.TableInfo
table table.Table
asName *model.CIStr
ctx context.Context
supportDesc bool
isMemDB bool
result distsql.SelectResult
partialResult distsql.PartialResult
where *tipb.Expr
startTS uint64
taskChan chan *lookupTableTask
tasksErr error // not nil if tasks closed due to error.
taskCurr *lookupTableTask
indexPlan *plan.PhysicalIndexScan
singleReadMode bool
returnedRows uint64 // returned row count
mu sync.Mutex
/*
The following attributes are used for aggregation push down.
aggFuncs is the aggregation functions in protobuf format. They will be added to distsql request msg.
byItem is the groupby items in protobuf format. They will be added to distsql request msg.
aggFields is used to decode returned rows from distsql.
aggregate indicates of the executor is handling aggregate result.
It is more convenient to use a single varible than use a long condition.
*/
aggFuncs []*tipb.Expr
byItems []*tipb.ByItem
aggFields []*types.FieldType
aggregate bool
scanConcurrency int
}
// Schema implements Exec Schema interface.
func (e *XSelectIndexExec) Schema() expression.Schema {
return e.indexPlan.GetSchema()
}
// Close implements Exec Close interface.
func (e *XSelectIndexExec) Close() error {
err := closeAll(e.result, e.partialResult)
if err != nil {
return errors.Trace(err)
}
e.result = nil
e.partialResult = nil
e.taskCurr = nil
e.taskChan = nil
e.returnedRows = 0
return nil
}
// Next implements the Executor Next interface.
func (e *XSelectIndexExec) Next() (*Row, error) {
if e.indexPlan.LimitCount != nil && e.returnedRows >= uint64(*e.indexPlan.LimitCount) {
return nil, nil
}
e.returnedRows++
if e.singleReadMode {
return e.nextForSingleRead()
}
return e.nextForDoubleRead()
}
func (e *XSelectIndexExec) nextForSingleRead() (*Row, error) {
if e.result == nil {
var err error
e.result, err = e.doIndexRequest()
if err != nil {
return nil, errors.Trace(err)
}
if e.aggregate {
// The returned rows should be aggregate partial result.
e.result.SetFields(e.aggFields)
}
e.result.Fetch()
}
for {
// Get partial result.
if e.partialResult == nil {
var err error
e.partialResult, err = e.result.Next()
if err != nil {
return nil, errors.Trace(err)
}
if e.partialResult == nil {
// Finished.
return nil, nil
}
}
// Get a row from partial result.
h, rowData, err := e.partialResult.Next()
if err != nil {
return nil, errors.Trace(err)
}
if rowData == nil {
// Finish current partial result and get the next one.
e.partialResult = nil
continue
}
if e.aggregate {
return &Row{Data: rowData}, nil
}
rowData = e.indexRowToTableRow(h, rowData)
return resultRowToRow(e.table, h, rowData, e.asName), nil
}
}
func (e *XSelectIndexExec) indexRowToTableRow(handle int64, indexRow []types.Datum) []types.Datum {
tableRow := make([]types.Datum, len(e.indexPlan.Columns))
for i, tblCol := range e.indexPlan.Columns {
if mysql.HasPriKeyFlag(tblCol.Flag) && e.indexPlan.Table.PKIsHandle {
tableRow[i] = types.NewIntDatum(handle)
continue
}
for j, idxCol := range e.indexPlan.Index.Columns {
if tblCol.Name.L == idxCol.Name.L {
tableRow[i] = indexRow[j]
break
}
}
}
return tableRow
}
func (e *XSelectIndexExec) nextForDoubleRead() (*Row, error) {
var startTs time.Time
if e.taskChan == nil {
startTs = time.Now()
idxResult, err := e.doIndexRequest()
if err != nil {
return nil, errors.Trace(err)
}
idxResult.IgnoreData()
idxResult.Fetch()
// Use a background goroutine to fetch index and put the result in e.taskChan.
// e.taskChan serves as a pipeline, so fetching index and getting table data can
// run concurrently.
e.taskChan = make(chan *lookupTableTask, 50)
go e.fetchHandles(idxResult, e.taskChan)
}
for {
if e.taskCurr == nil {
taskCurr, ok := <-e.taskChan
if !ok {
log.Debugf("[TIME_INDEX_TABLE_SCAN] time: %v", time.Since(startTs))
return nil, e.tasksErr
}
e.taskCurr = taskCurr
}
row, err := e.taskCurr.getRow()
if err != nil || row != nil {
return row, errors.Trace(err)
}
e.taskCurr = nil
}
}
const concurrencyLimit int = 30
// addWorker adds a worker for lookupTableTask.
// It's not thread-safe and should be called in fetchHandles goroutine only.
func addWorker(e *XSelectIndexExec, ch chan *lookupTableTask, concurrency *int) {
if *concurrency <= concurrencyLimit {
go e.pickAndExecTask(ch)
*concurrency = *concurrency + 1
}
}
func (e *XSelectIndexExec) fetchHandles(idxResult distsql.SelectResult, ch chan<- *lookupTableTask) {
defer close(ch)
workCh := make(chan *lookupTableTask, 1)
defer close(workCh)
var concurrency int
addWorker(e, workCh, &concurrency)
totalHandles := 0
startTs := time.Now()
sc := e.ctx.GetSessionVars().StmtCtx
for {
handles, finish, err := extractHandlesFromIndexResult(idxResult)
if err != nil || finish {
e.tasksErr = errors.Trace(err)
if totalHandles >= 100000 && len(e.indexPlan.Ranges) == 1 && e.indexPlan.Ranges[0].IsPoint(sc) {
log.Warnf("[TIME_INDEX_SCAN] time: %v handles: %d concurrency: %d",
time.Since(startTs),
totalHandles,
concurrency)
}
return
}
totalHandles += len(handles)
tasks := e.buildTableTasks(handles)
for _, task := range tasks {
if concurrency < len(tasks) {
addWorker(e, workCh, &concurrency)
}
select {
case workCh <- task:
default:
addWorker(e, workCh, &concurrency)
workCh <- task
}
ch <- task
}
}
}
func getScanConcurrency(ctx context.Context) (int, error) {
sessionVars := ctx.GetSessionVars()
concurrency, err := sessionVars.GetTiDBSystemVar(variable.DistSQLScanConcurrencyVar)
if err != nil {
return 0, errors.Trace(err)
}
c, err := strconv.ParseInt(concurrency, 10, 64)
log.Debugf("[%d] [DistSQL] Scan with concurrency %d", sessionVars.ConnectionID, c)
return int(c), errors.Trace(err)
}
func (e *XSelectIndexExec) doIndexRequest() (distsql.SelectResult, error) {
selIdxReq := new(tipb.SelectRequest)
selIdxReq.StartTs = e.startTS
selIdxReq.TimeZoneOffset = timeZoneOffset()
selIdxReq.IndexInfo = distsql.IndexToProto(e.table.Meta(), e.indexPlan.Index)
if len(e.indexPlan.SortItemsPB) > 0 {
selIdxReq.OrderBy = e.indexPlan.SortItemsPB
} else if e.indexPlan.Desc {
selIdxReq.OrderBy = []*tipb.ByItem{{Desc: e.indexPlan.Desc}}
}
if e.singleReadMode || e.where == nil {
// TODO: when where condition is all index columns limit can be pushed too.
selIdxReq.Limit = e.indexPlan.LimitCount
}
concurrency := e.scanConcurrency
selIdxReq.Where = e.indexPlan.IndexConditionPBExpr
if e.singleReadMode {
selIdxReq.Aggregates = e.aggFuncs
selIdxReq.GroupBy = e.byItems
} else if !e.indexPlan.OutOfOrder {
// The cost of index scan double-read is higher than single-read. Usually ordered index scan has a limit
// which may not have been pushed down, so we set concurrency to 1 to avoid fetching unnecessary data.
concurrency = 1
}
fieldTypes := make([]*types.FieldType, len(e.indexPlan.Index.Columns))
for i, v := range e.indexPlan.Index.Columns {
fieldTypes[i] = &(e.table.Cols()[v.Offset].FieldType)
}
sc := e.ctx.GetSessionVars().StmtCtx
keyRanges, err := indexRangesToKVRanges(sc, e.table.Meta().ID, e.indexPlan.Index.ID, e.indexPlan.Ranges, fieldTypes)
if err != nil {
return nil, errors.Trace(err)
}
return distsql.Select(e.ctx.GetClient(), selIdxReq, keyRanges, concurrency, !e.indexPlan.OutOfOrder)
}
func (e *XSelectIndexExec) buildTableTasks(handles []int64) []*lookupTableTask {
// Build tasks with increasing batch size.
var taskSizes []int
total := len(handles)
batchSize := BaseLookupTableTaskSize
for total > 0 {
if batchSize > total {
batchSize = total
}
taskSizes = append(taskSizes, batchSize)
total -= batchSize
if batchSize < MaxLookupTableTaskSize {
batchSize *= 2
}
}
var indexOrder map[int64]int
if !e.indexPlan.OutOfOrder {
// Save the index order.
indexOrder = make(map[int64]int, len(handles))
for i, h := range handles {
indexOrder[h] = i
}
}
tasks := make([]*lookupTableTask, len(taskSizes))
for i, size := range taskSizes {
task := &lookupTableTask{
handles: handles[:size],
indexOrder: indexOrder,
}
task.doneCh = make(chan error, 1)
handles = handles[size:]
tasks[i] = task
}
return tasks
}
// pickAndExecTask is a worker function, the common usage is
// go e.pickAndExecTask(ch)
func (e *XSelectIndexExec) pickAndExecTask(ch <-chan *lookupTableTask) {
for task := range ch {
err := e.executeTask(task)
task.doneCh <- err
}
}
// ExecuteTask executes a lookup table task.
// It works like executing an XSelectTableExec, except that the ranges are built from a slice of handles
// rather than table ranges. It sends the request to all the regions containing those handles.
func (e *XSelectIndexExec) executeTask(task *lookupTableTask) error {
sort.Sort(int64Slice(task.handles))
tblResult, err := e.doTableRequest(task.handles)
if err != nil {
return errors.Trace(err)
}
task.rows, err = e.extractRowsFromTableResult(e.table, tblResult)
if err != nil {
return errors.Trace(err)
}
if !e.indexPlan.OutOfOrder {
// Restore the index order.
sorter := &rowsSorter{order: task.indexOrder, rows: task.rows}
if e.indexPlan.Desc && !e.supportDesc {
sort.Sort(sort.Reverse(sorter))
} else {
sort.Sort(sorter)
}
}
return nil
}
func (e *XSelectIndexExec) extractRowsFromTableResult(t table.Table, tblResult distsql.SelectResult) ([]*Row, error) {
var rows []*Row
for {
partialResult, err := tblResult.Next()
if err != nil {
return nil, errors.Trace(err)
}
if partialResult == nil {
break
}
subRows, err := e.extractRowsFromPartialResult(t, partialResult)
if err != nil {
return nil, errors.Trace(err)
}
rows = append(rows, subRows...)
}
return rows, nil
}
func (e *XSelectIndexExec) extractRowsFromPartialResult(t table.Table, partialResult distsql.PartialResult) ([]*Row, error) {
var rows []*Row
for {
h, rowData, err := partialResult.Next()
if err != nil {
return nil, errors.Trace(err)
}
if rowData == nil {
break
}
row := resultRowToRow(t, h, rowData, e.indexPlan.TableAsName)
rows = append(rows, row)
}
return rows, nil
}
func (e *XSelectIndexExec) doTableRequest(handles []int64) (distsql.SelectResult, error) {
// The handles are not in original index order, so we can't push limit here.
selTableReq := new(tipb.SelectRequest)
if e.indexPlan.OutOfOrder {
selTableReq.Limit = e.indexPlan.LimitCount
}
selTableReq.StartTs = e.startTS
selTableReq.TimeZoneOffset = timeZoneOffset()
selTableReq.TableInfo = &tipb.TableInfo{
TableId: e.table.Meta().ID,
}
selTableReq.TableInfo.Columns = distsql.ColumnsToProto(e.indexPlan.Columns, e.table.Meta().PKIsHandle)
selTableReq.Where = e.where
// Aggregate Info
selTableReq.Aggregates = e.aggFuncs
selTableReq.GroupBy = e.byItems
keyRanges := tableHandlesToKVRanges(e.table.Meta().ID, handles)
resp, err := distsql.Select(e.ctx.GetClient(), selTableReq, keyRanges, e.scanConcurrency, false)
if err != nil {
return nil, errors.Trace(err)
}
if e.aggregate {
// The returned rows should be aggregate partial result.
resp.SetFields(e.aggFields)
}
resp.Fetch()
return resp, nil
}
// XSelectTableExec represents the DistSQL select table executor.
// Its execution is pushed down to KV layer.
type XSelectTableExec struct {
tableInfo *model.TableInfo
table table.Table
asName *model.CIStr
ctx context.Context
supportDesc bool
isMemDB bool
// result returns one or more distsql.PartialResult and each PartialResult is return by one region.
result distsql.SelectResult
partialResult distsql.PartialResult
where *tipb.Expr
Columns []*model.ColumnInfo
schema expression.Schema
ranges []plan.TableRange
desc bool
limitCount *int64
returnedRows uint64 // returned rowCount
keepOrder bool
startTS uint64
orderByList []*tipb.ByItem
/*
The following attributes are used for aggregation push down.
aggFuncs is the aggregation functions in protobuf format. They will be added to distsql request msg.
byItem is the groupby items in protobuf format. They will be added to distsql request msg.
aggFields is used to decode returned rows from distsql.
aggregate indicates of the executor is handling aggregate result.
It is more convenient to use a single varible than use a long condition.
*/
aggFuncs []*tipb.Expr
byItems []*tipb.ByItem
aggFields []*types.FieldType
aggregate bool
scanConcurrency int
}
// Schema implements the Executor Schema interface.
func (e *XSelectTableExec) Schema() expression.Schema {
return e.schema
}
// doRequest sends a *tipb.SelectRequest via kv.Client and gets the distsql.SelectResult.
func (e *XSelectTableExec) doRequest() error {
var err error
selReq := new(tipb.SelectRequest)
selReq.StartTs = e.startTS
selReq.TimeZoneOffset = timeZoneOffset()
selReq.Where = e.where
selReq.TableInfo = &tipb.TableInfo{
TableId: e.tableInfo.ID,
Columns: distsql.ColumnsToProto(e.Columns, e.tableInfo.PKIsHandle),
}
if len(e.orderByList) > 0 {
selReq.OrderBy = e.orderByList
} else if e.supportDesc && e.desc {
selReq.OrderBy = []*tipb.ByItem{{Desc: e.desc}}
}
selReq.Limit = e.limitCount
// Aggregate Info
selReq.Aggregates = e.aggFuncs
selReq.GroupBy = e.byItems
kvRanges := tableRangesToKVRanges(e.table.Meta().ID, e.ranges)
concurrency := e.scanConcurrency
e.result, err = distsql.Select(e.ctx.GetClient(), selReq, kvRanges, concurrency, e.keepOrder)
if err != nil {
return errors.Trace(err)
}
//if len(selReq.Aggregates) > 0 || len(selReq.GroupBy) > 0 {
if e.aggregate {
// The returned rows should be aggregate partial result.
e.result.SetFields(e.aggFields)
}
e.result.Fetch()
return nil
}
// Close implements the Executor Close interface.
func (e *XSelectTableExec) Close() error {
err := closeAll(e.result, e.partialResult)
if err != nil {
return errors.Trace(err)
}
e.result = nil
e.partialResult = nil
e.returnedRows = 0
return nil
}
// Next implements the Executor interface.
func (e *XSelectTableExec) Next() (*Row, error) {
if e.limitCount != nil && e.returnedRows >= uint64(*e.limitCount) {
return nil, nil
}
if e.result == nil {
err := e.doRequest()
if err != nil {
return nil, errors.Trace(err)
}
}
for {
// Get partial result.
if e.partialResult == nil {
var err error
startTs := time.Now()
e.partialResult, err = e.result.Next()
if err != nil {
return nil, errors.Trace(err)
}
if e.partialResult == nil {
// Finished.
return nil, nil
}
duration := time.Since(startTs)
connID := e.ctx.GetSessionVars().ConnectionID
if duration > 30*time.Millisecond {
log.Infof("[%d] [TIME_TABLE_SCAN] %v", connID, duration)
} else {
log.Debugf("[%d] [TIME_TABLE_SCAN] %v", connID, duration)
}
}
// Get a row from partial result.
h, rowData, err := e.partialResult.Next()
if err != nil {
return nil, errors.Trace(err)
}
if rowData == nil {
// Finish the current partial result and get the next one.
e.partialResult = nil
continue
}
e.returnedRows++
if e.aggregate {
// compose aggreagte row
return &Row{Data: rowData}, nil
}
return resultRowToRow(e.table, h, rowData, e.asName), nil
}
}
// timeZoneOffset returns the local time zone offset in seconds.
func timeZoneOffset() int64 {
_, offset := time.Now().Zone()
return int64(offset)
}