Files
tidb/pkg/executor/builder.go

5667 lines
189 KiB
Go

// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package executor
import (
"bytes"
"cmp"
"context"
"fmt"
"math"
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/kvproto/pkg/diagnosticspb"
"github.com/pingcap/kvproto/pkg/metapb"
"github.com/pingcap/tidb/pkg/config"
"github.com/pingcap/tidb/pkg/ddl"
"github.com/pingcap/tidb/pkg/ddl/placement"
"github.com/pingcap/tidb/pkg/distsql"
distsqlctx "github.com/pingcap/tidb/pkg/distsql/context"
"github.com/pingcap/tidb/pkg/domain"
"github.com/pingcap/tidb/pkg/executor/aggfuncs"
"github.com/pingcap/tidb/pkg/executor/aggregate"
"github.com/pingcap/tidb/pkg/executor/internal/builder"
"github.com/pingcap/tidb/pkg/executor/internal/calibrateresource"
"github.com/pingcap/tidb/pkg/executor/internal/exec"
"github.com/pingcap/tidb/pkg/executor/internal/pdhelper"
"github.com/pingcap/tidb/pkg/executor/internal/querywatch"
"github.com/pingcap/tidb/pkg/executor/internal/testutil"
"github.com/pingcap/tidb/pkg/executor/internal/vecgroupchecker"
"github.com/pingcap/tidb/pkg/executor/join"
"github.com/pingcap/tidb/pkg/executor/lockstats"
executor_metrics "github.com/pingcap/tidb/pkg/executor/metrics"
"github.com/pingcap/tidb/pkg/executor/sortexec"
"github.com/pingcap/tidb/pkg/executor/unionexec"
"github.com/pingcap/tidb/pkg/expression"
"github.com/pingcap/tidb/pkg/expression/aggregation"
"github.com/pingcap/tidb/pkg/infoschema"
"github.com/pingcap/tidb/pkg/kv"
"github.com/pingcap/tidb/pkg/parser/ast"
"github.com/pingcap/tidb/pkg/parser/model"
"github.com/pingcap/tidb/pkg/parser/mysql"
"github.com/pingcap/tidb/pkg/parser/terror"
plannercore "github.com/pingcap/tidb/pkg/planner/core"
"github.com/pingcap/tidb/pkg/planner/core/base"
"github.com/pingcap/tidb/pkg/planner/core/operator/logicalop"
plannerutil "github.com/pingcap/tidb/pkg/planner/util"
"github.com/pingcap/tidb/pkg/planner/util/coreusage"
"github.com/pingcap/tidb/pkg/sessionctx"
"github.com/pingcap/tidb/pkg/sessionctx/stmtctx"
"github.com/pingcap/tidb/pkg/sessionctx/variable"
"github.com/pingcap/tidb/pkg/sessiontxn"
"github.com/pingcap/tidb/pkg/sessiontxn/staleread"
"github.com/pingcap/tidb/pkg/statistics"
"github.com/pingcap/tidb/pkg/table"
"github.com/pingcap/tidb/pkg/table/tables"
"github.com/pingcap/tidb/pkg/table/temptable"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/collate"
"github.com/pingcap/tidb/pkg/util/cteutil"
"github.com/pingcap/tidb/pkg/util/dbterror/exeerrors"
"github.com/pingcap/tidb/pkg/util/dbterror/plannererrors"
"github.com/pingcap/tidb/pkg/util/execdetails"
"github.com/pingcap/tidb/pkg/util/memory"
"github.com/pingcap/tidb/pkg/util/ranger"
rangerctx "github.com/pingcap/tidb/pkg/util/ranger/context"
"github.com/pingcap/tidb/pkg/util/rowcodec"
"github.com/pingcap/tidb/pkg/util/tiflash"
"github.com/pingcap/tidb/pkg/util/timeutil"
"github.com/pingcap/tipb/go-tipb"
clientkv "github.com/tikv/client-go/v2/kv"
"github.com/tikv/client-go/v2/tikv"
"github.com/tikv/client-go/v2/txnkv"
"github.com/tikv/client-go/v2/txnkv/txnsnapshot"
)
// executorBuilder builds an Executor from a Plan.
// The InfoSchema must not change during execution.
type executorBuilder struct {
ctx sessionctx.Context
is infoschema.InfoSchema
err error // err is set when there is error happened during Executor building process.
hasLock bool
// isStaleness means whether this statement use stale read.
isStaleness bool
txnScope string
readReplicaScope string
inUpdateStmt bool
inDeleteStmt bool
inInsertStmt bool
inSelectLockStmt bool
// forDataReaderBuilder indicates whether the builder is used by a dataReaderBuilder.
// When forDataReader is true, the builder should use the dataReaderTS as the executor read ts. This is because
// dataReaderBuilder can be used in concurrent goroutines, so we must ensure that getting the ts should be thread safe and
// can return a correct value even if the session context has already been destroyed
forDataReaderBuilder bool
dataReaderTS uint64
// Used when building MPPGather.
encounterUnionScan bool
}
// CTEStorages stores resTbl and iterInTbl for CTEExec.
// There will be a map[CTEStorageID]*CTEStorages in StmtCtx,
// which will store all CTEStorages to make all shared CTEs use same the CTEStorages.
type CTEStorages struct {
ResTbl cteutil.Storage
IterInTbl cteutil.Storage
Producer *cteProducer
}
func newExecutorBuilder(ctx sessionctx.Context, is infoschema.InfoSchema) *executorBuilder {
txnManager := sessiontxn.GetTxnManager(ctx)
return &executorBuilder{
ctx: ctx,
is: is,
isStaleness: staleread.IsStmtStaleness(ctx),
txnScope: txnManager.GetTxnScope(),
readReplicaScope: txnManager.GetReadReplicaScope(),
}
}
// MockExecutorBuilder is a wrapper for executorBuilder.
// ONLY used in test.
type MockExecutorBuilder struct {
*executorBuilder
}
// NewMockExecutorBuilderForTest is ONLY used in test.
func NewMockExecutorBuilderForTest(ctx sessionctx.Context, is infoschema.InfoSchema) *MockExecutorBuilder {
return &MockExecutorBuilder{
executorBuilder: newExecutorBuilder(ctx, is)}
}
// Build builds an executor tree according to `p`.
func (b *MockExecutorBuilder) Build(p base.Plan) exec.Executor {
return b.build(p)
}
func (b *executorBuilder) build(p base.Plan) exec.Executor {
switch v := p.(type) {
case nil:
return nil
case *plannercore.Change:
return b.buildChange(v)
case *plannercore.CheckTable:
return b.buildCheckTable(v)
case *plannercore.RecoverIndex:
return b.buildRecoverIndex(v)
case *plannercore.CleanupIndex:
return b.buildCleanupIndex(v)
case *plannercore.CheckIndexRange:
return b.buildCheckIndexRange(v)
case *plannercore.ChecksumTable:
return b.buildChecksumTable(v)
case *plannercore.ReloadExprPushdownBlacklist:
return b.buildReloadExprPushdownBlacklist(v)
case *plannercore.ReloadOptRuleBlacklist:
return b.buildReloadOptRuleBlacklist(v)
case *plannercore.AdminPlugins:
return b.buildAdminPlugins(v)
case *plannercore.DDL:
return b.buildDDL(v)
case *plannercore.Deallocate:
return b.buildDeallocate(v)
case *plannercore.Delete:
return b.buildDelete(v)
case *plannercore.Execute:
return b.buildExecute(v)
case *plannercore.Trace:
return b.buildTrace(v)
case *plannercore.Explain:
return b.buildExplain(v)
case *plannercore.PointGetPlan:
return b.buildPointGet(v)
case *plannercore.BatchPointGetPlan:
return b.buildBatchPointGet(v)
case *plannercore.Insert:
return b.buildInsert(v)
case *plannercore.ImportInto:
return b.buildImportInto(v)
case *plannercore.LoadData:
return b.buildLoadData(v)
case *plannercore.LoadStats:
return b.buildLoadStats(v)
case *plannercore.LockStats:
return b.buildLockStats(v)
case *plannercore.UnlockStats:
return b.buildUnlockStats(v)
case *plannercore.IndexAdvise:
return b.buildIndexAdvise(v)
case *plannercore.PlanReplayer:
return b.buildPlanReplayer(v)
case *plannercore.PhysicalLimit:
return b.buildLimit(v)
case *plannercore.Prepare:
return b.buildPrepare(v)
case *plannercore.PhysicalLock:
return b.buildSelectLock(v)
case *plannercore.CancelDDLJobs:
return b.buildCancelDDLJobs(v)
case *plannercore.PauseDDLJobs:
return b.buildPauseDDLJobs(v)
case *plannercore.ResumeDDLJobs:
return b.buildResumeDDLJobs(v)
case *plannercore.ShowNextRowID:
return b.buildShowNextRowID(v)
case *plannercore.ShowDDL:
return b.buildShowDDL(v)
case *plannercore.PhysicalShowDDLJobs:
return b.buildShowDDLJobs(v)
case *plannercore.ShowDDLJobQueries:
return b.buildShowDDLJobQueries(v)
case *plannercore.ShowDDLJobQueriesWithRange:
return b.buildShowDDLJobQueriesWithRange(v)
case *plannercore.ShowSlow:
return b.buildShowSlow(v)
case *plannercore.PhysicalShow:
return b.buildShow(v)
case *plannercore.Simple:
return b.buildSimple(v)
case *plannercore.PhysicalSimpleWrapper:
return b.buildSimple(&v.Inner)
case *plannercore.Set:
return b.buildSet(v)
case *plannercore.SetConfig:
return b.buildSetConfig(v)
case *plannercore.PhysicalSort:
return b.buildSort(v)
case *plannercore.PhysicalTopN:
return b.buildTopN(v)
case *plannercore.PhysicalUnionAll:
return b.buildUnionAll(v)
case *plannercore.Update:
return b.buildUpdate(v)
case *plannercore.PhysicalUnionScan:
return b.buildUnionScanExec(v)
case *plannercore.PhysicalHashJoin:
return b.buildHashJoin(v)
case *plannercore.PhysicalMergeJoin:
return b.buildMergeJoin(v)
case *plannercore.PhysicalIndexJoin:
return b.buildIndexLookUpJoin(v)
case *plannercore.PhysicalIndexMergeJoin:
return b.buildIndexLookUpMergeJoin(v)
case *plannercore.PhysicalIndexHashJoin:
return b.buildIndexNestedLoopHashJoin(v)
case *plannercore.PhysicalSelection:
return b.buildSelection(v)
case *plannercore.PhysicalHashAgg:
return b.buildHashAgg(v)
case *plannercore.PhysicalStreamAgg:
return b.buildStreamAgg(v)
case *plannercore.PhysicalProjection:
return b.buildProjection(v)
case *plannercore.PhysicalMemTable:
return b.buildMemTable(v)
case *plannercore.PhysicalTableDual:
return b.buildTableDual(v)
case *plannercore.PhysicalApply:
return b.buildApply(v)
case *plannercore.PhysicalMaxOneRow:
return b.buildMaxOneRow(v)
case *plannercore.Analyze:
return b.buildAnalyze(v)
case *plannercore.PhysicalTableReader:
return b.buildTableReader(v)
case *plannercore.PhysicalTableSample:
return b.buildTableSample(v)
case *plannercore.PhysicalIndexReader:
return b.buildIndexReader(v)
case *plannercore.PhysicalIndexLookUpReader:
return b.buildIndexLookUpReader(v)
case *plannercore.PhysicalWindow:
return b.buildWindow(v)
case *plannercore.PhysicalShuffle:
return b.buildShuffle(v)
case *plannercore.PhysicalShuffleReceiverStub:
return b.buildShuffleReceiverStub(v)
case *plannercore.SQLBindPlan:
return b.buildSQLBindExec(v)
case *plannercore.SplitRegion:
return b.buildSplitRegion(v)
case *plannercore.PhysicalIndexMergeReader:
return b.buildIndexMergeReader(v)
case *plannercore.SelectInto:
return b.buildSelectInto(v)
case *plannercore.PhysicalCTE:
return b.buildCTE(v)
case *plannercore.PhysicalCTETable:
return b.buildCTETableReader(v)
case *plannercore.CompactTable:
return b.buildCompactTable(v)
case *plannercore.AdminShowBDRRole:
return b.buildAdminShowBDRRole(v)
case *plannercore.PhysicalExpand:
return b.buildExpand(v)
default:
if mp, ok := p.(testutil.MockPhysicalPlan); ok {
return mp.GetExecutor()
}
b.err = exeerrors.ErrUnknownPlan.GenWithStack("Unknown Plan %T", p)
return nil
}
}
func (b *executorBuilder) buildCancelDDLJobs(v *plannercore.CancelDDLJobs) exec.Executor {
e := &CancelDDLJobsExec{
CommandDDLJobsExec: &CommandDDLJobsExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
execute: ddl.CancelJobs,
},
}
return e
}
func (b *executorBuilder) buildPauseDDLJobs(v *plannercore.PauseDDLJobs) exec.Executor {
e := &PauseDDLJobsExec{
CommandDDLJobsExec: &CommandDDLJobsExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
execute: ddl.PauseJobs,
},
}
return e
}
func (b *executorBuilder) buildResumeDDLJobs(v *plannercore.ResumeDDLJobs) exec.Executor {
e := &ResumeDDLJobsExec{
CommandDDLJobsExec: &CommandDDLJobsExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
execute: ddl.ResumeJobs,
},
}
return e
}
func (b *executorBuilder) buildChange(v *plannercore.Change) exec.Executor {
return &ChangeExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
ChangeStmt: v.ChangeStmt,
}
}
func (b *executorBuilder) buildShowNextRowID(v *plannercore.ShowNextRowID) exec.Executor {
e := &ShowNextRowIDExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
tblName: v.TableName,
}
return e
}
func (b *executorBuilder) buildShowDDL(v *plannercore.ShowDDL) exec.Executor {
// We get Info here because for Executors that returns result set,
// next will be called after transaction has been committed.
// We need the transaction to get Info.
e := &ShowDDLExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
}
var err error
ownerManager := domain.GetDomain(e.Ctx()).DDL().OwnerManager()
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
e.ddlOwnerID, err = ownerManager.GetOwnerID(ctx)
cancel()
if err != nil {
b.err = err
return nil
}
session, err := e.GetSysSession()
if err != nil {
b.err = err
return nil
}
ddlInfo, err := ddl.GetDDLInfoWithNewTxn(session)
e.ReleaseSysSession(kv.WithInternalSourceType(context.Background(), kv.InternalTxnDDL), session)
if err != nil {
b.err = err
return nil
}
e.ddlInfo = ddlInfo
e.selfID = ownerManager.ID()
return e
}
func (b *executorBuilder) buildShowDDLJobs(v *plannercore.PhysicalShowDDLJobs) exec.Executor {
loc := b.ctx.GetSessionVars().Location()
ddlJobRetriever := DDLJobRetriever{TZLoc: loc}
e := &ShowDDLJobsExec{
jobNumber: int(v.JobNumber),
is: b.is,
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
DDLJobRetriever: ddlJobRetriever,
}
return e
}
func (b *executorBuilder) buildShowDDLJobQueries(v *plannercore.ShowDDLJobQueries) exec.Executor {
e := &ShowDDLJobQueriesExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
}
return e
}
func (b *executorBuilder) buildShowDDLJobQueriesWithRange(v *plannercore.ShowDDLJobQueriesWithRange) exec.Executor {
e := &ShowDDLJobQueriesWithRangeExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
offset: v.Offset,
limit: v.Limit,
}
return e
}
func (b *executorBuilder) buildShowSlow(v *plannercore.ShowSlow) exec.Executor {
e := &ShowSlowExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
ShowSlow: v.ShowSlow,
}
return e
}
// buildIndexLookUpChecker builds check information to IndexLookUpReader.
func buildIndexLookUpChecker(b *executorBuilder, p *plannercore.PhysicalIndexLookUpReader,
e *IndexLookUpExecutor) {
is := p.IndexPlans[0].(*plannercore.PhysicalIndexScan)
fullColLen := len(is.Index.Columns) + len(p.CommonHandleCols)
if !e.isCommonHandle() {
fullColLen++
}
if e.index.Global {
fullColLen++
}
e.dagPB.OutputOffsets = make([]uint32, fullColLen)
for i := 0; i < fullColLen; i++ {
e.dagPB.OutputOffsets[i] = uint32(i)
}
ts := p.TablePlans[0].(*plannercore.PhysicalTableScan)
e.handleIdx = ts.HandleIdx
e.ranges = ranger.FullRange()
tps := make([]*types.FieldType, 0, fullColLen)
for _, col := range is.Columns {
// tps is used to decode the index, we should use the element type of the array if any.
tps = append(tps, col.FieldType.ArrayType())
}
if !e.isCommonHandle() {
tps = append(tps, types.NewFieldType(mysql.TypeLonglong))
}
if e.index.Global {
tps = append(tps, types.NewFieldType(mysql.TypeLonglong))
}
e.checkIndexValue = &checkIndexValue{idxColTps: tps}
colNames := make([]string, 0, len(is.IdxCols))
for i := range is.IdxCols {
colNames = append(colNames, is.Columns[i].Name.L)
}
if cols, missingColOffset := table.FindColumns(e.table.Cols(), colNames, true); missingColOffset >= 0 {
b.err = plannererrors.ErrUnknownColumn.GenWithStack("Unknown column %s", is.Columns[missingColOffset].Name.O)
} else {
e.idxTblCols = cols
}
}
func (b *executorBuilder) buildCheckTable(v *plannercore.CheckTable) exec.Executor {
noMVIndexOrPrefixIndex := true
for _, idx := range v.IndexInfos {
if idx.MVIndex {
noMVIndexOrPrefixIndex = false
break
}
for _, col := range idx.Columns {
if col.Length != types.UnspecifiedLength {
noMVIndexOrPrefixIndex = false
break
}
}
if !noMVIndexOrPrefixIndex {
break
}
}
if b.ctx.GetSessionVars().FastCheckTable && noMVIndexOrPrefixIndex {
e := &FastCheckTableExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
dbName: v.DBName,
table: v.Table,
indexInfos: v.IndexInfos,
is: b.is,
err: &atomic.Pointer[error]{},
}
return e
}
readerExecs := make([]*IndexLookUpExecutor, 0, len(v.IndexLookUpReaders))
for _, readerPlan := range v.IndexLookUpReaders {
readerExec, err := buildNoRangeIndexLookUpReader(b, readerPlan)
if err != nil {
b.err = errors.Trace(err)
return nil
}
buildIndexLookUpChecker(b, readerPlan, readerExec)
readerExecs = append(readerExecs, readerExec)
}
e := &CheckTableExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
dbName: v.DBName,
table: v.Table,
indexInfos: v.IndexInfos,
is: b.is,
srcs: readerExecs,
exitCh: make(chan struct{}),
retCh: make(chan error, len(readerExecs)),
checkIndex: v.CheckIndex,
}
return e
}
func buildIdxColsConcatHandleCols(tblInfo *model.TableInfo, indexInfo *model.IndexInfo, hasGenedCol bool) []*model.ColumnInfo {
var pkCols []*model.IndexColumn
if tblInfo.IsCommonHandle {
pkIdx := tables.FindPrimaryIndex(tblInfo)
pkCols = pkIdx.Columns
}
columns := make([]*model.ColumnInfo, 0, len(indexInfo.Columns)+len(pkCols))
if hasGenedCol {
columns = tblInfo.Columns
} else {
for _, idxCol := range indexInfo.Columns {
if tblInfo.PKIsHandle && tblInfo.GetPkColInfo().Offset == idxCol.Offset {
continue
}
columns = append(columns, tblInfo.Columns[idxCol.Offset])
}
}
if tblInfo.IsCommonHandle {
for _, c := range pkCols {
if model.FindColumnInfo(columns, c.Name.L) == nil {
columns = append(columns, tblInfo.Columns[c.Offset])
}
}
return columns
}
if tblInfo.PKIsHandle {
columns = append(columns, tblInfo.Columns[tblInfo.GetPkColInfo().Offset])
return columns
}
handleOffset := len(columns)
handleColsInfo := &model.ColumnInfo{
ID: model.ExtraHandleID,
Name: model.ExtraHandleName,
Offset: handleOffset,
}
handleColsInfo.FieldType = *types.NewFieldType(mysql.TypeLonglong)
columns = append(columns, handleColsInfo)
return columns
}
func (b *executorBuilder) buildRecoverIndex(v *plannercore.RecoverIndex) exec.Executor {
tblInfo := v.Table.TableInfo
t, err := b.is.TableByName(context.Background(), v.Table.Schema, tblInfo.Name)
if err != nil {
b.err = err
return nil
}
idxName := strings.ToLower(v.IndexName)
index := tables.GetWritableIndexByName(idxName, t)
if index == nil {
b.err = errors.Errorf("secondary index `%v` is not found in table `%v`", v.IndexName, v.Table.Name.O)
return nil
}
var hasGenedCol bool
for _, iCol := range index.Meta().Columns {
if tblInfo.Columns[iCol.Offset].IsGenerated() {
hasGenedCol = true
}
}
cols := buildIdxColsConcatHandleCols(tblInfo, index.Meta(), hasGenedCol)
e := &RecoverIndexExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
columns: cols,
containsGenedCol: hasGenedCol,
index: index,
table: t,
physicalID: t.Meta().ID,
}
sessCtx := e.Ctx().GetSessionVars().StmtCtx
e.handleCols = buildHandleColsForExec(sessCtx, tblInfo, e.columns)
return e
}
func buildHandleColsForExec(sctx *stmtctx.StatementContext, tblInfo *model.TableInfo,
allColInfo []*model.ColumnInfo) plannerutil.HandleCols {
if !tblInfo.IsCommonHandle {
extraColPos := len(allColInfo) - 1
intCol := &expression.Column{
Index: extraColPos,
RetType: types.NewFieldType(mysql.TypeLonglong),
}
return plannerutil.NewIntHandleCols(intCol)
}
tblCols := make([]*expression.Column, len(tblInfo.Columns))
for i := 0; i < len(tblInfo.Columns); i++ {
c := tblInfo.Columns[i]
tblCols[i] = &expression.Column{
RetType: &c.FieldType,
ID: c.ID,
}
}
pkIdx := tables.FindPrimaryIndex(tblInfo)
for _, c := range pkIdx.Columns {
for j, colInfo := range allColInfo {
if colInfo.Name.L == c.Name.L {
tblCols[c.Offset].Index = j
}
}
}
return plannerutil.NewCommonHandleCols(sctx, tblInfo, pkIdx, tblCols)
}
func (b *executorBuilder) buildCleanupIndex(v *plannercore.CleanupIndex) exec.Executor {
tblInfo := v.Table.TableInfo
t, err := b.is.TableByName(context.Background(), v.Table.Schema, tblInfo.Name)
if err != nil {
b.err = err
return nil
}
idxName := strings.ToLower(v.IndexName)
var index table.Index
for _, idx := range t.Indices() {
if idx.Meta().State != model.StatePublic {
continue
}
if idxName == idx.Meta().Name.L {
index = idx
break
}
}
if index == nil {
b.err = errors.Errorf("secondary index `%v` is not found in table `%v`", v.IndexName, v.Table.Name.O)
return nil
}
e := &CleanupIndexExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
columns: buildIdxColsConcatHandleCols(tblInfo, index.Meta(), false),
index: index,
table: t,
physicalID: t.Meta().ID,
batchSize: 20000,
}
sessCtx := e.Ctx().GetSessionVars().StmtCtx
e.handleCols = buildHandleColsForExec(sessCtx, tblInfo, e.columns)
if e.index.Meta().Global {
e.columns = append(e.columns, model.NewExtraPhysTblIDColInfo())
}
return e
}
func (b *executorBuilder) buildCheckIndexRange(v *plannercore.CheckIndexRange) exec.Executor {
tb, err := b.is.TableByName(context.Background(), v.Table.Schema, v.Table.Name)
if err != nil {
b.err = err
return nil
}
e := &CheckIndexRangeExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
handleRanges: v.HandleRanges,
table: tb.Meta(),
is: b.is,
}
idxName := strings.ToLower(v.IndexName)
for _, idx := range tb.Indices() {
if idx.Meta().Name.L == idxName {
e.index = idx.Meta()
e.startKey = make([]types.Datum, len(e.index.Columns))
break
}
}
return e
}
func (b *executorBuilder) buildChecksumTable(v *plannercore.ChecksumTable) exec.Executor {
e := &ChecksumTableExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
tables: make(map[int64]*checksumContext),
done: false,
}
startTs, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
for _, t := range v.Tables {
e.tables[t.TableInfo.ID] = newChecksumContext(t.DBInfo, t.TableInfo, startTs)
}
return e
}
func (b *executorBuilder) buildReloadExprPushdownBlacklist(_ *plannercore.ReloadExprPushdownBlacklist) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, nil, 0)
return &ReloadExprPushdownBlacklistExec{base}
}
func (b *executorBuilder) buildReloadOptRuleBlacklist(_ *plannercore.ReloadOptRuleBlacklist) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, nil, 0)
return &ReloadOptRuleBlacklistExec{BaseExecutor: base}
}
func (b *executorBuilder) buildAdminPlugins(v *plannercore.AdminPlugins) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, nil, 0)
return &AdminPluginsExec{BaseExecutor: base, Action: v.Action, Plugins: v.Plugins}
}
func (b *executorBuilder) buildDeallocate(v *plannercore.Deallocate) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, nil, v.ID())
base.SetInitCap(chunk.ZeroCapacity)
e := &DeallocateExec{
BaseExecutor: base,
Name: v.Name,
}
return e
}
func (b *executorBuilder) buildSelectLock(v *plannercore.PhysicalLock) exec.Executor {
if !b.inSelectLockStmt {
b.inSelectLockStmt = true
defer func() { b.inSelectLockStmt = false }()
}
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
if !b.ctx.GetSessionVars().PessimisticLockEligible() {
// Locking of rows for update using SELECT FOR UPDATE only applies when autocommit
// is disabled (either by beginning transaction with START TRANSACTION or by setting
// autocommit to 0. If autocommit is enabled, the rows matching the specification are not locked.
// See https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html
return src
}
// If the `PhysicalLock` is not ignored by the above logic, set the `hasLock` flag.
b.hasLock = true
e := &SelectLockExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
Lock: v.Lock,
tblID2Handle: v.TblID2Handle,
tblID2PhysTblIDCol: v.TblID2PhysTblIDCol,
}
// filter out temporary tables because they do not store any record in tikv and should not write any lock
is := e.Ctx().GetInfoSchema().(infoschema.InfoSchema)
for tblID := range e.tblID2Handle {
tblInfo, ok := is.TableByID(context.Background(), tblID)
if !ok {
b.err = errors.Errorf("Can not get table %d", tblID)
}
if tblInfo.Meta().TempTableType != model.TempTableNone {
delete(e.tblID2Handle, tblID)
}
}
return e
}
func (b *executorBuilder) buildLimit(v *plannercore.PhysicalLimit) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
n := int(min(v.Count, uint64(b.ctx.GetSessionVars().MaxChunkSize)))
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
base.SetInitCap(n)
e := &LimitExec{
BaseExecutor: base,
begin: v.Offset,
end: v.Offset + v.Count,
}
childUsedSchemaLen := v.Children()[0].Schema().Len()
childUsedSchema := markChildrenUsedCols(v.Schema().Columns, v.Children()[0].Schema())[0]
e.columnIdxsUsedByChild = make([]int, 0, len(childUsedSchema))
e.columnIdxsUsedByChild = append(e.columnIdxsUsedByChild, childUsedSchema...)
if len(e.columnIdxsUsedByChild) == childUsedSchemaLen {
e.columnIdxsUsedByChild = nil // indicates that all columns are used. LimitExec will improve performance for this condition.
}
return e
}
func (b *executorBuilder) buildPrepare(v *plannercore.Prepare) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
base.SetInitCap(chunk.ZeroCapacity)
return &PrepareExec{
BaseExecutor: base,
name: v.Name,
sqlText: v.SQLText,
}
}
func (b *executorBuilder) buildExecute(v *plannercore.Execute) exec.Executor {
e := &ExecuteExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
name: v.Name,
usingVars: v.Params,
stmt: v.Stmt,
plan: v.Plan,
outputNames: v.OutputNames(),
}
failpoint.Inject("assertExecutePrepareStatementStalenessOption", func(val failpoint.Value) {
vs := strings.Split(val.(string), "_")
assertTS, assertReadReplicaScope := vs[0], vs[1]
staleread.AssertStmtStaleness(b.ctx, true)
ts, err := sessiontxn.GetTxnManager(b.ctx).GetStmtReadTS()
if err != nil {
panic(e)
}
if strconv.FormatUint(ts, 10) != assertTS ||
assertReadReplicaScope != b.readReplicaScope {
panic("execute prepare statement have wrong staleness option")
}
})
return e
}
func (b *executorBuilder) buildShow(v *plannercore.PhysicalShow) exec.Executor {
e := &ShowExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
Tp: v.Tp,
CountWarningsOrErrors: v.CountWarningsOrErrors,
DBName: model.NewCIStr(v.DBName),
Table: v.Table,
Partition: v.Partition,
Column: v.Column,
IndexName: v.IndexName,
ResourceGroupName: model.NewCIStr(v.ResourceGroupName),
Flag: v.Flag,
Roles: v.Roles,
User: v.User,
is: b.is,
Full: v.Full,
IfNotExists: v.IfNotExists,
GlobalScope: v.GlobalScope,
Extended: v.Extended,
Extractor: v.Extractor,
ImportJobID: v.ImportJobID,
}
if e.Tp == ast.ShowMasterStatus || e.Tp == ast.ShowBinlogStatus {
// show master status need start ts.
if _, err := e.Ctx().Txn(true); err != nil {
b.err = err
}
}
return e
}
func (b *executorBuilder) buildSimple(v *plannercore.Simple) exec.Executor {
switch s := v.Statement.(type) {
case *ast.GrantStmt:
return b.buildGrant(s)
case *ast.RevokeStmt:
return b.buildRevoke(s)
case *ast.BRIEStmt:
return b.buildBRIE(s, v.Schema())
case *ast.CalibrateResourceStmt:
return &calibrateresource.Executor{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), 0),
WorkloadType: s.Tp,
OptionList: s.DynamicCalibrateResourceOptionList,
}
case *ast.AddQueryWatchStmt:
return &querywatch.AddExecutor{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), 0),
QueryWatchOptionList: s.QueryWatchOptionList,
}
case *ast.ImportIntoActionStmt:
return &ImportIntoActionExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, 0),
tp: s.Tp,
jobID: s.JobID,
}
}
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
base.SetInitCap(chunk.ZeroCapacity)
e := &SimpleExec{
BaseExecutor: base,
Statement: v.Statement,
IsFromRemote: v.IsFromRemote,
is: b.is,
staleTxnStartTS: v.StaleTxnStartTS,
}
return e
}
func (b *executorBuilder) buildSet(v *plannercore.Set) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
base.SetInitCap(chunk.ZeroCapacity)
e := &SetExecutor{
BaseExecutor: base,
vars: v.VarAssigns,
}
return e
}
func (b *executorBuilder) buildSetConfig(v *plannercore.SetConfig) exec.Executor {
return &SetConfigExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
p: v,
}
}
func (b *executorBuilder) buildInsert(v *plannercore.Insert) exec.Executor {
b.inInsertStmt = true
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
selectExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
var baseExec exec.BaseExecutor
if selectExec != nil {
baseExec = exec.NewBaseExecutor(b.ctx, nil, v.ID(), selectExec)
} else {
baseExec = exec.NewBaseExecutor(b.ctx, nil, v.ID())
}
baseExec.SetInitCap(chunk.ZeroCapacity)
ivs := &InsertValues{
BaseExecutor: baseExec,
Table: v.Table,
Columns: v.Columns,
Lists: v.Lists,
GenExprs: v.GenCols.Exprs,
allAssignmentsAreConstant: v.AllAssignmentsAreConstant,
hasRefCols: v.NeedFillDefaultValue,
SelectExec: selectExec,
rowLen: v.RowLen,
}
err := ivs.initInsertColumns()
if err != nil {
b.err = err
return nil
}
ivs.fkChecks, b.err = buildFKCheckExecs(b.ctx, ivs.Table, v.FKChecks)
if b.err != nil {
return nil
}
ivs.fkCascades, b.err = b.buildFKCascadeExecs(ivs.Table, v.FKCascades)
if b.err != nil {
return nil
}
if v.IsReplace {
return b.buildReplace(ivs)
}
insert := &InsertExec{
InsertValues: ivs,
OnDuplicate: append(v.OnDuplicate, v.GenCols.OnDuplicates...),
IgnoreErr: v.IgnoreErr,
}
return insert
}
func (b *executorBuilder) buildImportInto(v *plannercore.ImportInto) exec.Executor {
// see planBuilder.buildImportInto for detail why we use the latest schema here.
latestIS := b.ctx.GetDomainInfoSchema().(infoschema.InfoSchema)
tbl, ok := latestIS.TableByID(context.Background(), v.Table.TableInfo.ID)
if !ok {
b.err = errors.Errorf("Can not get table %d", v.Table.TableInfo.ID)
return nil
}
if !tbl.Meta().IsBaseTable() {
b.err = plannererrors.ErrNonUpdatableTable.GenWithStackByArgs(tbl.Meta().Name.O, "IMPORT")
return nil
}
var (
selectExec exec.Executor
base exec.BaseExecutor
)
if v.SelectPlan != nil {
selectExec = b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base = exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), selectExec)
} else {
base = exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
}
executor, err := newImportIntoExec(base, selectExec, b.ctx, v, tbl)
if err != nil {
b.err = err
return nil
}
return executor
}
func (b *executorBuilder) buildLoadData(v *plannercore.LoadData) exec.Executor {
tbl, ok := b.is.TableByID(context.Background(), v.Table.TableInfo.ID)
if !ok {
b.err = errors.Errorf("Can not get table %d", v.Table.TableInfo.ID)
return nil
}
if !tbl.Meta().IsBaseTable() {
b.err = plannererrors.ErrNonUpdatableTable.GenWithStackByArgs(tbl.Meta().Name.O, "LOAD")
return nil
}
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
worker, err := NewLoadDataWorker(b.ctx, v, tbl)
if err != nil {
b.err = err
return nil
}
return &LoadDataExec{
BaseExecutor: base,
loadDataWorker: worker,
FileLocRef: v.FileLocRef,
}
}
func (b *executorBuilder) buildLoadStats(v *plannercore.LoadStats) exec.Executor {
e := &LoadStatsExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
info: &LoadStatsInfo{v.Path, b.ctx},
}
return e
}
func (b *executorBuilder) buildLockStats(v *plannercore.LockStats) exec.Executor {
e := &lockstats.LockExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
Tables: v.Tables,
}
return e
}
func (b *executorBuilder) buildUnlockStats(v *plannercore.UnlockStats) exec.Executor {
e := &lockstats.UnlockExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
Tables: v.Tables,
}
return e
}
func (b *executorBuilder) buildIndexAdvise(v *plannercore.IndexAdvise) exec.Executor {
e := &IndexAdviseExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
IsLocal: v.IsLocal,
indexAdviseInfo: &IndexAdviseInfo{
Path: v.Path,
MaxMinutes: v.MaxMinutes,
MaxIndexNum: v.MaxIndexNum,
LineFieldsInfo: v.LineFieldsInfo,
Ctx: b.ctx,
},
}
return e
}
func (b *executorBuilder) buildPlanReplayer(v *plannercore.PlanReplayer) exec.Executor {
if v.Load {
e := &PlanReplayerLoadExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
info: &PlanReplayerLoadInfo{Path: v.File, Ctx: b.ctx},
}
return e
}
if v.Capture {
e := &PlanReplayerExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
CaptureInfo: &PlanReplayerCaptureInfo{
SQLDigest: v.SQLDigest,
PlanDigest: v.PlanDigest,
},
}
return e
}
if v.Remove {
e := &PlanReplayerExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, v.ID()),
CaptureInfo: &PlanReplayerCaptureInfo{
SQLDigest: v.SQLDigest,
PlanDigest: v.PlanDigest,
Remove: true,
},
}
return e
}
e := &PlanReplayerExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
DumpInfo: &PlanReplayerDumpInfo{
Analyze: v.Analyze,
Path: v.File,
ctx: b.ctx,
HistoricalStatsTS: v.HistoricalStatsTS,
},
}
if v.ExecStmt != nil {
e.DumpInfo.ExecStmts = []ast.StmtNode{v.ExecStmt}
} else {
e.BaseExecutor = exec.NewBaseExecutor(b.ctx, nil, v.ID())
}
return e
}
func (*executorBuilder) buildReplace(vals *InsertValues) exec.Executor {
replaceExec := &ReplaceExec{
InsertValues: vals,
}
return replaceExec
}
func (b *executorBuilder) buildGrant(grant *ast.GrantStmt) exec.Executor {
e := &GrantExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, 0),
Privs: grant.Privs,
ObjectType: grant.ObjectType,
Level: grant.Level,
Users: grant.Users,
WithGrant: grant.WithGrant,
AuthTokenOrTLSOptions: grant.AuthTokenOrTLSOptions,
is: b.is,
}
return e
}
func (b *executorBuilder) buildRevoke(revoke *ast.RevokeStmt) exec.Executor {
e := &RevokeExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, nil, 0),
ctx: b.ctx,
Privs: revoke.Privs,
ObjectType: revoke.ObjectType,
Level: revoke.Level,
Users: revoke.Users,
is: b.is,
}
return e
}
func (b *executorBuilder) buildDDL(v *plannercore.DDL) exec.Executor {
e := &DDLExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
ddlExecutor: domain.GetDomain(b.ctx).DDLExecutor(),
stmt: v.Statement,
is: b.is,
tempTableDDL: temptable.GetTemporaryTableDDL(b.ctx),
}
return e
}
// buildTrace builds a TraceExec for future executing. This method will be called
// at build().
func (b *executorBuilder) buildTrace(v *plannercore.Trace) exec.Executor {
t := &TraceExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
stmtNode: v.StmtNode,
builder: b,
format: v.Format,
optimizerTrace: v.OptimizerTrace,
optimizerTraceTarget: v.OptimizerTraceTarget,
}
if t.format == plannercore.TraceFormatLog && !t.optimizerTrace {
return &sortexec.SortExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), t),
ByItems: []*plannerutil.ByItems{
{Expr: &expression.Column{
Index: 0,
RetType: types.NewFieldType(mysql.TypeTimestamp),
}},
},
ExecSchema: v.Schema(),
}
}
return t
}
// buildExplain builds a explain executor. `e.rows` collects final result to `ExplainExec`.
func (b *executorBuilder) buildExplain(v *plannercore.Explain) exec.Executor {
explainExec := &ExplainExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
explain: v,
}
if v.Analyze {
if b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl == nil {
b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl = execdetails.NewRuntimeStatsColl(nil)
}
}
// Needs to build the target plan, even if not executing it
// to get partition pruning.
explainExec.analyzeExec = b.build(v.TargetPlan)
return explainExec
}
func (b *executorBuilder) buildSelectInto(v *plannercore.SelectInto) exec.Executor {
child := b.build(v.TargetPlan)
if b.err != nil {
return nil
}
return &SelectIntoExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), child),
intoOpt: v.IntoOpt,
LineFieldsInfo: v.LineFieldsInfo,
}
}
func (b *executorBuilder) buildUnionScanExec(v *plannercore.PhysicalUnionScan) exec.Executor {
oriEncounterUnionScan := b.encounterUnionScan
b.encounterUnionScan = true
defer func() {
b.encounterUnionScan = oriEncounterUnionScan
}()
reader := b.build(v.Children()[0])
if b.err != nil {
return nil
}
return b.buildUnionScanFromReader(reader, v)
}
// buildUnionScanFromReader builds union scan executor from child executor.
// Note that this function may be called by inner workers of index lookup join concurrently.
// Be careful to avoid data race.
func (b *executorBuilder) buildUnionScanFromReader(reader exec.Executor, v *plannercore.PhysicalUnionScan) exec.Executor {
// If reader is union, it means a partition table and we should transfer as above.
if x, ok := reader.(*unionexec.UnionExec); ok {
for i, child := range x.AllChildren() {
x.SetChildren(i, b.buildUnionScanFromReader(child, v))
if b.err != nil {
return nil
}
}
return x
}
us := &UnionScanExec{BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), reader)}
// Get the handle column index of the below Plan.
us.handleCols = v.HandleCols
us.mutableRow = chunk.MutRowFromTypes(exec.RetTypes(us))
// If the push-downed condition contains virtual column, we may build a selection upon reader
originReader := reader
if sel, ok := reader.(*SelectionExec); ok {
reader = sel.Children(0)
}
us.collators = make([]collate.Collator, 0, len(us.columns))
for _, tp := range exec.RetTypes(us) {
us.collators = append(us.collators, collate.GetCollator(tp.GetCollate()))
}
startTS, err := b.getSnapshotTS()
sessionVars := b.ctx.GetSessionVars()
if err != nil {
b.err = err
return nil
}
switch x := reader.(type) {
case *MPPGather:
us.desc = false
us.keepOrder = false
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = x.virtualColumnIndex
us.handleCachedTable(b, x, sessionVars, startTS)
case *TableReaderExecutor:
us.desc = x.desc
us.keepOrder = x.keepOrder
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = x.virtualColumnIndex
us.handleCachedTable(b, x, sessionVars, startTS)
case *IndexReaderExecutor:
us.desc = x.desc
us.keepOrder = x.keepOrder
for _, ic := range x.index.Columns {
for i, col := range x.columns {
if col.Name.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.partitionIDMap = x.partitionIDMap
us.table = x.table
us.handleCachedTable(b, x, sessionVars, startTS)
case *IndexLookUpExecutor:
us.desc = x.desc
us.keepOrder = x.keepOrder
for _, ic := range x.index.Columns {
for i, col := range x.columns {
if col.Name.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.partitionIDMap = x.partitionIDMap
us.virtualColumnIndex = buildVirtualColumnIndex(us.Schema(), us.columns)
us.handleCachedTable(b, x, sessionVars, startTS)
case *IndexMergeReaderExecutor:
if len(x.byItems) != 0 {
us.keepOrder = x.keepOrder
us.desc = x.byItems[0].Desc
for _, item := range x.byItems {
c, ok := item.Expr.(*expression.Column)
if !ok {
b.err = errors.Errorf("Not support non-column in orderBy pushed down")
return nil
}
for i, col := range x.columns {
if col.ID == c.ID {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
}
us.partitionIDMap = x.partitionIDMap
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = buildVirtualColumnIndex(us.Schema(), us.columns)
case *PointGetExecutor, *BatchPointGetExec, // PointGet and BatchPoint can handle virtual columns and dirty txn data themselves.
*TableDualExec, // If TableDual, the result must be empty, so we can skip UnionScan and use TableDual directly here.
*TableSampleExecutor: // TableSample only supports sampling from disk, don't need to consider in-memory txn data for simplicity.
return originReader
default:
// TODO: consider more operators like Projection.
b.err = errors.NewNoStackErrorf("unexpected operator %T under UnionScan", reader)
return nil
}
return us
}
type bypassDataSourceExecutor interface {
dataSourceExecutor
setDummy()
}
func (us *UnionScanExec) handleCachedTable(b *executorBuilder, x bypassDataSourceExecutor, vars *variable.SessionVars, startTS uint64) {
tbl := x.Table()
if tbl.Meta().TableCacheStatusType == model.TableCacheStatusEnable {
cachedTable := tbl.(table.CachedTable)
// Determine whether the cache can be used.
leaseDuration := time.Duration(variable.TableCacheLease.Load()) * time.Second
cacheData, loading := cachedTable.TryReadFromCache(startTS, leaseDuration)
if cacheData != nil {
vars.StmtCtx.ReadFromTableCache = true
x.setDummy()
us.cacheTable = cacheData
} else if loading {
return
} else {
if !b.inUpdateStmt && !b.inDeleteStmt && !b.inInsertStmt && !vars.StmtCtx.InExplainStmt {
store := b.ctx.GetStore()
cachedTable.UpdateLockForRead(context.Background(), store, startTS, leaseDuration)
}
}
}
}
// buildMergeJoin builds MergeJoinExec executor.
func (b *executorBuilder) buildMergeJoin(v *plannercore.PhysicalMergeJoin) exec.Executor {
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
defaultValues := v.DefaultValues
if defaultValues == nil {
if v.JoinType == logicalop.RightOuterJoin {
defaultValues = make([]types.Datum, leftExec.Schema().Len())
} else {
defaultValues = make([]types.Datum, rightExec.Schema().Len())
}
}
colsFromChildren := v.Schema().Columns
if v.JoinType == logicalop.LeftOuterSemiJoin || v.JoinType == logicalop.AntiLeftOuterSemiJoin {
colsFromChildren = colsFromChildren[:len(colsFromChildren)-1]
}
e := &join.MergeJoinExec{
StmtCtx: b.ctx.GetSessionVars().StmtCtx,
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
CompareFuncs: v.CompareFuncs,
Joiner: join.NewJoiner(
b.ctx,
v.JoinType,
v.JoinType == logicalop.RightOuterJoin,
defaultValues,
v.OtherConditions,
exec.RetTypes(leftExec),
exec.RetTypes(rightExec),
markChildrenUsedCols(colsFromChildren, v.Children()[0].Schema(), v.Children()[1].Schema()),
false,
),
IsOuterJoin: v.JoinType.IsOuterJoin(),
Desc: v.Desc,
}
leftTable := &join.MergeJoinTable{
ChildIndex: 0,
JoinKeys: v.LeftJoinKeys,
Filters: v.LeftConditions,
}
rightTable := &join.MergeJoinTable{
ChildIndex: 1,
JoinKeys: v.RightJoinKeys,
Filters: v.RightConditions,
}
if v.JoinType == logicalop.RightOuterJoin {
e.InnerTable = leftTable
e.OuterTable = rightTable
} else {
e.InnerTable = rightTable
e.OuterTable = leftTable
}
e.InnerTable.IsInner = true
// optimizer should guarantee that filters on inner table are pushed down
// to tikv or extracted to a Selection.
if len(e.InnerTable.Filters) != 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "merge join's inner filter should be empty.")
return nil
}
executor_metrics.ExecutorCounterMergeJoinExec.Inc()
return e
}
func collectColumnIndexFromExpr(expr expression.Expression, leftColumnSize int, leftColumnIndex []int, rightColumnIndex []int) ([]int, []int) {
switch x := expr.(type) {
case *expression.Column:
colIndex := x.Index
if colIndex >= leftColumnSize {
rightColumnIndex = append(rightColumnIndex, colIndex-leftColumnSize)
} else {
leftColumnIndex = append(leftColumnIndex, colIndex)
}
return leftColumnIndex, rightColumnIndex
case *expression.Constant:
return leftColumnIndex, rightColumnIndex
case *expression.ScalarFunction:
for _, arg := range x.GetArgs() {
leftColumnIndex, rightColumnIndex = collectColumnIndexFromExpr(arg, leftColumnSize, leftColumnIndex, rightColumnIndex)
}
return leftColumnIndex, rightColumnIndex
default:
panic("unsupported expression")
}
}
func extractUsedColumnsInJoinOtherCondition(expr expression.CNFExprs, leftColumnSize int) ([]int, []int) {
leftColumnIndex := make([]int, 0, 1)
rightColumnIndex := make([]int, 0, 1)
for _, subExpr := range expr {
leftColumnIndex, rightColumnIndex = collectColumnIndexFromExpr(subExpr, leftColumnSize, leftColumnIndex, rightColumnIndex)
}
return leftColumnIndex, rightColumnIndex
}
func (b *executorBuilder) buildHashJoinV2(v *plannercore.PhysicalHashJoin) exec.Executor {
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
e := &join.HashJoinV2Exec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
ProbeSideTupleFetcher: &join.ProbeSideTupleFetcherV2{},
ProbeWorkers: make([]*join.ProbeWorkerV2, v.Concurrency),
BuildWorkers: make([]*join.BuildWorkerV2, v.Concurrency),
HashJoinCtxV2: &join.HashJoinCtxV2{
OtherCondition: v.OtherConditions,
},
}
e.HashJoinCtxV2.SessCtx = b.ctx
e.HashJoinCtxV2.JoinType = v.JoinType
e.HashJoinCtxV2.Concurrency = v.Concurrency
e.HashJoinCtxV2.SetupPartitionInfo()
e.ChunkAllocPool = e.AllocPool
e.HashJoinCtxV2.RightAsBuildSide = true
if v.InnerChildIdx == 1 && v.UseOuterToBuild {
e.HashJoinCtxV2.RightAsBuildSide = false
} else if v.InnerChildIdx == 0 && !v.UseOuterToBuild {
e.HashJoinCtxV2.RightAsBuildSide = false
}
lhsTypes, rhsTypes := exec.RetTypes(leftExec), exec.RetTypes(rightExec)
joinedTypes := make([]*types.FieldType, 0, len(lhsTypes)+len(rhsTypes))
joinedTypes = append(joinedTypes, lhsTypes...)
joinedTypes = append(joinedTypes, rhsTypes...)
if v.InnerChildIdx == 1 {
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
var probeKeys, buildKeys []*expression.Column
var buildSideExec exec.Executor
if v.UseOuterToBuild {
if v.InnerChildIdx == 1 {
buildSideExec, buildKeys = leftExec, v.LeftJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys = rightExec, v.RightJoinKeys
e.HashJoinCtxV2.BuildFilter = v.LeftConditions
} else {
buildSideExec, buildKeys = rightExec, v.RightJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys = leftExec, v.LeftJoinKeys
e.HashJoinCtxV2.BuildFilter = v.RightConditions
}
} else {
if v.InnerChildIdx == 0 {
buildSideExec, buildKeys = leftExec, v.LeftJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys = rightExec, v.RightJoinKeys
e.HashJoinCtxV2.ProbeFilter = v.RightConditions
} else {
buildSideExec, buildKeys = rightExec, v.RightJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys = leftExec, v.LeftJoinKeys
e.HashJoinCtxV2.ProbeFilter = v.LeftConditions
}
}
probeKeyColIdx := make([]int, len(probeKeys))
buildKeyColIdx := make([]int, len(buildKeys))
for i := range buildKeys {
buildKeyColIdx[i] = buildKeys[i].Index
}
for i := range probeKeys {
probeKeyColIdx[i] = probeKeys[i].Index
}
colsFromChildren := v.Schema().Columns
if v.JoinType == logicalop.LeftOuterSemiJoin || v.JoinType == logicalop.AntiLeftOuterSemiJoin {
// the matched column is added inside join
colsFromChildren = colsFromChildren[:len(colsFromChildren)-1]
}
childrenUsedSchema := markChildrenUsedCols(colsFromChildren, v.Children()[0].Schema(), v.Children()[1].Schema())
if childrenUsedSchema == nil {
b.err = errors.New("children used should never be nil")
return nil
}
e.LUsed = make([]int, 0, len(childrenUsedSchema[0]))
e.LUsed = append(e.LUsed, childrenUsedSchema[0]...)
e.RUsed = make([]int, 0, len(childrenUsedSchema[1]))
e.RUsed = append(e.RUsed, childrenUsedSchema[1]...)
if v.OtherConditions != nil {
leftColumnSize := v.Children()[0].Schema().Len()
e.LUsedInOtherCondition, e.RUsedInOtherCondition = extractUsedColumnsInJoinOtherCondition(v.OtherConditions, leftColumnSize)
}
// todo add partition hash join exec
executor_metrics.ExecutorCountHashJoinExec.Inc()
leftExecTypes, rightExecTypes := exec.RetTypes(leftExec), exec.RetTypes(rightExec)
leftTypes, rightTypes := make([]*types.FieldType, 0, len(v.LeftJoinKeys)+len(v.LeftNAJoinKeys)), make([]*types.FieldType, 0, len(v.RightJoinKeys)+len(v.RightNAJoinKeys))
for i, col := range v.LeftJoinKeys {
leftTypes = append(leftTypes, leftExecTypes[col.Index].Clone())
leftTypes[i].SetFlag(col.RetType.GetFlag())
}
offset := len(v.LeftJoinKeys)
for i, col := range v.LeftNAJoinKeys {
leftTypes = append(leftTypes, leftExecTypes[col.Index].Clone())
leftTypes[i+offset].SetFlag(col.RetType.GetFlag())
}
for i, col := range v.RightJoinKeys {
rightTypes = append(rightTypes, rightExecTypes[col.Index].Clone())
rightTypes[i].SetFlag(col.RetType.GetFlag())
}
offset = len(v.RightJoinKeys)
for i, col := range v.RightNAJoinKeys {
rightTypes = append(rightTypes, rightExecTypes[col.Index].Clone())
rightTypes[i+offset].SetFlag(col.RetType.GetFlag())
}
// consider collations
for i := range v.EqualConditions {
chs, coll := v.EqualConditions[i].CharsetAndCollation()
leftTypes[i].SetCharset(chs)
leftTypes[i].SetCollate(coll)
rightTypes[i].SetCharset(chs)
rightTypes[i].SetCollate(coll)
}
offset = len(v.EqualConditions)
for i := range v.NAEqualConditions {
chs, coll := v.NAEqualConditions[i].CharsetAndCollation()
leftTypes[i+offset].SetCharset(chs)
leftTypes[i+offset].SetCollate(coll)
rightTypes[i+offset].SetCharset(chs)
rightTypes[i+offset].SetCollate(coll)
}
if e.RightAsBuildSide {
e.BuildKeyTypes, e.ProbeKeyTypes = rightTypes, leftTypes
} else {
e.BuildKeyTypes, e.ProbeKeyTypes = leftTypes, rightTypes
}
for i := uint(0); i < e.Concurrency; i++ {
e.ProbeWorkers[i] = &join.ProbeWorkerV2{
HashJoinCtx: e.HashJoinCtxV2,
JoinProbe: join.NewJoinProbe(e.HashJoinCtxV2, i, v.JoinType, probeKeyColIdx, joinedTypes, e.ProbeKeyTypes, e.RightAsBuildSide),
}
e.ProbeWorkers[i].WorkerID = i
e.BuildWorkers[i] = join.NewJoinBuildWorkerV2(e.HashJoinCtxV2, i, buildSideExec, buildKeyColIdx, exec.RetTypes(buildSideExec))
}
return e
}
func (b *executorBuilder) buildHashJoin(v *plannercore.PhysicalHashJoin) exec.Executor {
if join.IsHashJoinV2Enabled() && v.CanUseHashJoinV2() {
return b.buildHashJoinV2(v)
}
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
e := &join.HashJoinV1Exec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
ProbeSideTupleFetcher: &join.ProbeSideTupleFetcherV1{},
ProbeWorkers: make([]*join.ProbeWorkerV1, v.Concurrency),
BuildWorker: &join.BuildWorkerV1{},
HashJoinCtxV1: &join.HashJoinCtxV1{
IsOuterJoin: v.JoinType.IsOuterJoin(),
UseOuterToBuild: v.UseOuterToBuild,
},
}
e.HashJoinCtxV1.SessCtx = b.ctx
e.HashJoinCtxV1.JoinType = v.JoinType
e.HashJoinCtxV1.Concurrency = v.Concurrency
e.HashJoinCtxV1.ChunkAllocPool = e.AllocPool
defaultValues := v.DefaultValues
lhsTypes, rhsTypes := exec.RetTypes(leftExec), exec.RetTypes(rightExec)
if v.InnerChildIdx == 1 {
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
leftIsBuildSide := true
e.IsNullEQ = v.IsNullEQ
var probeKeys, probeNAKeys, buildKeys, buildNAKeys []*expression.Column
var buildSideExec exec.Executor
if v.UseOuterToBuild {
// update the buildSideEstCount due to changing the build side
if v.InnerChildIdx == 1 {
buildSideExec, buildKeys, buildNAKeys = leftExec, v.LeftJoinKeys, v.LeftNAJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys, probeNAKeys = rightExec, v.RightJoinKeys, v.RightNAJoinKeys
e.OuterFilter = v.LeftConditions
} else {
buildSideExec, buildKeys, buildNAKeys = rightExec, v.RightJoinKeys, v.RightNAJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys, probeNAKeys = leftExec, v.LeftJoinKeys, v.LeftNAJoinKeys
e.OuterFilter = v.RightConditions
leftIsBuildSide = false
}
if defaultValues == nil {
defaultValues = make([]types.Datum, e.ProbeSideTupleFetcher.ProbeSideExec.Schema().Len())
}
} else {
if v.InnerChildIdx == 0 {
buildSideExec, buildKeys, buildNAKeys = leftExec, v.LeftJoinKeys, v.LeftNAJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys, probeNAKeys = rightExec, v.RightJoinKeys, v.RightNAJoinKeys
e.OuterFilter = v.RightConditions
} else {
buildSideExec, buildKeys, buildNAKeys = rightExec, v.RightJoinKeys, v.RightNAJoinKeys
e.ProbeSideTupleFetcher.ProbeSideExec, probeKeys, probeNAKeys = leftExec, v.LeftJoinKeys, v.LeftNAJoinKeys
e.OuterFilter = v.LeftConditions
leftIsBuildSide = false
}
if defaultValues == nil {
defaultValues = make([]types.Datum, buildSideExec.Schema().Len())
}
}
probeKeyColIdx := make([]int, len(probeKeys))
probeNAKeColIdx := make([]int, len(probeNAKeys))
buildKeyColIdx := make([]int, len(buildKeys))
buildNAKeyColIdx := make([]int, len(buildNAKeys))
for i := range buildKeys {
buildKeyColIdx[i] = buildKeys[i].Index
}
for i := range buildNAKeys {
buildNAKeyColIdx[i] = buildNAKeys[i].Index
}
for i := range probeKeys {
probeKeyColIdx[i] = probeKeys[i].Index
}
for i := range probeNAKeys {
probeNAKeColIdx[i] = probeNAKeys[i].Index
}
isNAJoin := len(v.LeftNAJoinKeys) > 0
colsFromChildren := v.Schema().Columns
if v.JoinType == logicalop.LeftOuterSemiJoin || v.JoinType == logicalop.AntiLeftOuterSemiJoin {
colsFromChildren = colsFromChildren[:len(colsFromChildren)-1]
}
childrenUsedSchema := markChildrenUsedCols(colsFromChildren, v.Children()[0].Schema(), v.Children()[1].Schema())
for i := uint(0); i < e.Concurrency; i++ {
e.ProbeWorkers[i] = &join.ProbeWorkerV1{
HashJoinCtx: e.HashJoinCtxV1,
Joiner: join.NewJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, lhsTypes, rhsTypes, childrenUsedSchema, isNAJoin),
ProbeKeyColIdx: probeKeyColIdx,
ProbeNAKeyColIdx: probeNAKeColIdx,
}
e.ProbeWorkers[i].WorkerID = i
}
e.BuildWorker.BuildKeyColIdx, e.BuildWorker.BuildNAKeyColIdx, e.BuildWorker.BuildSideExec, e.BuildWorker.HashJoinCtx = buildKeyColIdx, buildNAKeyColIdx, buildSideExec, e.HashJoinCtxV1
e.HashJoinCtxV1.IsNullAware = isNAJoin
executor_metrics.ExecutorCountHashJoinExec.Inc()
// We should use JoinKey to construct the type information using by hashing, instead of using the child's schema directly.
// When a hybrid type column is hashed multiple times, we need to distinguish what field types are used.
// For example, the condition `enum = int and enum = string`, we should use ETInt to hash the first column,
// and use ETString to hash the second column, although they may be the same column.
leftExecTypes, rightExecTypes := exec.RetTypes(leftExec), exec.RetTypes(rightExec)
leftTypes, rightTypes := make([]*types.FieldType, 0, len(v.LeftJoinKeys)+len(v.LeftNAJoinKeys)), make([]*types.FieldType, 0, len(v.RightJoinKeys)+len(v.RightNAJoinKeys))
// set left types and right types for joiner.
for i, col := range v.LeftJoinKeys {
leftTypes = append(leftTypes, leftExecTypes[col.Index].Clone())
leftTypes[i].SetFlag(col.RetType.GetFlag())
}
offset := len(v.LeftJoinKeys)
for i, col := range v.LeftNAJoinKeys {
leftTypes = append(leftTypes, leftExecTypes[col.Index].Clone())
leftTypes[i+offset].SetFlag(col.RetType.GetFlag())
}
for i, col := range v.RightJoinKeys {
rightTypes = append(rightTypes, rightExecTypes[col.Index].Clone())
rightTypes[i].SetFlag(col.RetType.GetFlag())
}
offset = len(v.RightJoinKeys)
for i, col := range v.RightNAJoinKeys {
rightTypes = append(rightTypes, rightExecTypes[col.Index].Clone())
rightTypes[i+offset].SetFlag(col.RetType.GetFlag())
}
// consider collations
for i := range v.EqualConditions {
chs, coll := v.EqualConditions[i].CharsetAndCollation()
leftTypes[i].SetCharset(chs)
leftTypes[i].SetCollate(coll)
rightTypes[i].SetCharset(chs)
rightTypes[i].SetCollate(coll)
}
offset = len(v.EqualConditions)
for i := range v.NAEqualConditions {
chs, coll := v.NAEqualConditions[i].CharsetAndCollation()
leftTypes[i+offset].SetCharset(chs)
leftTypes[i+offset].SetCollate(coll)
rightTypes[i+offset].SetCharset(chs)
rightTypes[i+offset].SetCollate(coll)
}
if leftIsBuildSide {
e.BuildTypes, e.ProbeTypes = leftTypes, rightTypes
} else {
e.BuildTypes, e.ProbeTypes = rightTypes, leftTypes
}
return e
}
func (b *executorBuilder) buildHashAgg(v *plannercore.PhysicalHashAgg) exec.Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
return b.buildHashAggFromChildExec(src, v)
}
func (b *executorBuilder) buildHashAggFromChildExec(childExec exec.Executor, v *plannercore.PhysicalHashAgg) *aggregate.HashAggExec {
sessionVars := b.ctx.GetSessionVars()
e := &aggregate.HashAggExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
Sc: sessionVars.StmtCtx,
PartialAggFuncs: make([]aggfuncs.AggFunc, 0, len(v.AggFuncs)),
GroupByItems: v.GroupByItems,
}
// We take `create table t(a int, b int);` as example.
//
// 1. If all the aggregation functions are FIRST_ROW, we do not need to set the defaultVal for them:
// e.g.
// mysql> select distinct a, b from t;
// 0 rows in set (0.00 sec)
//
// 2. If there exists group by items, we do not need to set the defaultVal for them either:
// e.g.
// mysql> select avg(a) from t group by b;
// Empty set (0.00 sec)
//
// mysql> select avg(a) from t group by a;
// +--------+
// | avg(a) |
// +--------+
// | NULL |
// +--------+
// 1 row in set (0.00 sec)
if len(v.GroupByItems) != 0 || aggregation.IsAllFirstRow(v.AggFuncs) {
e.DefaultVal = nil
} else {
if v.IsFinalAgg() {
e.DefaultVal = e.AllocPool.Alloc(exec.RetTypes(e), 1, 1)
}
}
for _, aggDesc := range v.AggFuncs {
if aggDesc.HasDistinct || len(aggDesc.OrderByItems) > 0 {
e.IsUnparallelExec = true
}
}
// When we set both tidb_hashagg_final_concurrency and tidb_hashagg_partial_concurrency to 1,
// we do not need to parallelly execute hash agg,
// and this action can be a workaround when meeting some unexpected situation using parallelExec.
if finalCon, partialCon := sessionVars.HashAggFinalConcurrency(), sessionVars.HashAggPartialConcurrency(); finalCon <= 0 || partialCon <= 0 || finalCon == 1 && partialCon == 1 {
e.IsUnparallelExec = true
}
partialOrdinal := 0
exprCtx := b.ctx.GetExprCtx()
for i, aggDesc := range v.AggFuncs {
if e.IsUnparallelExec {
e.PartialAggFuncs = append(e.PartialAggFuncs, aggfuncs.Build(exprCtx, aggDesc, i))
} else {
ordinal := []int{partialOrdinal}
partialOrdinal++
if aggDesc.Name == ast.AggFuncAvg {
ordinal = append(ordinal, partialOrdinal+1)
partialOrdinal++
}
partialAggDesc, finalDesc := aggDesc.Split(ordinal)
partialAggFunc := aggfuncs.Build(exprCtx, partialAggDesc, i)
finalAggFunc := aggfuncs.Build(exprCtx, finalDesc, i)
e.PartialAggFuncs = append(e.PartialAggFuncs, partialAggFunc)
e.FinalAggFuncs = append(e.FinalAggFuncs, finalAggFunc)
if partialAggDesc.Name == ast.AggFuncGroupConcat {
// For group_concat, finalAggFunc and partialAggFunc need shared `truncate` flag to do duplicate.
finalAggFunc.(interface{ SetTruncated(t *int32) }).SetTruncated(
partialAggFunc.(interface{ GetTruncated() *int32 }).GetTruncated(),
)
}
}
if e.DefaultVal != nil {
value := aggDesc.GetDefaultValue()
e.DefaultVal.AppendDatum(i, &value)
}
}
executor_metrics.ExecutorCounterHashAggExec.Inc()
return e
}
func (b *executorBuilder) buildStreamAgg(v *plannercore.PhysicalStreamAgg) exec.Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
return b.buildStreamAggFromChildExec(src, v)
}
func (b *executorBuilder) buildStreamAggFromChildExec(childExec exec.Executor, v *plannercore.PhysicalStreamAgg) *aggregate.StreamAggExec {
exprCtx := b.ctx.GetExprCtx()
e := &aggregate.StreamAggExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
GroupChecker: vecgroupchecker.NewVecGroupChecker(exprCtx.GetEvalCtx(), b.ctx.GetSessionVars().EnableVectorizedExpression, v.GroupByItems),
AggFuncs: make([]aggfuncs.AggFunc, 0, len(v.AggFuncs)),
}
if len(v.GroupByItems) != 0 || aggregation.IsAllFirstRow(v.AggFuncs) {
e.DefaultVal = nil
} else {
// Only do this for final agg, see issue #35295, #30923
if v.IsFinalAgg() {
e.DefaultVal = e.AllocPool.Alloc(exec.RetTypes(e), 1, 1)
}
}
for i, aggDesc := range v.AggFuncs {
aggFunc := aggfuncs.Build(exprCtx, aggDesc, i)
e.AggFuncs = append(e.AggFuncs, aggFunc)
if e.DefaultVal != nil {
value := aggDesc.GetDefaultValue()
e.DefaultVal.AppendDatum(i, &value)
}
}
executor_metrics.ExecutorStreamAggExec.Inc()
return e
}
func (b *executorBuilder) buildSelection(v *plannercore.PhysicalSelection) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &SelectionExec{
selectionExecutorContext: newSelectionExecutorContext(b.ctx),
BaseExecutorV2: exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), v.Schema(), v.ID(), childExec),
filters: v.Conditions,
}
return e
}
func (b *executorBuilder) buildExpand(v *plannercore.PhysicalExpand) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
levelES := make([]*expression.EvaluatorSuite, 0, len(v.LevelExprs))
for _, exprs := range v.LevelExprs {
// column evaluator can always refer others inside expand.
// grouping column's nullability change should be seen as a new column projecting.
// since input inside expand logic should be targeted and reused for N times.
// column evaluator's swapping columns logic will pollute the input data.
levelE := expression.NewEvaluatorSuite(exprs, true)
levelES = append(levelES, levelE)
}
e := &ExpandExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
numWorkers: int64(b.ctx.GetSessionVars().ProjectionConcurrency()),
levelEvaluatorSuits: levelES,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(b.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
// Use un-parallel projection for query that write on memdb to avoid data race.
// See also https://github.com/pingcap/tidb/issues/26832
if b.inUpdateStmt || b.inDeleteStmt || b.inInsertStmt || b.hasLock {
e.numWorkers = 0
}
return e
}
func (b *executorBuilder) buildProjection(v *plannercore.PhysicalProjection) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &ProjectionExec{
projectionExecutorContext: newProjectionExecutorContext(b.ctx),
BaseExecutorV2: exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), v.Schema(), v.ID(), childExec),
numWorkers: int64(b.ctx.GetSessionVars().ProjectionConcurrency()),
evaluatorSuit: expression.NewEvaluatorSuite(v.Exprs, v.AvoidColumnEvaluator),
calculateNoDelay: v.CalculateNoDelay,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(b.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
// Use un-parallel projection for query that write on memdb to avoid data race.
// See also https://github.com/pingcap/tidb/issues/26832
if b.inUpdateStmt || b.inDeleteStmt || b.inInsertStmt || b.hasLock {
e.numWorkers = 0
}
return e
}
func (b *executorBuilder) buildTableDual(v *plannercore.PhysicalTableDual) exec.Executor {
if v.RowCount != 0 && v.RowCount != 1 {
b.err = errors.Errorf("buildTableDual failed, invalid row count for dual table: %v", v.RowCount)
return nil
}
base := exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), v.Schema(), v.ID())
base.SetInitCap(v.RowCount)
e := &TableDualExec{
BaseExecutorV2: base,
numDualRows: v.RowCount,
}
return e
}
// `getSnapshotTS` returns for-update-ts if in insert/update/delete/lock statement otherwise the isolation read ts
// Please notice that in RC isolation, the above two ts are the same
func (b *executorBuilder) getSnapshotTS() (ts uint64, err error) {
if b.forDataReaderBuilder {
return b.dataReaderTS, nil
}
txnManager := sessiontxn.GetTxnManager(b.ctx)
if b.inInsertStmt || b.inUpdateStmt || b.inDeleteStmt || b.inSelectLockStmt {
return txnManager.GetStmtForUpdateTS()
}
return txnManager.GetStmtReadTS()
}
// getSnapshot get the appropriate snapshot from txnManager and set
// the relevant snapshot options before return.
func (b *executorBuilder) getSnapshot() (kv.Snapshot, error) {
var snapshot kv.Snapshot
var err error
txnManager := sessiontxn.GetTxnManager(b.ctx)
if b.inInsertStmt || b.inUpdateStmt || b.inDeleteStmt || b.inSelectLockStmt {
snapshot, err = txnManager.GetSnapshotWithStmtForUpdateTS()
} else {
snapshot, err = txnManager.GetSnapshotWithStmtReadTS()
}
if err != nil {
return nil, err
}
sessVars := b.ctx.GetSessionVars()
replicaReadType := sessVars.GetReplicaRead()
snapshot.SetOption(kv.ReadReplicaScope, b.readReplicaScope)
snapshot.SetOption(kv.TaskID, sessVars.StmtCtx.TaskID)
snapshot.SetOption(kv.TiKVClientReadTimeout, sessVars.GetTiKVClientReadTimeout())
snapshot.SetOption(kv.ResourceGroupName, sessVars.StmtCtx.ResourceGroupName)
snapshot.SetOption(kv.ExplicitRequestSourceType, sessVars.ExplicitRequestSourceType)
if replicaReadType.IsClosestRead() && b.readReplicaScope != kv.GlobalTxnScope {
snapshot.SetOption(kv.MatchStoreLabels, []*metapb.StoreLabel{
{
Key: placement.DCLabelKey,
Value: b.readReplicaScope,
},
})
}
return snapshot, nil
}
func (b *executorBuilder) buildMemTable(v *plannercore.PhysicalMemTable) exec.Executor {
switch v.DBName.L {
case util.MetricSchemaName.L:
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricTableExtractor),
},
}
case util.InformationSchemaName.L:
switch v.Table.Name.L {
case strings.ToLower(infoschema.TableClusterConfig):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterConfigRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
},
}
case strings.ToLower(infoschema.TableClusterLoad):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_LoadInfo,
},
}
case strings.ToLower(infoschema.TableClusterHardware):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_HardwareInfo,
},
}
case strings.ToLower(infoschema.TableClusterSystemInfo):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_SystemInfo,
},
}
case strings.ToLower(infoschema.TableClusterLog):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterLogRetriever{
extractor: v.Extractor.(*plannercore.ClusterLogTableExtractor),
},
}
case strings.ToLower(infoschema.TableTiDBHotRegionsHistory):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &hotRegionsHistoryRetriver{
extractor: v.Extractor.(*plannercore.HotRegionsHistoryTableExtractor),
},
}
case strings.ToLower(infoschema.TableInspectionResult):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionResultRetriever{
extractor: v.Extractor.(*plannercore.InspectionResultTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableInspectionSummary):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionSummaryRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.InspectionSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableInspectionRules):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionRuleRetriever{
extractor: v.Extractor.(*plannercore.InspectionRuleTableExtractor),
},
}
case strings.ToLower(infoschema.TableMetricSummary):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricsSummaryRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableMetricSummaryByLabel):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricsSummaryByLabelRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableTiKVRegionPeers):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tikvRegionPeersRetriever{
extractor: v.Extractor.(*plannercore.TikvRegionPeersExtractor),
},
}
case strings.ToLower(infoschema.TableSchemata),
strings.ToLower(infoschema.TableStatistics),
strings.ToLower(infoschema.TableTiDBIndexes),
strings.ToLower(infoschema.TableViews),
strings.ToLower(infoschema.TableTables),
strings.ToLower(infoschema.TableReferConst),
strings.ToLower(infoschema.TableSequences),
strings.ToLower(infoschema.TablePartitions),
strings.ToLower(infoschema.TableEngines),
strings.ToLower(infoschema.TableCollations),
strings.ToLower(infoschema.TableAnalyzeStatus),
strings.ToLower(infoschema.TableClusterInfo),
strings.ToLower(infoschema.TableProfiling),
strings.ToLower(infoschema.TableCharacterSets),
strings.ToLower(infoschema.TableKeyColumn),
strings.ToLower(infoschema.TableUserPrivileges),
strings.ToLower(infoschema.TableMetricTables),
strings.ToLower(infoschema.TableCollationCharacterSetApplicability),
strings.ToLower(infoschema.TableProcesslist),
strings.ToLower(infoschema.ClusterTableProcesslist),
strings.ToLower(infoschema.TableTiKVRegionStatus),
strings.ToLower(infoschema.TableTiDBHotRegions),
strings.ToLower(infoschema.TableSessionVar),
strings.ToLower(infoschema.TableConstraints),
strings.ToLower(infoschema.TableTiFlashReplica),
strings.ToLower(infoschema.TableTiDBServersInfo),
strings.ToLower(infoschema.TableTiKVStoreStatus),
strings.ToLower(infoschema.TableClientErrorsSummaryGlobal),
strings.ToLower(infoschema.TableClientErrorsSummaryByUser),
strings.ToLower(infoschema.TableClientErrorsSummaryByHost),
strings.ToLower(infoschema.TableAttributes),
strings.ToLower(infoschema.TablePlacementPolicies),
strings.ToLower(infoschema.TableTrxSummary),
strings.ToLower(infoschema.TableVariablesInfo),
strings.ToLower(infoschema.TableUserAttributes),
strings.ToLower(infoschema.ClusterTableTrxSummary),
strings.ToLower(infoschema.TableMemoryUsage),
strings.ToLower(infoschema.TableMemoryUsageOpsHistory),
strings.ToLower(infoschema.ClusterTableMemoryUsage),
strings.ToLower(infoschema.ClusterTableMemoryUsageOpsHistory),
strings.ToLower(infoschema.TableResourceGroups),
strings.ToLower(infoschema.TableRunawayWatches),
strings.ToLower(infoschema.TableCheckConstraints),
strings.ToLower(infoschema.TableTiDBCheckConstraints),
strings.ToLower(infoschema.TableKeywords),
strings.ToLower(infoschema.TableTiDBIndexUsage),
strings.ToLower(infoschema.ClusterTableTiDBIndexUsage):
memTracker := memory.NewTracker(v.ID(), -1)
memTracker.AttachTo(b.ctx.GetSessionVars().StmtCtx.MemTracker)
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &memtableRetriever{
table: v.Table,
columns: v.Columns,
extractor: v.Extractor,
memTracker: memTracker,
},
}
case strings.ToLower(infoschema.TableTiDBTrx),
strings.ToLower(infoschema.ClusterTableTiDBTrx):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tidbTrxTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableDataLockWaits):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &dataLockWaitsTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableDeadlocks),
strings.ToLower(infoschema.ClusterTableDeadlocks):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &deadlocksTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableStatementsSummary),
strings.ToLower(infoschema.TableStatementsSummaryHistory),
strings.ToLower(infoschema.TableStatementsSummaryEvicted),
strings.ToLower(infoschema.ClusterTableStatementsSummary),
strings.ToLower(infoschema.ClusterTableStatementsSummaryHistory),
strings.ToLower(infoschema.ClusterTableStatementsSummaryEvicted):
var extractor *plannercore.StatementsSummaryExtractor
if v.Extractor != nil {
extractor = v.Extractor.(*plannercore.StatementsSummaryExtractor)
}
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: buildStmtSummaryRetriever(v.Table, v.Columns, extractor),
}
case strings.ToLower(infoschema.TableColumns):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &hugeMemTableRetriever{
table: v.Table,
columns: v.Columns,
extractor: v.Extractor.(*plannercore.ColumnsTableExtractor),
viewSchemaMap: make(map[int64]*expression.Schema),
viewOutputNamesMap: make(map[int64]types.NameSlice),
},
}
case strings.ToLower(infoschema.TableSlowQuery), strings.ToLower(infoschema.ClusterTableSlowLog):
memTracker := memory.NewTracker(v.ID(), -1)
memTracker.AttachTo(b.ctx.GetSessionVars().StmtCtx.MemTracker)
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &slowQueryRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.SlowQueryExtractor),
memTracker: memTracker,
},
}
case strings.ToLower(infoschema.TableStorageStats):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tableStorageStatsRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.TableStorageStatsExtractor),
},
}
case strings.ToLower(infoschema.TableDDLJobs):
loc := b.ctx.GetSessionVars().Location()
ddlJobRetriever := DDLJobRetriever{TZLoc: loc}
return &DDLJobsReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
DDLJobRetriever: ddlJobRetriever,
}
case strings.ToLower(infoschema.TableTiFlashTables),
strings.ToLower(infoschema.TableTiFlashSegments):
return &MemTableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &TiFlashSystemTableRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.TiFlashSystemTableExtractor),
},
}
}
}
tb, _ := b.is.TableByID(context.Background(), v.Table.ID)
return &TableScanExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
t: tb,
columns: v.Columns,
}
}
func (b *executorBuilder) buildSort(v *plannercore.PhysicalSort) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sortExec := sortexec.SortExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
ByItems: v.ByItems,
ExecSchema: v.Schema(),
}
executor_metrics.ExecutorCounterSortExec.Inc()
return &sortExec
}
func (b *executorBuilder) buildTopN(v *plannercore.PhysicalTopN) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sortExec := sortexec.SortExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
ByItems: v.ByItems,
ExecSchema: v.Schema(),
}
executor_metrics.ExecutorCounterTopNExec.Inc()
return &sortexec.TopNExec{
SortExec: sortExec,
Limit: &plannercore.PhysicalLimit{Count: v.Count, Offset: v.Offset},
Concurrency: b.ctx.GetSessionVars().Concurrency.ExecutorConcurrency,
}
}
func (b *executorBuilder) buildApply(v *plannercore.PhysicalApply) exec.Executor {
var (
innerPlan base.PhysicalPlan
outerPlan base.PhysicalPlan
)
if v.InnerChildIdx == 0 {
innerPlan = v.Children()[0]
outerPlan = v.Children()[1]
} else {
innerPlan = v.Children()[1]
outerPlan = v.Children()[0]
}
v.OuterSchema = coreusage.ExtractCorColumnsBySchema4PhysicalPlan(innerPlan, outerPlan.Schema())
leftChild := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightChild := b.build(v.Children()[1])
if b.err != nil {
return nil
}
// test is in the explain/naaj.test#part5.
// although we prepared the NAEqualConditions, but for Apply mode, we still need move it to other conditions like eq condition did here.
otherConditions := append(expression.ScalarFuncs2Exprs(v.EqualConditions), expression.ScalarFuncs2Exprs(v.NAEqualConditions)...)
otherConditions = append(otherConditions, v.OtherConditions...)
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, v.Children()[v.InnerChildIdx].Schema().Len())
}
outerExec, innerExec := leftChild, rightChild
outerFilter, innerFilter := v.LeftConditions, v.RightConditions
if v.InnerChildIdx == 0 {
outerExec, innerExec = rightChild, leftChild
outerFilter, innerFilter = v.RightConditions, v.LeftConditions
}
tupleJoiner := join.NewJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0,
defaultValues, otherConditions, exec.RetTypes(leftChild), exec.RetTypes(rightChild), nil, false)
serialExec := &join.NestedLoopApplyExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec, innerExec),
InnerExec: innerExec,
OuterExec: outerExec,
OuterFilter: outerFilter,
InnerFilter: innerFilter,
Outer: v.JoinType != logicalop.InnerJoin,
Joiner: tupleJoiner,
OuterSchema: v.OuterSchema,
Sctx: b.ctx,
CanUseCache: v.CanUseCache,
}
executor_metrics.ExecutorCounterNestedLoopApplyExec.Inc()
// try parallel mode
if v.Concurrency > 1 {
innerExecs := make([]exec.Executor, 0, v.Concurrency)
innerFilters := make([]expression.CNFExprs, 0, v.Concurrency)
corCols := make([][]*expression.CorrelatedColumn, 0, v.Concurrency)
joiners := make([]join.Joiner, 0, v.Concurrency)
for i := 0; i < v.Concurrency; i++ {
clonedInnerPlan, err := plannercore.SafeClone(v.SCtx(), innerPlan)
if err != nil {
b.err = nil
return serialExec
}
corCol := coreusage.ExtractCorColumnsBySchema4PhysicalPlan(clonedInnerPlan, outerPlan.Schema())
clonedInnerExec := b.build(clonedInnerPlan)
if b.err != nil {
b.err = nil
return serialExec
}
innerExecs = append(innerExecs, clonedInnerExec)
corCols = append(corCols, corCol)
innerFilters = append(innerFilters, innerFilter.Clone())
joiners = append(joiners, join.NewJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0,
defaultValues, otherConditions, exec.RetTypes(leftChild), exec.RetTypes(rightChild), nil, false))
}
allExecs := append([]exec.Executor{outerExec}, innerExecs...)
return &ParallelNestedLoopApplyExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), allExecs...),
innerExecs: innerExecs,
outerExec: outerExec,
outerFilter: outerFilter,
innerFilter: innerFilters,
outer: v.JoinType != logicalop.InnerJoin,
joiners: joiners,
corCols: corCols,
concurrency: v.Concurrency,
useCache: v.CanUseCache,
}
}
return serialExec
}
func (b *executorBuilder) buildMaxOneRow(v *plannercore.PhysicalMaxOneRow) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
base.SetInitCap(2)
base.SetMaxChunkSize(2)
e := &MaxOneRowExec{BaseExecutor: base}
return e
}
func (b *executorBuilder) buildUnionAll(v *plannercore.PhysicalUnionAll) exec.Executor {
childExecs := make([]exec.Executor, len(v.Children()))
for i, child := range v.Children() {
childExecs[i] = b.build(child)
if b.err != nil {
return nil
}
}
e := &unionexec.UnionExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExecs...),
Concurrency: b.ctx.GetSessionVars().UnionConcurrency(),
}
return e
}
func buildHandleColsForSplit(sc *stmtctx.StatementContext, tbInfo *model.TableInfo) plannerutil.HandleCols {
if tbInfo.IsCommonHandle {
primaryIdx := tables.FindPrimaryIndex(tbInfo)
tableCols := make([]*expression.Column, len(tbInfo.Columns))
for i, col := range tbInfo.Columns {
tableCols[i] = &expression.Column{
ID: col.ID,
RetType: &col.FieldType,
}
}
for i, pkCol := range primaryIdx.Columns {
tableCols[pkCol.Offset].Index = i
}
return plannerutil.NewCommonHandleCols(sc, tbInfo, primaryIdx, tableCols)
}
intCol := &expression.Column{
RetType: types.NewFieldType(mysql.TypeLonglong),
}
return plannerutil.NewIntHandleCols(intCol)
}
func (b *executorBuilder) buildSplitRegion(v *plannercore.SplitRegion) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
base.SetInitCap(1)
base.SetMaxChunkSize(1)
if v.IndexInfo != nil {
return &SplitIndexRegionExec{
BaseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
indexInfo: v.IndexInfo,
lower: v.Lower,
upper: v.Upper,
num: v.Num,
valueLists: v.ValueLists,
}
}
handleCols := buildHandleColsForSplit(b.ctx.GetSessionVars().StmtCtx, v.TableInfo)
if len(v.ValueLists) > 0 {
return &SplitTableRegionExec{
BaseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
handleCols: handleCols,
valueLists: v.ValueLists,
}
}
return &SplitTableRegionExec{
BaseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
handleCols: handleCols,
lower: v.Lower,
upper: v.Upper,
num: v.Num,
}
}
func (b *executorBuilder) buildUpdate(v *plannercore.Update) exec.Executor {
b.inUpdateStmt = true
tblID2table := make(map[int64]table.Table, len(v.TblColPosInfos))
multiUpdateOnSameTable := make(map[int64]bool)
for _, info := range v.TblColPosInfos {
tbl, _ := b.is.TableByID(context.Background(), info.TblID)
if _, ok := tblID2table[info.TblID]; ok {
multiUpdateOnSameTable[info.TblID] = true
}
tblID2table[info.TblID] = tbl
if len(v.PartitionedTable) > 0 {
// The v.PartitionedTable collects the partitioned table.
// Replace the original table with the partitioned table to support partition selection.
// e.g. update t partition (p0, p1), the new values are not belong to the given set p0, p1
// Using the table in v.PartitionedTable returns a proper error, while using the original table can't.
for _, p := range v.PartitionedTable {
if info.TblID == p.Meta().ID {
tblID2table[info.TblID] = p
}
}
}
}
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
selExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), selExec)
base.SetInitCap(chunk.ZeroCapacity)
var assignFlag []int
assignFlag, b.err = getAssignFlag(b.ctx, v, selExec.Schema().Len())
if b.err != nil {
return nil
}
// should use the new tblID2table, since the update's schema may have been changed in Execstmt.
b.err = plannercore.CheckUpdateList(assignFlag, v, tblID2table)
if b.err != nil {
return nil
}
updateExec := &UpdateExec{
BaseExecutor: base,
OrderedList: v.OrderedList,
allAssignmentsAreConstant: v.AllAssignmentsAreConstant,
virtualAssignmentsOffset: v.VirtualAssignmentsOffset,
multiUpdateOnSameTable: multiUpdateOnSameTable,
tblID2table: tblID2table,
tblColPosInfos: v.TblColPosInfos,
assignFlag: assignFlag,
IgnoreError: v.IgnoreError,
}
updateExec.fkChecks, b.err = buildTblID2FKCheckExecs(b.ctx, tblID2table, v.FKChecks)
if b.err != nil {
return nil
}
updateExec.fkCascades, b.err = b.buildTblID2FKCascadeExecs(tblID2table, v.FKCascades)
if b.err != nil {
return nil
}
return updateExec
}
func getAssignFlag(ctx sessionctx.Context, v *plannercore.Update, schemaLen int) ([]int, error) {
assignFlag := make([]int, schemaLen)
for i := range assignFlag {
assignFlag[i] = -1
}
for _, assign := range v.OrderedList {
if !ctx.GetSessionVars().AllowWriteRowID && assign.Col.ID == model.ExtraHandleID {
return nil, errors.Errorf("insert, update and replace statements for _tidb_rowid are not supported")
}
tblIdx, found := v.TblColPosInfos.FindTblIdx(assign.Col.Index)
if found {
colIdx := assign.Col.Index
assignFlag[colIdx] = tblIdx
}
}
return assignFlag, nil
}
func (b *executorBuilder) buildDelete(v *plannercore.Delete) exec.Executor {
b.inDeleteStmt = true
tblID2table := make(map[int64]table.Table, len(v.TblColPosInfos))
for _, info := range v.TblColPosInfos {
tblID2table[info.TblID], _ = b.is.TableByID(context.Background(), info.TblID)
}
if b.err = b.updateForUpdateTS(); b.err != nil {
return nil
}
selExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), selExec)
base.SetInitCap(chunk.ZeroCapacity)
deleteExec := &DeleteExec{
BaseExecutor: base,
tblID2Table: tblID2table,
IsMultiTable: v.IsMultiTable,
tblColPosInfos: v.TblColPosInfos,
}
deleteExec.fkChecks, b.err = buildTblID2FKCheckExecs(b.ctx, tblID2table, v.FKChecks)
if b.err != nil {
return nil
}
deleteExec.fkCascades, b.err = b.buildTblID2FKCascadeExecs(tblID2table, v.FKCascades)
if b.err != nil {
return nil
}
return deleteExec
}
func (b *executorBuilder) updateForUpdateTS() error {
// GetStmtForUpdateTS will auto update the for update ts if it is necessary
_, err := sessiontxn.GetTxnManager(b.ctx).GetStmtForUpdateTS()
return err
}
func (b *executorBuilder) buildAnalyzeIndexPushdown(task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64, autoAnalyze string) *analyzeTask {
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: autoAnalyze + "analyze index " + task.IndexInfo.Name.O}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectAnalyzeSnapshot", func(val failpoint.Value) {
startTS = uint64(val.(int))
})
concurrency := adaptiveAnlayzeDistSQLConcurrency(context.Background(), b.ctx)
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
concurrency: concurrency,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeIndex,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
job: job,
snapshot: startTS,
}
e := &AnalyzeIndexExec{
baseAnalyzeExec: base,
isCommonHandle: task.TblInfo.IsCommonHandle,
idxInfo: task.IndexInfo,
}
topNSize := new(int32)
*topNSize = int32(opts[ast.AnalyzeOptNumTopN])
statsVersion := new(int32)
*statsVersion = int32(task.StatsVersion)
e.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
NumColumns: int32(len(task.IndexInfo.Columns)),
TopNSize: topNSize,
Version: statsVersion,
SketchSize: statistics.MaxSketchSize,
}
if e.isCommonHandle && e.idxInfo.Primary {
e.analyzePB.Tp = tipb.AnalyzeType_TypeCommonHandle
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.IdxReq.CmsketchDepth = &depth
e.analyzePB.IdxReq.CmsketchWidth = &width
return &analyzeTask{taskType: idxTask, idxExec: e, job: job}
}
func (b *executorBuilder) buildAnalyzeSamplingPushdown(
task plannercore.AnalyzeColumnsTask,
opts map[ast.AnalyzeOptionType]uint64,
schemaForVirtualColEval *expression.Schema,
) *analyzeTask {
if task.V2Options != nil {
opts = task.V2Options.FilledOpts
}
availableIdx := make([]*model.IndexInfo, 0, len(task.Indexes))
colGroups := make([]*tipb.AnalyzeColumnGroup, 0, len(task.Indexes))
if len(task.Indexes) > 0 {
for _, idx := range task.Indexes {
availableIdx = append(availableIdx, idx)
colGroup := &tipb.AnalyzeColumnGroup{
ColumnOffsets: make([]int64, 0, len(idx.Columns)),
}
for _, col := range idx.Columns {
colGroup.ColumnOffsets = append(colGroup.ColumnOffsets, int64(col.Offset))
}
colGroups = append(colGroups, colGroup)
}
}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectAnalyzeSnapshot", func(val failpoint.Value) {
startTS = uint64(val.(int))
})
statsHandle := domain.GetDomain(b.ctx).StatsHandle()
count, modifyCount, err := statsHandle.StatsMetaCountAndModifyCount(task.TableID.GetStatisticsID())
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectBaseCount", func(val failpoint.Value) {
count = int64(val.(int))
})
failpoint.Inject("injectBaseModifyCount", func(val failpoint.Value) {
modifyCount = int64(val.(int))
})
sampleRate := new(float64)
var sampleRateReason string
if opts[ast.AnalyzeOptNumSamples] == 0 {
*sampleRate = math.Float64frombits(opts[ast.AnalyzeOptSampleRate])
if *sampleRate < 0 {
*sampleRate, sampleRateReason = b.getAdjustedSampleRate(task)
if task.PartitionName != "" {
sc.AppendNote(errors.NewNoStackErrorf(
`Analyze use auto adjusted sample rate %f for table %s.%s's partition %s, reason to use this rate is "%s"`,
*sampleRate,
task.DBName,
task.TableName,
task.PartitionName,
sampleRateReason,
))
} else {
sc.AppendNote(errors.NewNoStackErrorf(
`Analyze use auto adjusted sample rate %f for table %s.%s, reason to use this rate is "%s"`,
*sampleRate,
task.DBName,
task.TableName,
sampleRateReason,
))
}
}
}
job := &statistics.AnalyzeJob{
DBName: task.DBName,
TableName: task.TableName,
PartitionName: task.PartitionName,
SampleRateReason: sampleRateReason,
}
concurrency := adaptiveAnlayzeDistSQLConcurrency(context.Background(), b.ctx)
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
concurrency: concurrency,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeFullSampling,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
job: job,
snapshot: startTS,
}
e := &AnalyzeColumnsExec{
baseAnalyzeExec: base,
tableInfo: task.TblInfo,
colsInfo: task.ColsInfo,
handleCols: task.HandleCols,
indexes: availableIdx,
AnalyzeInfo: task.AnalyzeInfo,
schemaForVirtualColEval: schemaForVirtualColEval,
baseCount: count,
baseModifyCnt: modifyCount,
}
e.analyzePB.ColReq = &tipb.AnalyzeColumnsReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
SampleSize: int64(opts[ast.AnalyzeOptNumSamples]),
SampleRate: sampleRate,
SketchSize: statistics.MaxSketchSize,
ColumnsInfo: util.ColumnsToProto(task.ColsInfo, task.TblInfo.PKIsHandle, false),
ColumnGroups: colGroups,
}
if task.TblInfo != nil {
e.analyzePB.ColReq.PrimaryColumnIds = tables.TryGetCommonPkColumnIds(task.TblInfo)
if task.TblInfo.IsCommonHandle {
e.analyzePB.ColReq.PrimaryPrefixColumnIds = tables.PrimaryPrefixColumnIDs(task.TblInfo)
}
}
b.err = tables.SetPBColumnsDefaultValue(b.ctx.GetExprCtx(), e.analyzePB.ColReq.ColumnsInfo, task.ColsInfo)
return &analyzeTask{taskType: colTask, colExec: e, job: job}
}
// getAdjustedSampleRate calculate the sample rate by the table size. If we cannot get the table size. We use the 0.001 as the default sample rate.
// From the paper "Random sampling for histogram construction: how much is enough?"'s Corollary 1 to Theorem 5,
// for a table size n, histogram size k, maximum relative error in bin size f, and error probability gamma,
// the minimum random sample size is
//
// r = 4 * k * ln(2*n/gamma) / f^2
//
// If we take f = 0.5, gamma = 0.01, n =1e6, we would got r = 305.82* k.
// Since the there's log function over the table size n, the r grows slowly when the n increases.
// If we take n = 1e12, a 300*k sample still gives <= 0.66 bin size error with probability 0.99.
// So if we don't consider the top-n values, we can keep the sample size at 300*256.
// But we may take some top-n before building the histogram, so we increase the sample a little.
func (b *executorBuilder) getAdjustedSampleRate(task plannercore.AnalyzeColumnsTask) (sampleRate float64, reason string) {
statsHandle := domain.GetDomain(b.ctx).StatsHandle()
defaultRate := 0.001
if statsHandle == nil {
return defaultRate, fmt.Sprintf("statsHandler is nil, use the default-rate=%v", defaultRate)
}
var statsTbl *statistics.Table
tid := task.TableID.GetStatisticsID()
if tid == task.TblInfo.ID {
statsTbl = statsHandle.GetTableStats(task.TblInfo)
} else {
statsTbl = statsHandle.GetPartitionStats(task.TblInfo, tid)
}
approxiCount, hasPD := b.getApproximateTableCountFromStorage(tid, task)
// If there's no stats meta and no pd, return the default rate.
if statsTbl == nil && !hasPD {
return defaultRate, fmt.Sprintf("TiDB cannot get the row count of the table, use the default-rate=%v", defaultRate)
}
// If the count in stats_meta is still 0 and there's no information from pd side, we scan all rows.
if statsTbl.RealtimeCount == 0 && !hasPD {
return 1, "TiDB assumes that the table is empty and cannot get row count from PD, use sample-rate=1"
}
// we have issue https://github.com/pingcap/tidb/issues/29216.
// To do a workaround for this issue, we check the approxiCount from the pd side to do a comparison.
// If the count from the stats_meta is extremely smaller than the approximate count from the pd,
// we think that we meet this issue and use the approximate count to calculate the sample rate.
if float64(statsTbl.RealtimeCount*5) < approxiCount {
// Confirmed by TiKV side, the experience error rate of the approximate count is about 20%.
// So we increase the number to 150000 to reduce this error rate.
sampleRate = math.Min(1, 150000/approxiCount)
return sampleRate, fmt.Sprintf("Row count in stats_meta is much smaller compared with the row count got by PD, use min(1, 15000/%v) as the sample-rate=%v", approxiCount, sampleRate)
}
// If we don't go into the above if branch and we still detect the count is zero. Return 1 to prevent the dividing zero.
if statsTbl.RealtimeCount == 0 {
return 1, "TiDB assumes that the table is empty, use sample-rate=1"
}
// We are expected to scan about 100000 rows or so.
// Since there's tiny error rate around the count from the stats meta, we use 110000 to get a little big result
sampleRate = math.Min(1, config.DefRowsForSampleRate/float64(statsTbl.RealtimeCount))
return sampleRate, fmt.Sprintf("use min(1, %v/%v) as the sample-rate=%v", config.DefRowsForSampleRate, statsTbl.RealtimeCount, sampleRate)
}
func (b *executorBuilder) getApproximateTableCountFromStorage(tid int64, task plannercore.AnalyzeColumnsTask) (float64, bool) {
return pdhelper.GlobalPDHelper.GetApproximateTableCountFromStorage(context.Background(), b.ctx, tid, task.DBName, task.TableName, task.PartitionName)
}
func (b *executorBuilder) buildAnalyzeColumnsPushdown(
task plannercore.AnalyzeColumnsTask,
opts map[ast.AnalyzeOptionType]uint64,
autoAnalyze string,
schemaForVirtualColEval *expression.Schema,
) *analyzeTask {
if task.StatsVersion == statistics.Version2 {
return b.buildAnalyzeSamplingPushdown(task, opts, schemaForVirtualColEval)
}
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: autoAnalyze + "analyze columns"}
cols := task.ColsInfo
if hasPkHist(task.HandleCols) {
colInfo := task.TblInfo.Columns[task.HandleCols.GetCol(0).Index]
cols = append([]*model.ColumnInfo{colInfo}, cols...)
} else if task.HandleCols != nil && !task.HandleCols.IsInt() {
cols = make([]*model.ColumnInfo, 0, len(task.ColsInfo)+task.HandleCols.NumCols())
for i := 0; i < task.HandleCols.NumCols(); i++ {
cols = append(cols, task.TblInfo.Columns[task.HandleCols.GetCol(i).Index])
}
cols = append(cols, task.ColsInfo...)
task.ColsInfo = cols
}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
failpoint.Inject("injectAnalyzeSnapshot", func(val failpoint.Value) {
startTS = uint64(val.(int))
})
concurrency := adaptiveAnlayzeDistSQLConcurrency(context.Background(), b.ctx)
base := baseAnalyzeExec{
ctx: b.ctx,
tableID: task.TableID,
concurrency: concurrency,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeColumn,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
job: job,
snapshot: startTS,
}
e := &AnalyzeColumnsExec{
baseAnalyzeExec: base,
colsInfo: task.ColsInfo,
handleCols: task.HandleCols,
AnalyzeInfo: task.AnalyzeInfo,
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.ColReq = &tipb.AnalyzeColumnsReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
SampleSize: MaxRegionSampleSize,
SketchSize: statistics.MaxSketchSize,
ColumnsInfo: util.ColumnsToProto(cols, task.HandleCols != nil && task.HandleCols.IsInt(), false),
CmsketchDepth: &depth,
CmsketchWidth: &width,
}
if task.TblInfo != nil {
e.analyzePB.ColReq.PrimaryColumnIds = tables.TryGetCommonPkColumnIds(task.TblInfo)
if task.TblInfo.IsCommonHandle {
e.analyzePB.ColReq.PrimaryPrefixColumnIds = tables.PrimaryPrefixColumnIDs(task.TblInfo)
}
}
if task.CommonHandleInfo != nil {
topNSize := new(int32)
*topNSize = int32(opts[ast.AnalyzeOptNumTopN])
statsVersion := new(int32)
*statsVersion = int32(task.StatsVersion)
e.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
NumColumns: int32(len(task.CommonHandleInfo.Columns)),
TopNSize: topNSize,
Version: statsVersion,
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.IdxReq.CmsketchDepth = &depth
e.analyzePB.IdxReq.CmsketchWidth = &width
e.analyzePB.IdxReq.SketchSize = statistics.MaxSketchSize
e.analyzePB.ColReq.PrimaryColumnIds = tables.TryGetCommonPkColumnIds(task.TblInfo)
e.analyzePB.Tp = tipb.AnalyzeType_TypeMixed
e.commonHandle = task.CommonHandleInfo
}
b.err = tables.SetPBColumnsDefaultValue(b.ctx.GetExprCtx(), e.analyzePB.ColReq.ColumnsInfo, cols)
return &analyzeTask{taskType: colTask, colExec: e, job: job}
}
func (b *executorBuilder) buildAnalyze(v *plannercore.Analyze) exec.Executor {
gp := domain.GetDomain(b.ctx).StatsHandle().GPool()
e := &AnalyzeExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
tasks: make([]*analyzeTask, 0, len(v.ColTasks)+len(v.IdxTasks)),
opts: v.Opts,
OptionsMap: v.OptionsMap,
wg: util.NewWaitGroupPool(gp),
gp: gp,
errExitCh: make(chan struct{}),
}
autoAnalyze := ""
if b.ctx.GetSessionVars().InRestrictedSQL {
autoAnalyze = "auto "
}
exprCtx := b.ctx.GetExprCtx()
for _, task := range v.ColTasks {
columns, _, err := expression.ColumnInfos2ColumnsAndNames(
exprCtx,
model.NewCIStr(task.AnalyzeInfo.DBName),
task.TblInfo.Name,
task.ColsInfo,
task.TblInfo,
)
if err != nil {
b.err = err
return nil
}
schema := expression.NewSchema(columns...)
e.tasks = append(e.tasks, b.buildAnalyzeColumnsPushdown(task, v.Opts, autoAnalyze, schema))
// Other functions may set b.err, so we need to check it here.
if b.err != nil {
return nil
}
}
for _, task := range v.IdxTasks {
e.tasks = append(e.tasks, b.buildAnalyzeIndexPushdown(task, v.Opts, autoAnalyze))
if b.err != nil {
return nil
}
}
return e
}
// markChildrenUsedCols compares each child with the output schema, and mark
// each column of the child is used by output or not.
func markChildrenUsedCols(outputCols []*expression.Column, childSchemas ...*expression.Schema) (childrenUsed [][]int) {
childrenUsed = make([][]int, 0, len(childSchemas))
markedOffsets := make(map[int]int)
// keep the original maybe reversed order.
for originalIdx, col := range outputCols {
markedOffsets[col.Index] = originalIdx
}
prefixLen := 0
type intPair struct {
first int
second int
}
// for example here.
// left child schema: [col11]
// right child schema: [col21, col22]
// output schema is [col11, col22, col21], if not records the original derived order after physical resolve index.
// the lused will be [0], the rused will be [0,1], while the actual order is dismissed, [1,0] is correct for rused.
for _, childSchema := range childSchemas {
usedIdxPair := make([]intPair, 0, len(childSchema.Columns))
for i := range childSchema.Columns {
if originalIdx, ok := markedOffsets[prefixLen+i]; ok {
usedIdxPair = append(usedIdxPair, intPair{first: originalIdx, second: i})
}
}
// sort the used idxes according their original indexes derived after resolveIndex.
slices.SortFunc(usedIdxPair, func(a, b intPair) int {
return cmp.Compare(a.first, b.first)
})
usedIdx := make([]int, 0, len(childSchema.Columns))
for _, one := range usedIdxPair {
usedIdx = append(usedIdx, one.second)
}
childrenUsed = append(childrenUsed, usedIdx)
prefixLen += childSchema.Len()
}
return
}
func (*executorBuilder) corColInDistPlan(plans []base.PhysicalPlan) bool {
for _, p := range plans {
switch x := p.(type) {
case *plannercore.PhysicalSelection:
for _, cond := range x.Conditions {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
case *plannercore.PhysicalProjection:
for _, expr := range x.Exprs {
if len(expression.ExtractCorColumns(expr)) > 0 {
return true
}
}
case *plannercore.PhysicalTopN:
for _, byItem := range x.ByItems {
if len(expression.ExtractCorColumns(byItem.Expr)) > 0 {
return true
}
}
case *plannercore.PhysicalTableScan:
for _, cond := range x.LateMaterializationFilterCondition {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
}
}
return false
}
// corColInAccess checks whether there's correlated column in access conditions.
func (*executorBuilder) corColInAccess(p base.PhysicalPlan) bool {
var access []expression.Expression
switch x := p.(type) {
case *plannercore.PhysicalTableScan:
access = x.AccessCondition
case *plannercore.PhysicalIndexScan:
access = x.AccessCondition
}
for _, cond := range access {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
return false
}
func (b *executorBuilder) newDataReaderBuilder(p base.PhysicalPlan) (*dataReaderBuilder, error) {
ts, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
builderForDataReader := *b
builderForDataReader.forDataReaderBuilder = true
builderForDataReader.dataReaderTS = ts
return &dataReaderBuilder{
plan: p,
executorBuilder: &builderForDataReader,
}, nil
}
func (b *executorBuilder) buildIndexLookUpJoin(v *plannercore.PhysicalIndexJoin) exec.Executor {
outerExec := b.build(v.Children()[1-v.InnerChildIdx])
if b.err != nil {
return nil
}
outerTypes := exec.RetTypes(outerExec)
innerPlan := v.Children()[v.InnerChildIdx]
innerTypes := make([]*types.FieldType, innerPlan.Schema().Len())
for i, col := range innerPlan.Schema().Columns {
innerTypes[i] = col.RetType.Clone()
// The `innerTypes` would be called for `Datum.ConvertTo` when converting the columns from outer table
// to build hash map or construct lookup keys. So we need to modify its flen otherwise there would be
// truncate error. See issue https://github.com/pingcap/tidb/issues/21232 for example.
if innerTypes[i].EvalType() == types.ETString {
innerTypes[i].SetFlen(types.UnspecifiedLength)
}
}
// Use the probe table's collation.
for i, col := range v.OuterHashKeys {
outerTypes[col.Index] = outerTypes[col.Index].Clone()
outerTypes[col.Index].SetCollate(innerTypes[v.InnerHashKeys[i].Index].GetCollate())
outerTypes[col.Index].SetFlag(col.RetType.GetFlag())
}
// We should use JoinKey to construct the type information using by hashing, instead of using the child's schema directly.
// When a hybrid type column is hashed multiple times, we need to distinguish what field types are used.
// For example, the condition `enum = int and enum = string`, we should use ETInt to hash the first column,
// and use ETString to hash the second column, although they may be the same column.
innerHashTypes := make([]*types.FieldType, len(v.InnerHashKeys))
outerHashTypes := make([]*types.FieldType, len(v.OuterHashKeys))
for i, col := range v.InnerHashKeys {
innerHashTypes[i] = innerTypes[col.Index].Clone()
innerHashTypes[i].SetFlag(col.RetType.GetFlag())
}
for i, col := range v.OuterHashKeys {
outerHashTypes[i] = outerTypes[col.Index].Clone()
outerHashTypes[i].SetFlag(col.RetType.GetFlag())
}
var (
outerFilter []expression.Expression
leftTypes, rightTypes []*types.FieldType
)
if v.InnerChildIdx == 0 {
leftTypes, rightTypes = innerTypes, outerTypes
outerFilter = v.RightConditions
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
leftTypes, rightTypes = outerTypes, innerTypes
outerFilter = v.LeftConditions
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, len(innerTypes))
}
hasPrefixCol := false
for _, l := range v.IdxColLens {
if l != types.UnspecifiedLength {
hasPrefixCol = true
break
}
}
readerBuilder, err := b.newDataReaderBuilder(innerPlan)
if err != nil {
b.err = err
return nil
}
e := &join.IndexLookUpJoin{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec),
OuterCtx: join.OuterCtx{
RowTypes: outerTypes,
HashTypes: outerHashTypes,
Filter: outerFilter,
},
InnerCtx: join.InnerCtx{
ReaderBuilder: readerBuilder,
RowTypes: innerTypes,
HashTypes: innerHashTypes,
ColLens: v.IdxColLens,
HasPrefixCol: hasPrefixCol,
},
WorkerWg: new(sync.WaitGroup),
IsOuterJoin: v.JoinType.IsOuterJoin(),
IndexRanges: v.Ranges,
KeyOff2IdxOff: v.KeyOff2IdxOff,
LastColHelper: v.CompareFilters,
Finished: &atomic.Value{},
}
colsFromChildren := v.Schema().Columns
if v.JoinType == logicalop.LeftOuterSemiJoin || v.JoinType == logicalop.AntiLeftOuterSemiJoin {
colsFromChildren = colsFromChildren[:len(colsFromChildren)-1]
}
childrenUsedSchema := markChildrenUsedCols(colsFromChildren, v.Children()[0].Schema(), v.Children()[1].Schema())
e.Joiner = join.NewJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, leftTypes, rightTypes, childrenUsedSchema, false)
outerKeyCols := make([]int, len(v.OuterJoinKeys))
for i := 0; i < len(v.OuterJoinKeys); i++ {
outerKeyCols[i] = v.OuterJoinKeys[i].Index
}
innerKeyCols := make([]int, len(v.InnerJoinKeys))
innerKeyColIDs := make([]int64, len(v.InnerJoinKeys))
keyCollators := make([]collate.Collator, 0, len(v.InnerJoinKeys))
for i := 0; i < len(v.InnerJoinKeys); i++ {
innerKeyCols[i] = v.InnerJoinKeys[i].Index
innerKeyColIDs[i] = v.InnerJoinKeys[i].ID
keyCollators = append(keyCollators, collate.GetCollator(v.InnerJoinKeys[i].RetType.GetCollate()))
}
e.OuterCtx.KeyCols = outerKeyCols
e.InnerCtx.KeyCols = innerKeyCols
e.InnerCtx.KeyColIDs = innerKeyColIDs
e.InnerCtx.KeyCollators = keyCollators
outerHashCols, innerHashCols := make([]int, len(v.OuterHashKeys)), make([]int, len(v.InnerHashKeys))
hashCollators := make([]collate.Collator, 0, len(v.InnerHashKeys))
for i := 0; i < len(v.OuterHashKeys); i++ {
outerHashCols[i] = v.OuterHashKeys[i].Index
}
for i := 0; i < len(v.InnerHashKeys); i++ {
innerHashCols[i] = v.InnerHashKeys[i].Index
hashCollators = append(hashCollators, collate.GetCollator(v.InnerHashKeys[i].RetType.GetCollate()))
}
e.OuterCtx.HashCols = outerHashCols
e.InnerCtx.HashCols = innerHashCols
e.InnerCtx.HashCollators = hashCollators
e.JoinResult = exec.TryNewCacheChunk(e)
executor_metrics.ExecutorCounterIndexLookUpJoin.Inc()
return e
}
func (b *executorBuilder) buildIndexLookUpMergeJoin(v *plannercore.PhysicalIndexMergeJoin) exec.Executor {
outerExec := b.build(v.Children()[1-v.InnerChildIdx])
if b.err != nil {
return nil
}
outerTypes := exec.RetTypes(outerExec)
innerPlan := v.Children()[v.InnerChildIdx]
innerTypes := make([]*types.FieldType, innerPlan.Schema().Len())
for i, col := range innerPlan.Schema().Columns {
innerTypes[i] = col.RetType.Clone()
// The `innerTypes` would be called for `Datum.ConvertTo` when converting the columns from outer table
// to build hash map or construct lookup keys. So we need to modify its flen otherwise there would be
// truncate error. See issue https://github.com/pingcap/tidb/issues/21232 for example.
if innerTypes[i].EvalType() == types.ETString {
innerTypes[i].SetFlen(types.UnspecifiedLength)
}
}
var (
outerFilter []expression.Expression
leftTypes, rightTypes []*types.FieldType
)
if v.InnerChildIdx == 0 {
leftTypes, rightTypes = innerTypes, outerTypes
outerFilter = v.RightConditions
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
leftTypes, rightTypes = outerTypes, innerTypes
outerFilter = v.LeftConditions
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(exeerrors.ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, len(innerTypes))
}
outerKeyCols := make([]int, len(v.OuterJoinKeys))
for i := 0; i < len(v.OuterJoinKeys); i++ {
outerKeyCols[i] = v.OuterJoinKeys[i].Index
}
innerKeyCols := make([]int, len(v.InnerJoinKeys))
keyCollators := make([]collate.Collator, 0, len(v.InnerJoinKeys))
for i := 0; i < len(v.InnerJoinKeys); i++ {
innerKeyCols[i] = v.InnerJoinKeys[i].Index
keyCollators = append(keyCollators, collate.GetCollator(v.InnerJoinKeys[i].RetType.GetCollate()))
}
executor_metrics.ExecutorCounterIndexLookUpJoin.Inc()
readerBuilder, err := b.newDataReaderBuilder(innerPlan)
if err != nil {
b.err = err
return nil
}
e := &join.IndexLookUpMergeJoin{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec),
OuterMergeCtx: join.OuterMergeCtx{
RowTypes: outerTypes,
Filter: outerFilter,
JoinKeys: v.OuterJoinKeys,
KeyCols: outerKeyCols,
NeedOuterSort: v.NeedOuterSort,
CompareFuncs: v.OuterCompareFuncs,
},
InnerMergeCtx: join.InnerMergeCtx{
ReaderBuilder: readerBuilder,
RowTypes: innerTypes,
JoinKeys: v.InnerJoinKeys,
KeyCols: innerKeyCols,
KeyCollators: keyCollators,
CompareFuncs: v.CompareFuncs,
ColLens: v.IdxColLens,
Desc: v.Desc,
KeyOff2KeyOffOrderByIdx: v.KeyOff2KeyOffOrderByIdx,
},
WorkerWg: new(sync.WaitGroup),
IsOuterJoin: v.JoinType.IsOuterJoin(),
IndexRanges: v.Ranges,
KeyOff2IdxOff: v.KeyOff2IdxOff,
LastColHelper: v.CompareFilters,
}
colsFromChildren := v.Schema().Columns
if v.JoinType == logicalop.LeftOuterSemiJoin || v.JoinType == logicalop.AntiLeftOuterSemiJoin {
colsFromChildren = colsFromChildren[:len(colsFromChildren)-1]
}
childrenUsedSchema := markChildrenUsedCols(colsFromChildren, v.Children()[0].Schema(), v.Children()[1].Schema())
joiners := make([]join.Joiner, e.Ctx().GetSessionVars().IndexLookupJoinConcurrency())
for i := 0; i < len(joiners); i++ {
joiners[i] = join.NewJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, leftTypes, rightTypes, childrenUsedSchema, false)
}
e.Joiners = joiners
return e
}
func (b *executorBuilder) buildIndexNestedLoopHashJoin(v *plannercore.PhysicalIndexHashJoin) exec.Executor {
joinExec := b.buildIndexLookUpJoin(&(v.PhysicalIndexJoin))
if b.err != nil {
return nil
}
e := joinExec.(*join.IndexLookUpJoin)
idxHash := &join.IndexNestedLoopHashJoin{
IndexLookUpJoin: *e,
KeepOuterOrder: v.KeepOuterOrder,
}
concurrency := e.Ctx().GetSessionVars().IndexLookupJoinConcurrency()
idxHash.Joiners = make([]join.Joiner, concurrency)
for i := 0; i < concurrency; i++ {
idxHash.Joiners[i] = e.Joiner.Clone()
}
return idxHash
}
func buildNoRangeTableReader(b *executorBuilder, v *plannercore.PhysicalTableReader) (*TableReaderExecutor, error) {
tablePlans := v.TablePlans
if v.StoreType == kv.TiFlash {
tablePlans = []base.PhysicalPlan{v.GetTablePlan()}
}
dagReq, err := builder.ConstructDAGReq(b.ctx, tablePlans, v.StoreType)
if err != nil {
return nil, err
}
ts, err := v.GetTableScan()
if err != nil {
return nil, err
}
if err = b.validCanReadTemporaryOrCacheTable(ts.Table); err != nil {
return nil, err
}
tbl, _ := b.is.TableByID(context.Background(), ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
paging := b.ctx.GetSessionVars().EnablePaging
e := &TableReaderExecutor{
BaseExecutorV2: exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), v.Schema(), v.ID()),
tableReaderExecutorContext: newTableReaderExecutorContext(b.ctx),
dagPB: dagReq,
startTS: startTS,
txnScope: b.txnScope,
readReplicaScope: b.readReplicaScope,
isStaleness: b.isStaleness,
netDataSize: v.GetNetDataSize(),
table: tbl,
keepOrder: ts.KeepOrder,
desc: ts.Desc,
byItems: ts.ByItems,
columns: ts.Columns,
paging: paging,
corColInFilter: b.corColInDistPlan(v.TablePlans),
corColInAccess: b.corColInAccess(v.TablePlans[0]),
plans: v.TablePlans,
tablePlan: v.GetTablePlan(),
storeType: v.StoreType,
batchCop: v.ReadReqType == plannercore.BatchCop,
}
e.buildVirtualColumnInfo()
if v.StoreType == kv.TiDB && b.ctx.GetSessionVars().User != nil {
// User info is used to do privilege check. It is only used in TiDB cluster memory table.
e.dagPB.User = &tipb.UserIdentity{
UserName: b.ctx.GetSessionVars().User.Username,
UserHost: b.ctx.GetSessionVars().User.Hostname,
}
}
for i := range v.Schema().Columns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(i))
}
return e, nil
}
func (b *executorBuilder) buildMPPGather(v *plannercore.PhysicalTableReader) exec.Executor {
startTs, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
gather := &MPPGather{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
originalPlan: v.GetTablePlan(),
startTS: startTs,
mppQueryID: kv.MPPQueryID{QueryTs: getMPPQueryTS(b.ctx), LocalQueryID: getMPPQueryID(b.ctx), ServerID: domain.GetDomain(b.ctx).ServerID()},
memTracker: memory.NewTracker(v.ID(), -1),
columns: []*model.ColumnInfo{},
virtualColumnIndex: []int{},
virtualColumnRetFieldTypes: []*types.FieldType{},
}
gather.memTracker.AttachTo(b.ctx.GetSessionVars().StmtCtx.MemTracker)
var hasVirtualCol bool
for _, col := range v.Schema().Columns {
if col.VirtualExpr != nil {
hasVirtualCol = true
break
}
}
var isSingleDataSource bool
tableScans := v.GetTableScans()
if len(tableScans) == 1 {
isSingleDataSource = true
}
// 1. hasVirtualCol: when got virtual column in TableScan, will generate plan like the following,
// and there will be no other operators in the MPP fragment.
// MPPGather
// ExchangeSender
// PhysicalTableScan
// 2. UnionScan: there won't be any operators like Join between UnionScan and TableScan.
// and UnionScan cannot push down to tiflash.
if !isSingleDataSource {
if hasVirtualCol || b.encounterUnionScan {
b.err = errors.Errorf("should only have one TableScan in MPP fragment(hasVirtualCol: %v, encounterUnionScan: %v)", hasVirtualCol, b.encounterUnionScan)
return nil
}
return gather
}
// Setup MPPGather.table if isSingleDataSource.
// Virtual Column or UnionScan need to use it.
ts := tableScans[0]
gather.columns = ts.Columns
if hasVirtualCol {
gather.virtualColumnIndex, gather.virtualColumnRetFieldTypes = buildVirtualColumnInfo(gather.Schema(), gather.columns)
}
tbl, _ := b.is.TableByID(context.Background(), ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
// Only for static pruning partition table.
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
gather.table = tbl
return gather
}
// buildTableReader builds a table reader executor. It first build a no range table reader,
// and then update it ranges from table scan plan.
func (b *executorBuilder) buildTableReader(v *plannercore.PhysicalTableReader) exec.Executor {
failpoint.Inject("checkUseMPP", func(val failpoint.Value) {
if !b.ctx.GetSessionVars().InRestrictedSQL && val.(bool) != useMPPExecution(b.ctx, v) {
if val.(bool) {
b.err = errors.New("expect mpp but not used")
} else {
b.err = errors.New("don't expect mpp but we used it")
}
failpoint.Return(nil)
}
})
// https://github.com/pingcap/tidb/issues/50358
if len(v.Schema().Columns) == 0 && len(v.GetTablePlan().Schema().Columns) > 0 {
v.SetSchema(v.GetTablePlan().Schema())
}
useMPP := useMPPExecution(b.ctx, v)
useTiFlashBatchCop := v.ReadReqType == plannercore.BatchCop
useTiFlash := useMPP || useTiFlashBatchCop
if useTiFlash {
if _, isTiDBZoneLabelSet := config.GetGlobalConfig().Labels[placement.DCLabelKey]; b.ctx.GetSessionVars().TiFlashReplicaRead != tiflash.AllReplicas && !isTiDBZoneLabelSet {
b.ctx.GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("the variable tiflash_replica_read is ignored, because the entry TiDB[%s] does not set the zone attribute and tiflash_replica_read is '%s'", config.GetGlobalConfig().AdvertiseAddress, tiflash.GetTiFlashReplicaRead(b.ctx.GetSessionVars().TiFlashReplicaRead)))
}
}
if useMPP {
return b.buildMPPGather(v)
}
ts, err := v.GetTableScan()
if err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeTableReader(b, v)
if err != nil {
b.err = err
return nil
}
if err = b.validCanReadTemporaryOrCacheTable(ts.Table); err != nil {
b.err = err
return nil
}
if ret.table.Meta().TempTableType != model.TempTableNone {
ret.dummy = true
}
ret.ranges = ts.Ranges
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
// When isPartition is set, it means the union rewriting is done, so a partition reader is preferred.
if ok, _ := ts.IsPartition(); ok {
return ret
}
pi := ts.Table.GetPartitionInfo()
if pi == nil {
return ret
}
tmp, _ := b.is.TableByID(context.Background(), ts.Table.ID)
tbl := tmp.(table.PartitionedTable)
partitions, err := partitionPruning(b.ctx, tbl, v.PlanPartInfo)
if err != nil {
b.err = err
return nil
}
if v.StoreType == kv.TiFlash {
sctx.IsTiFlash.Store(true)
}
if len(partitions) == 0 {
return &TableDualExec{BaseExecutorV2: ret.BaseExecutorV2}
}
// Sort the partition is necessary to make the final multiple partition key ranges ordered.
slices.SortFunc(partitions, func(i, j table.PhysicalTable) int {
return cmp.Compare(i.GetPhysicalID(), j.GetPhysicalID())
})
ret.kvRangeBuilder = kvRangeBuilderFromRangeAndPartition{
partitions: partitions,
}
return ret
}
func buildIndexRangeForEachPartition(rctx *rangerctx.RangerContext, usedPartitions []table.PhysicalTable, contentPos []int64,
lookUpContent []*join.IndexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (map[int64][]*ranger.Range, error) {
contentBucket := make(map[int64][]*join.IndexJoinLookUpContent)
for _, p := range usedPartitions {
contentBucket[p.GetPhysicalID()] = make([]*join.IndexJoinLookUpContent, 0, 8)
}
for i, pos := range contentPos {
if _, ok := contentBucket[pos]; ok {
contentBucket[pos] = append(contentBucket[pos], lookUpContent[i])
}
}
nextRange := make(map[int64][]*ranger.Range)
for _, p := range usedPartitions {
ranges, err := buildRangesForIndexJoin(rctx, contentBucket[p.GetPhysicalID()], indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
nextRange[p.GetPhysicalID()] = ranges
}
return nextRange, nil
}
func getPartitionKeyColOffsets(keyColIDs []int64, pt table.PartitionedTable) []int {
keyColOffsets := make([]int, len(keyColIDs))
for i, colID := range keyColIDs {
offset := -1
for j, col := range pt.Cols() {
if colID == col.ID {
offset = j
break
}
}
if offset == -1 {
return nil
}
keyColOffsets[i] = offset
}
t, ok := pt.(interface {
PartitionExpr() *tables.PartitionExpr
})
if !ok {
return nil
}
pe := t.PartitionExpr()
if pe == nil {
return nil
}
offsetMap := make(map[int]struct{})
for _, offset := range keyColOffsets {
offsetMap[offset] = struct{}{}
}
for _, offset := range pe.ColumnOffset {
if _, ok := offsetMap[offset]; !ok {
return nil
}
}
return keyColOffsets
}
func (builder *dataReaderBuilder) prunePartitionForInnerExecutor(tbl table.Table, physPlanPartInfo *plannercore.PhysPlanPartInfo,
lookUpContent []*join.IndexJoinLookUpContent) (usedPartition []table.PhysicalTable, canPrune bool, contentPos []int64, err error) {
partitionTbl := tbl.(table.PartitionedTable)
// In index join, this is called by multiple goroutines simultaneously, but partitionPruning is not thread-safe.
// Use once.Do to avoid DATA RACE here.
// TODO: condition based pruning can be do in advance.
condPruneResult, err := builder.partitionPruning(partitionTbl, physPlanPartInfo)
if err != nil {
return nil, false, nil, err
}
// recalculate key column offsets
if len(lookUpContent) == 0 {
return nil, false, nil, nil
}
if lookUpContent[0].KeyColIDs == nil {
return nil, false, nil, plannererrors.ErrInternal.GenWithStack("cannot get column IDs when dynamic pruning")
}
keyColOffsets := getPartitionKeyColOffsets(lookUpContent[0].KeyColIDs, partitionTbl)
if len(keyColOffsets) == 0 {
return condPruneResult, false, nil, nil
}
locateKey := make([]types.Datum, len(partitionTbl.Cols()))
partitions := make(map[int64]table.PhysicalTable)
contentPos = make([]int64, len(lookUpContent))
exprCtx := builder.ctx.GetExprCtx()
for idx, content := range lookUpContent {
for i, data := range content.Keys {
locateKey[keyColOffsets[i]] = data
}
p, err := partitionTbl.GetPartitionByRow(exprCtx.GetEvalCtx(), locateKey)
if table.ErrNoPartitionForGivenValue.Equal(err) {
continue
}
if err != nil {
return nil, false, nil, err
}
if _, ok := partitions[p.GetPhysicalID()]; !ok {
partitions[p.GetPhysicalID()] = p
}
contentPos[idx] = p.GetPhysicalID()
}
usedPartition = make([]table.PhysicalTable, 0, len(partitions))
for _, p := range condPruneResult {
if _, ok := partitions[p.GetPhysicalID()]; ok {
usedPartition = append(usedPartition, p)
}
}
// To make the final key ranges involving multiple partitions ordered.
slices.SortFunc(usedPartition, func(i, j table.PhysicalTable) int {
return cmp.Compare(i.GetPhysicalID(), j.GetPhysicalID())
})
return usedPartition, true, contentPos, nil
}
func buildNoRangeIndexReader(b *executorBuilder, v *plannercore.PhysicalIndexReader) (*IndexReaderExecutor, error) {
dagReq, err := builder.ConstructDAGReq(b.ctx, v.IndexPlans, kv.TiKV)
if err != nil {
return nil, err
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
tbl, _ := b.is.TableByID(context.Background(), is.Table.ID)
isPartition, physicalTableID := is.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
} else {
physicalTableID = is.Table.ID
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
paging := b.ctx.GetSessionVars().EnablePaging
e := &IndexReaderExecutor{
indexReaderExecutorContext: newIndexReaderExecutorContext(b.ctx),
BaseExecutorV2: exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), v.Schema(), v.ID()),
indexUsageReporter: b.buildIndexUsageReporter(v),
dagPB: dagReq,
startTS: startTS,
txnScope: b.txnScope,
readReplicaScope: b.readReplicaScope,
isStaleness: b.isStaleness,
netDataSize: v.GetNetDataSize(),
physicalTableID: physicalTableID,
table: tbl,
index: is.Index,
keepOrder: is.KeepOrder,
desc: is.Desc,
columns: is.Columns,
byItems: is.ByItems,
paging: paging,
corColInFilter: b.corColInDistPlan(v.IndexPlans),
corColInAccess: b.corColInAccess(v.IndexPlans[0]),
idxCols: is.IdxCols,
colLens: is.IdxColLens,
plans: v.IndexPlans,
outputColumns: v.OutputColumns,
}
for _, col := range v.OutputColumns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(col.Index))
}
return e, nil
}
func (b *executorBuilder) buildIndexReader(v *plannercore.PhysicalIndexReader) exec.Executor {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
if err := b.validCanReadTemporaryOrCacheTable(is.Table); err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeIndexReader(b, v)
if err != nil {
b.err = err
return nil
}
if ret.table.Meta().TempTableType != model.TempTableNone {
ret.dummy = true
}
ret.ranges = is.Ranges
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
// When isPartition is set, it means the union rewriting is done, so a partition reader is preferred.
if ok, _ := is.IsPartition(); ok {
return ret
}
pi := is.Table.GetPartitionInfo()
if pi == nil {
return ret
}
if is.Index.Global {
ret.partitionIDMap, err = getPartitionIDsAfterPruning(b.ctx, ret.table.(table.PartitionedTable), v.PlanPartInfo)
if err != nil {
b.err = err
return nil
}
return ret
}
tmp, _ := b.is.TableByID(context.Background(), is.Table.ID)
tbl := tmp.(table.PartitionedTable)
partitions, err := partitionPruning(b.ctx, tbl, v.PlanPartInfo)
if err != nil {
b.err = err
return nil
}
ret.partitions = partitions
return ret
}
func buildTableReq(b *executorBuilder, schemaLen int, plans []base.PhysicalPlan) (dagReq *tipb.DAGRequest, val table.Table, err error) {
tableReq, err := builder.ConstructDAGReq(b.ctx, plans, kv.TiKV)
if err != nil {
return nil, nil, err
}
for i := 0; i < schemaLen; i++ {
tableReq.OutputOffsets = append(tableReq.OutputOffsets, uint32(i))
}
ts := plans[0].(*plannercore.PhysicalTableScan)
tbl, _ := b.is.TableByID(context.Background(), ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
return tableReq, tbl, err
}
// buildIndexReq is designed to create a DAG for index request.
// If len(ByItems) != 0 means index request should return related columns
// to sort result rows in TiDB side for partition tables.
func buildIndexReq(ctx sessionctx.Context, columns []*model.IndexColumn, handleLen int, plans []base.PhysicalPlan) (dagReq *tipb.DAGRequest, err error) {
indexReq, err := builder.ConstructDAGReq(ctx, plans, kv.TiKV)
if err != nil {
return nil, err
}
indexReq.OutputOffsets = []uint32{}
idxScan := plans[0].(*plannercore.PhysicalIndexScan)
if len(idxScan.ByItems) != 0 {
schema := idxScan.Schema()
for _, item := range idxScan.ByItems {
c, ok := item.Expr.(*expression.Column)
if !ok {
return nil, errors.Errorf("Not support non-column in orderBy pushed down")
}
find := false
for i, schemaColumn := range schema.Columns {
if schemaColumn.ID == c.ID {
indexReq.OutputOffsets = append(indexReq.OutputOffsets, uint32(i))
find = true
break
}
}
if !find {
return nil, errors.Errorf("Not found order by related columns in indexScan.schema")
}
}
}
for i := 0; i < handleLen; i++ {
indexReq.OutputOffsets = append(indexReq.OutputOffsets, uint32(len(columns)+i))
}
if idxScan.NeedExtraOutputCol() {
// need add one more column for pid or physical table id
indexReq.OutputOffsets = append(indexReq.OutputOffsets, uint32(len(columns)+handleLen))
}
return indexReq, err
}
func buildNoRangeIndexLookUpReader(b *executorBuilder, v *plannercore.PhysicalIndexLookUpReader) (*IndexLookUpExecutor, error) {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
var handleLen int
if len(v.CommonHandleCols) != 0 {
handleLen = len(v.CommonHandleCols)
} else {
handleLen = 1
}
indexReq, err := buildIndexReq(b.ctx, is.Index.Columns, handleLen, v.IndexPlans)
if err != nil {
return nil, err
}
indexPaging := false
if v.Paging {
indexPaging = true
}
tableReq, tbl, err := buildTableReq(b, v.Schema().Len(), v.TablePlans)
if err != nil {
return nil, err
}
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
readerBuilder, err := b.newDataReaderBuilder(nil)
if err != nil {
return nil, err
}
e := &IndexLookUpExecutor{
indexLookUpExecutorContext: newIndexLookUpExecutorContext(b.ctx),
BaseExecutorV2: exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), v.Schema(), v.ID()),
indexUsageReporter: b.buildIndexUsageReporter(v),
dagPB: indexReq,
startTS: startTS,
table: tbl,
index: is.Index,
keepOrder: is.KeepOrder,
byItems: is.ByItems,
desc: is.Desc,
tableRequest: tableReq,
columns: ts.Columns,
indexPaging: indexPaging,
dataReaderBuilder: readerBuilder,
corColInIdxSide: b.corColInDistPlan(v.IndexPlans),
corColInTblSide: b.corColInDistPlan(v.TablePlans),
corColInAccess: b.corColInAccess(v.IndexPlans[0]),
idxCols: is.IdxCols,
colLens: is.IdxColLens,
idxPlans: v.IndexPlans,
tblPlans: v.TablePlans,
PushedLimit: v.PushedLimit,
idxNetDataSize: v.GetAvgTableRowSize(),
avgRowSize: v.GetAvgTableRowSize(),
}
if v.ExtraHandleCol != nil {
e.handleIdx = append(e.handleIdx, v.ExtraHandleCol.Index)
e.handleCols = []*expression.Column{v.ExtraHandleCol}
} else {
for _, handleCol := range v.CommonHandleCols {
e.handleIdx = append(e.handleIdx, handleCol.Index)
}
e.handleCols = v.CommonHandleCols
e.primaryKeyIndex = tables.FindPrimaryIndex(tbl.Meta())
}
return e, nil
}
func (b *executorBuilder) buildIndexLookUpReader(v *plannercore.PhysicalIndexLookUpReader) exec.Executor {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
if err := b.validCanReadTemporaryOrCacheTable(is.Table); err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeIndexLookUpReader(b, v)
if err != nil {
b.err = err
return nil
}
if ret.table.Meta().TempTableType != model.TempTableNone {
ret.dummy = true
}
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
ret.ranges = is.Ranges
executor_metrics.ExecutorCounterIndexLookUpExecutor.Inc()
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
if pi := is.Table.GetPartitionInfo(); pi == nil {
return ret
}
if is.Index.Global {
ret.partitionIDMap, err = getPartitionIDsAfterPruning(b.ctx, ret.table.(table.PartitionedTable), v.PlanPartInfo)
if err != nil {
b.err = err
return nil
}
return ret
}
if ok, _ := is.IsPartition(); ok {
// Already pruned when translated to logical union.
return ret
}
tmp, _ := b.is.TableByID(context.Background(), is.Table.ID)
tbl := tmp.(table.PartitionedTable)
partitions, err := partitionPruning(b.ctx, tbl, v.PlanPartInfo)
if err != nil {
b.err = err
return nil
}
ret.partitionTableMode = true
ret.prunedPartitions = partitions
return ret
}
func buildNoRangeIndexMergeReader(b *executorBuilder, v *plannercore.PhysicalIndexMergeReader) (*IndexMergeReaderExecutor, error) {
partialPlanCount := len(v.PartialPlans)
partialReqs := make([]*tipb.DAGRequest, 0, partialPlanCount)
partialDataSizes := make([]float64, 0, partialPlanCount)
indexes := make([]*model.IndexInfo, 0, partialPlanCount)
descs := make([]bool, 0, partialPlanCount)
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
isCorColInPartialFilters := make([]bool, 0, partialPlanCount)
isCorColInPartialAccess := make([]bool, 0, partialPlanCount)
hasGlobalIndex := false
for i := 0; i < partialPlanCount; i++ {
var tempReq *tipb.DAGRequest
var err error
if is, ok := v.PartialPlans[i][0].(*plannercore.PhysicalIndexScan); ok {
tempReq, err = buildIndexReq(b.ctx, is.Index.Columns, ts.HandleCols.NumCols(), v.PartialPlans[i])
descs = append(descs, is.Desc)
indexes = append(indexes, is.Index)
if is.Index.Global {
hasGlobalIndex = true
}
} else {
ts := v.PartialPlans[i][0].(*plannercore.PhysicalTableScan)
tempReq, _, err = buildTableReq(b, len(ts.Columns), v.PartialPlans[i])
descs = append(descs, ts.Desc)
indexes = append(indexes, nil)
}
if err != nil {
return nil, err
}
collect := false
tempReq.CollectRangeCounts = &collect
partialReqs = append(partialReqs, tempReq)
isCorColInPartialFilters = append(isCorColInPartialFilters, b.corColInDistPlan(v.PartialPlans[i]))
isCorColInPartialAccess = append(isCorColInPartialAccess, b.corColInAccess(v.PartialPlans[i][0]))
partialDataSizes = append(partialDataSizes, v.GetPartialReaderNetDataSize(v.PartialPlans[i][0]))
}
tableReq, tblInfo, err := buildTableReq(b, v.Schema().Len(), v.TablePlans)
isCorColInTableFilter := b.corColInDistPlan(v.TablePlans)
if err != nil {
return nil, err
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
readerBuilder, err := b.newDataReaderBuilder(nil)
if err != nil {
return nil, err
}
e := &IndexMergeReaderExecutor{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
indexUsageReporter: b.buildIndexUsageReporter(v),
dagPBs: partialReqs,
startTS: startTS,
table: tblInfo,
indexes: indexes,
descs: descs,
tableRequest: tableReq,
columns: ts.Columns,
partialPlans: v.PartialPlans,
tblPlans: v.TablePlans,
partialNetDataSizes: partialDataSizes,
dataAvgRowSize: v.GetAvgTableRowSize(),
dataReaderBuilder: readerBuilder,
handleCols: v.HandleCols,
isCorColInPartialFilters: isCorColInPartialFilters,
isCorColInTableFilter: isCorColInTableFilter,
isCorColInPartialAccess: isCorColInPartialAccess,
isIntersection: v.IsIntersectionType,
byItems: v.ByItems,
pushedLimit: v.PushedLimit,
keepOrder: v.KeepOrder,
hasGlobalIndex: hasGlobalIndex,
}
collectTable := false
e.tableRequest.CollectRangeCounts = &collectTable
return e, nil
}
type tableStatsPreloader interface {
LoadTableStats(sessionctx.Context)
}
func (b *executorBuilder) buildIndexUsageReporter(plan tableStatsPreloader) (indexUsageReporter *exec.IndexUsageReporter) {
sc := b.ctx.GetSessionVars().StmtCtx
if b.ctx.GetSessionVars().StmtCtx.IndexUsageCollector != nil &&
sc.RuntimeStatsColl != nil {
// Preload the table stats. If the statement is a point-get or execute, the planner may not have loaded the
// stats.
plan.LoadTableStats(b.ctx)
statsMap := sc.GetUsedStatsInfo(false)
indexUsageReporter = exec.NewIndexUsageReporter(
sc.IndexUsageCollector,
sc.RuntimeStatsColl, statsMap)
}
return indexUsageReporter
}
func (b *executorBuilder) buildIndexMergeReader(v *plannercore.PhysicalIndexMergeReader) exec.Executor {
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
if err := b.validCanReadTemporaryOrCacheTable(ts.Table); err != nil {
b.err = err
return nil
}
ret, err := buildNoRangeIndexMergeReader(b, v)
if err != nil {
b.err = err
return nil
}
ret.ranges = make([][]*ranger.Range, 0, len(v.PartialPlans))
sctx := b.ctx.GetSessionVars().StmtCtx
hasGlobalIndex := false
for i := 0; i < len(v.PartialPlans); i++ {
if is, ok := v.PartialPlans[i][0].(*plannercore.PhysicalIndexScan); ok {
ret.ranges = append(ret.ranges, is.Ranges)
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
if is.Index.Global {
hasGlobalIndex = true
}
} else {
ret.ranges = append(ret.ranges, v.PartialPlans[i][0].(*plannercore.PhysicalTableScan).Ranges)
if ret.table.Meta().IsCommonHandle {
tblInfo := ret.table.Meta()
sctx.IndexNames = append(sctx.IndexNames, tblInfo.Name.O+":"+tables.FindPrimaryIndex(tblInfo).Name.O)
}
}
}
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
executor_metrics.ExecutorCounterIndexMergeReaderExecutor.Inc()
if !b.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
return ret
}
if pi := ts.Table.GetPartitionInfo(); pi == nil {
return ret
}
tmp, _ := b.is.TableByID(context.Background(), ts.Table.ID)
partitions, err := partitionPruning(b.ctx, tmp.(table.PartitionedTable), v.PlanPartInfo)
if err != nil {
b.err = err
return nil
}
ret.partitionTableMode, ret.prunedPartitions = true, partitions
if hasGlobalIndex {
ret.partitionIDMap = make(map[int64]struct{})
for _, p := range partitions {
ret.partitionIDMap[p.GetPhysicalID()] = struct{}{}
}
}
return ret
}
// dataReaderBuilder build an executor.
// The executor can be used to read data in the ranges which are constructed by datums.
// Differences from executorBuilder:
// 1. dataReaderBuilder calculate data range from argument, rather than plan.
// 2. the result executor is already opened.
type dataReaderBuilder struct {
plan base.Plan
*executorBuilder
selectResultHook // for testing
once struct {
sync.Once
condPruneResult []table.PhysicalTable
err error
}
}
type mockPhysicalIndexReader struct {
base.PhysicalPlan
e exec.Executor
}
// MemoryUsage of mockPhysicalIndexReader is only for testing
func (*mockPhysicalIndexReader) MemoryUsage() (sum int64) {
return
}
func (builder *dataReaderBuilder) BuildExecutorForIndexJoin(ctx context.Context, lookUpContents []*join.IndexJoinLookUpContent,
indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (exec.Executor, error) {
return builder.buildExecutorForIndexJoinInternal(ctx, builder.plan, lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
}
func (builder *dataReaderBuilder) buildExecutorForIndexJoinInternal(ctx context.Context, plan base.Plan, lookUpContents []*join.IndexJoinLookUpContent,
indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (exec.Executor, error) {
switch v := plan.(type) {
case *plannercore.PhysicalTableReader:
return builder.buildTableReaderForIndexJoin(ctx, v, lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
case *plannercore.PhysicalIndexReader:
return builder.buildIndexReaderForIndexJoin(ctx, v, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
case *plannercore.PhysicalIndexLookUpReader:
return builder.buildIndexLookUpReaderForIndexJoin(ctx, v, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
case *plannercore.PhysicalUnionScan:
return builder.buildUnionScanForIndexJoin(ctx, v, lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
case *plannercore.PhysicalProjection:
return builder.buildProjectionForIndexJoin(ctx, v, lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
// Need to support physical selection because after PR 16389, TiDB will push down all the expr supported by TiKV or TiFlash
// in predicate push down stage, so if there is an expr which only supported by TiFlash, a physical selection will be added after index read
case *plannercore.PhysicalSelection:
childExec, err := builder.buildExecutorForIndexJoinInternal(ctx, v.Children()[0], lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
exec := &SelectionExec{
selectionExecutorContext: newSelectionExecutorContext(builder.ctx),
BaseExecutorV2: exec.NewBaseExecutorV2(builder.ctx.GetSessionVars(), v.Schema(), v.ID(), childExec),
filters: v.Conditions,
}
err = exec.open(ctx)
return exec, err
case *plannercore.PhysicalHashAgg:
childExec, err := builder.buildExecutorForIndexJoinInternal(ctx, v.Children()[0], lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
exec := builder.buildHashAggFromChildExec(childExec, v)
err = exec.OpenSelf()
return exec, err
case *plannercore.PhysicalStreamAgg:
childExec, err := builder.buildExecutorForIndexJoinInternal(ctx, v.Children()[0], lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
exec := builder.buildStreamAggFromChildExec(childExec, v)
err = exec.OpenSelf()
return exec, err
case *mockPhysicalIndexReader:
return v.e, nil
}
return nil, errors.New("Wrong plan type for dataReaderBuilder")
}
func (builder *dataReaderBuilder) buildUnionScanForIndexJoin(ctx context.Context, v *plannercore.PhysicalUnionScan,
values []*join.IndexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int,
cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (exec.Executor, error) {
childBuilder, err := builder.newDataReaderBuilder(v.Children()[0])
if err != nil {
return nil, err
}
reader, err := childBuilder.BuildExecutorForIndexJoin(ctx, values, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
ret := builder.buildUnionScanFromReader(reader, v)
if builder.err != nil {
return nil, builder.err
}
if us, ok := ret.(*UnionScanExec); ok {
err = us.open(ctx)
}
return ret, err
}
func (builder *dataReaderBuilder) buildTableReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalTableReader,
lookUpContents []*join.IndexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int,
cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool, memTracker *memory.Tracker, interruptSignal *atomic.Value) (exec.Executor, error) {
e, err := buildNoRangeTableReader(builder.executorBuilder, v)
if !canReorderHandles {
// `canReorderHandles` is set to false only in IndexMergeJoin. IndexMergeJoin will trigger a dead loop problem
// when enabling paging(tidb/issues/35831). But IndexMergeJoin is not visible to the user and is deprecated
// for now. Thus, we disable paging here.
e.paging = false
}
if err != nil {
return nil, err
}
tbInfo := e.table.Meta()
if tbInfo.GetPartitionInfo() == nil || !builder.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
if v.IsCommonHandle {
kvRanges, err := buildKvRangesForIndexJoin(e.dctx, e.rctx, getPhysicalTableID(e.table), -1, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
if err != nil {
return nil, err
}
return builder.buildTableReaderFromKvRanges(ctx, e, kvRanges)
}
handles, _ := dedupHandles(lookUpContents)
return builder.buildTableReaderFromHandles(ctx, e, handles, canReorderHandles)
}
tbl, _ := builder.is.TableByID(ctx, tbInfo.ID)
pt := tbl.(table.PartitionedTable)
usedPartitionList, err := builder.partitionPruning(pt, v.PlanPartInfo)
if err != nil {
return nil, err
}
usedPartitions := make(map[int64]table.PhysicalTable, len(usedPartitionList))
for _, p := range usedPartitionList {
usedPartitions[p.GetPhysicalID()] = p
}
var kvRanges []kv.KeyRange
var keyColOffsets []int
if len(lookUpContents) > 0 {
keyColOffsets = getPartitionKeyColOffsets(lookUpContents[0].KeyColIDs, pt)
}
if v.IsCommonHandle {
if len(keyColOffsets) > 0 {
locateKey := make([]types.Datum, len(pt.Cols()))
kvRanges = make([]kv.KeyRange, 0, len(lookUpContents))
// lookUpContentsByPID groups lookUpContents by pid(partition) so that kv ranges for same partition can be merged.
lookUpContentsByPID := make(map[int64][]*join.IndexJoinLookUpContent)
exprCtx := e.ectx
for _, content := range lookUpContents {
for i, data := range content.Keys {
locateKey[keyColOffsets[i]] = data
}
p, err := pt.GetPartitionByRow(exprCtx.GetEvalCtx(), locateKey)
if table.ErrNoPartitionForGivenValue.Equal(err) {
continue
}
if err != nil {
return nil, err
}
pid := p.GetPhysicalID()
if _, ok := usedPartitions[pid]; !ok {
continue
}
lookUpContentsByPID[pid] = append(lookUpContentsByPID[pid], content)
}
for pid, contents := range lookUpContentsByPID {
// buildKvRanges for each partition.
tmp, err := buildKvRangesForIndexJoin(e.dctx, e.rctx, pid, -1, contents, indexRanges, keyOff2IdxOff, cwc, nil, interruptSignal)
if err != nil {
return nil, err
}
kvRanges = append(kvRanges, tmp...)
}
} else {
kvRanges = make([]kv.KeyRange, 0, len(usedPartitions)*len(lookUpContents))
for _, p := range usedPartitionList {
tmp, err := buildKvRangesForIndexJoin(e.dctx, e.rctx, p.GetPhysicalID(), -1, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
if err != nil {
return nil, err
}
kvRanges = append(tmp, kvRanges...)
}
}
// The key ranges should be ordered.
slices.SortFunc(kvRanges, func(i, j kv.KeyRange) int {
return bytes.Compare(i.StartKey, j.StartKey)
})
return builder.buildTableReaderFromKvRanges(ctx, e, kvRanges)
}
handles, lookUpContents := dedupHandles(lookUpContents)
if len(keyColOffsets) > 0 {
locateKey := make([]types.Datum, len(pt.Cols()))
kvRanges = make([]kv.KeyRange, 0, len(lookUpContents))
exprCtx := e.ectx
for _, content := range lookUpContents {
for i, data := range content.Keys {
locateKey[keyColOffsets[i]] = data
}
p, err := pt.GetPartitionByRow(exprCtx.GetEvalCtx(), locateKey)
if table.ErrNoPartitionForGivenValue.Equal(err) {
continue
}
if err != nil {
return nil, err
}
pid := p.GetPhysicalID()
if _, ok := usedPartitions[pid]; !ok {
continue
}
handle := kv.IntHandle(content.Keys[0].GetInt64())
ranges, _ := distsql.TableHandlesToKVRanges(pid, []kv.Handle{handle})
kvRanges = append(kvRanges, ranges...)
}
} else {
for _, p := range usedPartitionList {
ranges, _ := distsql.TableHandlesToKVRanges(p.GetPhysicalID(), handles)
kvRanges = append(kvRanges, ranges...)
}
}
// The key ranges should be ordered.
slices.SortFunc(kvRanges, func(i, j kv.KeyRange) int {
return bytes.Compare(i.StartKey, j.StartKey)
})
return builder.buildTableReaderFromKvRanges(ctx, e, kvRanges)
}
func dedupHandles(lookUpContents []*join.IndexJoinLookUpContent) ([]kv.Handle, []*join.IndexJoinLookUpContent) {
handles := make([]kv.Handle, 0, len(lookUpContents))
validLookUpContents := make([]*join.IndexJoinLookUpContent, 0, len(lookUpContents))
for _, content := range lookUpContents {
isValidHandle := true
handle := kv.IntHandle(content.Keys[0].GetInt64())
for _, key := range content.Keys {
if handle.IntValue() != key.GetInt64() {
isValidHandle = false
break
}
}
if isValidHandle {
handles = append(handles, handle)
validLookUpContents = append(validLookUpContents, content)
}
}
return handles, validLookUpContents
}
type kvRangeBuilderFromRangeAndPartition struct {
partitions []table.PhysicalTable
}
func (h kvRangeBuilderFromRangeAndPartition) buildKeyRangeSeparately(dctx *distsqlctx.DistSQLContext, ranges []*ranger.Range) ([]int64, [][]kv.KeyRange, error) {
ret := make([][]kv.KeyRange, len(h.partitions))
pids := make([]int64, 0, len(h.partitions))
for i, p := range h.partitions {
pid := p.GetPhysicalID()
pids = append(pids, pid)
meta := p.Meta()
if len(ranges) == 0 {
continue
}
kvRange, err := distsql.TableHandleRangesToKVRanges(dctx, []int64{pid}, meta != nil && meta.IsCommonHandle, ranges)
if err != nil {
return nil, nil, err
}
ret[i] = kvRange.AppendSelfTo(ret[i])
}
return pids, ret, nil
}
func (h kvRangeBuilderFromRangeAndPartition) buildKeyRange(dctx *distsqlctx.DistSQLContext, ranges []*ranger.Range) ([][]kv.KeyRange, error) {
ret := make([][]kv.KeyRange, len(h.partitions))
if len(ranges) == 0 {
return ret, nil
}
for i, p := range h.partitions {
pid := p.GetPhysicalID()
meta := p.Meta()
kvRange, err := distsql.TableHandleRangesToKVRanges(dctx, []int64{pid}, meta != nil && meta.IsCommonHandle, ranges)
if err != nil {
return nil, err
}
ret[i] = kvRange.AppendSelfTo(ret[i])
}
return ret, nil
}
// newClosestReadAdjuster let the request be sent to closest replica(within the same zone)
// if response size exceeds certain threshold.
func newClosestReadAdjuster(dctx *distsqlctx.DistSQLContext, req *kv.Request, netDataSize float64) kv.CoprRequestAdjuster {
if req.ReplicaRead != kv.ReplicaReadClosestAdaptive {
return nil
}
return func(req *kv.Request, copTaskCount int) bool {
// copTaskCount is the number of coprocessor requests
if int64(netDataSize/float64(copTaskCount)) >= dctx.ReplicaClosestReadThreshold {
req.MatchStoreLabels = append(req.MatchStoreLabels, &metapb.StoreLabel{
Key: placement.DCLabelKey,
Value: config.GetTxnScopeFromConfig(),
})
return true
}
// reset to read from leader when the data size is small.
req.ReplicaRead = kv.ReplicaReadLeader
return false
}
}
func (builder *dataReaderBuilder) buildTableReaderBase(ctx context.Context, e *TableReaderExecutor, reqBuilderWithRange distsql.RequestBuilder) (*TableReaderExecutor, error) {
startTS, err := builder.getSnapshotTS()
if err != nil {
return nil, err
}
kvReq, err := reqBuilderWithRange.
SetDAGRequest(e.dagPB).
SetStartTS(startTS).
SetDesc(e.desc).
SetKeepOrder(e.keepOrder).
SetTxnScope(e.txnScope).
SetReadReplicaScope(e.readReplicaScope).
SetIsStaleness(e.isStaleness).
SetFromSessionVars(e.dctx).
SetFromInfoSchema(e.GetInfoSchema()).
SetClosestReplicaReadAdjuster(newClosestReadAdjuster(e.dctx, &reqBuilderWithRange.Request, e.netDataSize)).
SetPaging(e.paging).
SetConnIDAndConnAlias(e.dctx.ConnectionID, e.dctx.SessionAlias).
Build()
if err != nil {
return nil, err
}
e.kvRanges = kvReq.KeyRanges.AppendSelfTo(e.kvRanges)
e.resultHandler = &tableResultHandler{}
result, err := builder.SelectResult(ctx, builder.ctx.GetDistSQLCtx(), kvReq, exec.RetTypes(e), getPhysicalPlanIDs(e.plans), e.ID())
if err != nil {
return nil, err
}
e.resultHandler.open(nil, result)
return e, nil
}
func (builder *dataReaderBuilder) buildTableReaderFromHandles(ctx context.Context, e *TableReaderExecutor, handles []kv.Handle, canReorderHandles bool) (*TableReaderExecutor, error) {
if canReorderHandles {
slices.SortFunc(handles, func(i, j kv.Handle) int {
return i.Compare(j)
})
}
var b distsql.RequestBuilder
if len(handles) > 0 {
if _, ok := handles[0].(kv.PartitionHandle); ok {
b.SetPartitionsAndHandles(handles)
} else {
b.SetTableHandles(getPhysicalTableID(e.table), handles)
}
} else {
b.SetKeyRanges(nil)
}
return builder.buildTableReaderBase(ctx, e, b)
}
func (builder *dataReaderBuilder) buildTableReaderFromKvRanges(ctx context.Context, e *TableReaderExecutor, ranges []kv.KeyRange) (exec.Executor, error) {
var b distsql.RequestBuilder
b.SetKeyRanges(ranges)
return builder.buildTableReaderBase(ctx, e, b)
}
func (builder *dataReaderBuilder) buildIndexReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalIndexReader,
lookUpContents []*join.IndexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memoryTracker *memory.Tracker, interruptSignal *atomic.Value) (exec.Executor, error) {
e, err := buildNoRangeIndexReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
tbInfo := e.table.Meta()
if tbInfo.GetPartitionInfo() == nil || !builder.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
kvRanges, err := buildKvRangesForIndexJoin(e.dctx, e.rctx, e.physicalTableID, e.index.ID, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memoryTracker, interruptSignal)
if err != nil {
return nil, err
}
err = e.open(ctx, kvRanges)
return e, err
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
if is.Index.Global {
e.partitionIDMap, err = getPartitionIDsAfterPruning(builder.ctx, e.table.(table.PartitionedTable), v.PlanPartInfo)
if err != nil {
return nil, err
}
if e.ranges, err = buildRangesForIndexJoin(e.rctx, lookUpContents, indexRanges, keyOff2IdxOff, cwc); err != nil {
return nil, err
}
if err := exec.Open(ctx, e); err != nil {
return nil, err
}
return e, nil
}
tbl, _ := builder.executorBuilder.is.TableByID(ctx, tbInfo.ID)
usedPartition, canPrune, contentPos, err := builder.prunePartitionForInnerExecutor(tbl, v.PlanPartInfo, lookUpContents)
if err != nil {
return nil, err
}
if len(usedPartition) != 0 {
if canPrune {
rangeMap, err := buildIndexRangeForEachPartition(e.rctx, usedPartition, contentPos, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
e.partitions = usedPartition
e.ranges = indexRanges
e.partRangeMap = rangeMap
} else {
e.partitions = usedPartition
if e.ranges, err = buildRangesForIndexJoin(e.rctx, lookUpContents, indexRanges, keyOff2IdxOff, cwc); err != nil {
return nil, err
}
}
if err := exec.Open(ctx, e); err != nil {
return nil, err
}
return e, nil
}
ret := &TableDualExec{BaseExecutorV2: e.BaseExecutorV2}
err = exec.Open(ctx, ret)
return ret, err
}
func (builder *dataReaderBuilder) buildIndexLookUpReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalIndexLookUpReader,
lookUpContents []*join.IndexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memTracker *memory.Tracker, interruptSignal *atomic.Value) (exec.Executor, error) {
e, err := buildNoRangeIndexLookUpReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
tbInfo := e.table.Meta()
if tbInfo.GetPartitionInfo() == nil || !builder.ctx.GetSessionVars().StmtCtx.UseDynamicPartitionPrune() {
e.kvRanges, err = buildKvRangesForIndexJoin(e.dctx, e.rctx, getPhysicalTableID(e.table), e.index.ID, lookUpContents, indexRanges, keyOff2IdxOff, cwc, memTracker, interruptSignal)
if err != nil {
return nil, err
}
err = e.open(ctx)
return e, err
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
if is.Index.Global {
e.partitionIDMap, err = getPartitionIDsAfterPruning(builder.ctx, e.table.(table.PartitionedTable), v.PlanPartInfo)
if err != nil {
return nil, err
}
e.ranges, err = buildRangesForIndexJoin(e.rctx, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
if err := exec.Open(ctx, e); err != nil {
return nil, err
}
return e, err
}
tbl, _ := builder.executorBuilder.is.TableByID(ctx, tbInfo.ID)
usedPartition, canPrune, contentPos, err := builder.prunePartitionForInnerExecutor(tbl, v.PlanPartInfo, lookUpContents)
if err != nil {
return nil, err
}
if len(usedPartition) != 0 {
if canPrune {
rangeMap, err := buildIndexRangeForEachPartition(e.rctx, usedPartition, contentPos, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
e.prunedPartitions = usedPartition
e.ranges = indexRanges
e.partitionRangeMap = rangeMap
} else {
e.prunedPartitions = usedPartition
e.ranges, err = buildRangesForIndexJoin(e.rctx, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
}
e.partitionTableMode = true
if err := exec.Open(ctx, e); err != nil {
return nil, err
}
return e, err
}
ret := &TableDualExec{BaseExecutorV2: e.BaseExecutorV2}
err = exec.Open(ctx, ret)
return ret, err
}
func (builder *dataReaderBuilder) buildProjectionForIndexJoin(
ctx context.Context,
v *plannercore.PhysicalProjection,
lookUpContents []*join.IndexJoinLookUpContent,
indexRanges []*ranger.Range,
keyOff2IdxOff []int,
cwc *plannercore.ColWithCmpFuncManager,
canReorderHandles bool,
memTracker *memory.Tracker,
interruptSignal *atomic.Value,
) (executor exec.Executor, err error) {
var childExec exec.Executor
childExec, err = builder.buildExecutorForIndexJoinInternal(ctx, v.Children()[0], lookUpContents, indexRanges, keyOff2IdxOff, cwc, canReorderHandles, memTracker, interruptSignal)
if err != nil {
return nil, err
}
defer func() {
if r := recover(); r != nil {
err = util.GetRecoverError(r)
}
if err != nil {
terror.Log(exec.Close(childExec))
}
}()
e := &ProjectionExec{
projectionExecutorContext: newProjectionExecutorContext(builder.ctx),
BaseExecutorV2: exec.NewBaseExecutorV2(builder.ctx.GetSessionVars(), v.Schema(), v.ID(), childExec),
numWorkers: int64(builder.ctx.GetSessionVars().ProjectionConcurrency()),
evaluatorSuit: expression.NewEvaluatorSuite(v.Exprs, v.AvoidColumnEvaluator),
calculateNoDelay: v.CalculateNoDelay,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(builder.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
failpoint.Inject("buildProjectionForIndexJoinPanic", func(val failpoint.Value) {
if v, ok := val.(bool); ok && v {
panic("buildProjectionForIndexJoinPanic")
}
})
err = e.open(ctx)
if err != nil {
return nil, err
}
return e, nil
}
// buildRangesForIndexJoin builds kv ranges for index join when the inner plan is index scan plan.
func buildRangesForIndexJoin(rctx *rangerctx.RangerContext, lookUpContents []*join.IndexJoinLookUpContent,
ranges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) ([]*ranger.Range, error) {
retRanges := make([]*ranger.Range, 0, len(ranges)*len(lookUpContents))
lastPos := len(ranges[0].LowVal) - 1
tmpDatumRanges := make([]*ranger.Range, 0, len(lookUpContents))
for _, content := range lookUpContents {
for _, ran := range ranges {
for keyOff, idxOff := range keyOff2IdxOff {
ran.LowVal[idxOff] = content.Keys[keyOff]
ran.HighVal[idxOff] = content.Keys[keyOff]
}
}
if cwc == nil {
// A deep copy is need here because the old []*range.Range is overwritten
for _, ran := range ranges {
retRanges = append(retRanges, ran.Clone())
}
continue
}
nextColRanges, err := cwc.BuildRangesByRow(rctx, content.Row)
if err != nil {
return nil, err
}
for _, nextColRan := range nextColRanges {
for _, ran := range ranges {
ran.LowVal[lastPos] = nextColRan.LowVal[0]
ran.HighVal[lastPos] = nextColRan.HighVal[0]
ran.LowExclude = nextColRan.LowExclude
ran.HighExclude = nextColRan.HighExclude
ran.Collators = nextColRan.Collators
tmpDatumRanges = append(tmpDatumRanges, ran.Clone())
}
}
}
if cwc == nil {
return retRanges, nil
}
return ranger.UnionRanges(rctx, tmpDatumRanges, true)
}
// buildKvRangesForIndexJoin builds kv ranges for index join when the inner plan is index scan plan.
func buildKvRangesForIndexJoin(dctx *distsqlctx.DistSQLContext, pctx *rangerctx.RangerContext, tableID, indexID int64, lookUpContents []*join.IndexJoinLookUpContent,
ranges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, memTracker *memory.Tracker, interruptSignal *atomic.Value) (_ []kv.KeyRange, err error) {
kvRanges := make([]kv.KeyRange, 0, len(ranges)*len(lookUpContents))
if len(ranges) == 0 {
return []kv.KeyRange{}, nil
}
lastPos := len(ranges[0].LowVal) - 1
tmpDatumRanges := make([]*ranger.Range, 0, len(lookUpContents))
for _, content := range lookUpContents {
for _, ran := range ranges {
for keyOff, idxOff := range keyOff2IdxOff {
ran.LowVal[idxOff] = content.Keys[keyOff]
ran.HighVal[idxOff] = content.Keys[keyOff]
}
}
if cwc == nil {
// Index id is -1 means it's a common handle.
var tmpKvRanges *kv.KeyRanges
var err error
if indexID == -1 {
tmpKvRanges, err = distsql.CommonHandleRangesToKVRanges(dctx, []int64{tableID}, ranges)
} else {
tmpKvRanges, err = distsql.IndexRangesToKVRangesWithInterruptSignal(dctx, tableID, indexID, ranges, memTracker, interruptSignal)
}
if err != nil {
return nil, err
}
kvRanges = tmpKvRanges.AppendSelfTo(kvRanges)
continue
}
nextColRanges, err := cwc.BuildRangesByRow(pctx, content.Row)
if err != nil {
return nil, err
}
for _, nextColRan := range nextColRanges {
for _, ran := range ranges {
ran.LowVal[lastPos] = nextColRan.LowVal[0]
ran.HighVal[lastPos] = nextColRan.HighVal[0]
ran.LowExclude = nextColRan.LowExclude
ran.HighExclude = nextColRan.HighExclude
ran.Collators = nextColRan.Collators
tmpDatumRanges = append(tmpDatumRanges, ran.Clone())
}
}
}
if len(kvRanges) != 0 && memTracker != nil {
failpoint.Inject("testIssue49033", func() {
panic("testIssue49033")
})
memTracker.Consume(int64(2 * cap(kvRanges[0].StartKey) * len(kvRanges)))
}
if len(tmpDatumRanges) != 0 && memTracker != nil {
memTracker.Consume(2 * types.EstimatedMemUsage(tmpDatumRanges[0].LowVal, len(tmpDatumRanges)))
}
if cwc == nil {
slices.SortFunc(kvRanges, func(i, j kv.KeyRange) int {
return bytes.Compare(i.StartKey, j.StartKey)
})
return kvRanges, nil
}
tmpDatumRanges, err = ranger.UnionRanges(pctx, tmpDatumRanges, true)
if err != nil {
return nil, err
}
// Index id is -1 means it's a common handle.
if indexID == -1 {
tmpKeyRanges, err := distsql.CommonHandleRangesToKVRanges(dctx, []int64{tableID}, tmpDatumRanges)
return tmpKeyRanges.FirstPartitionRange(), err
}
tmpKeyRanges, err := distsql.IndexRangesToKVRangesWithInterruptSignal(dctx, tableID, indexID, tmpDatumRanges, memTracker, interruptSignal)
return tmpKeyRanges.FirstPartitionRange(), err
}
func (b *executorBuilder) buildWindow(v *plannercore.PhysicalWindow) exec.Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
groupByItems := make([]expression.Expression, 0, len(v.PartitionBy))
for _, item := range v.PartitionBy {
groupByItems = append(groupByItems, item.Col)
}
orderByCols := make([]*expression.Column, 0, len(v.OrderBy))
for _, item := range v.OrderBy {
orderByCols = append(orderByCols, item.Col)
}
windowFuncs := make([]aggfuncs.AggFunc, 0, len(v.WindowFuncDescs))
partialResults := make([]aggfuncs.PartialResult, 0, len(v.WindowFuncDescs))
resultColIdx := v.Schema().Len() - len(v.WindowFuncDescs)
exprCtx := b.ctx.GetExprCtx()
for _, desc := range v.WindowFuncDescs {
aggDesc, err := aggregation.NewAggFuncDescForWindowFunc(exprCtx, desc, false)
if err != nil {
b.err = err
return nil
}
agg := aggfuncs.BuildWindowFunctions(exprCtx, aggDesc, resultColIdx, orderByCols)
windowFuncs = append(windowFuncs, agg)
partialResult, _ := agg.AllocPartialResult()
partialResults = append(partialResults, partialResult)
resultColIdx++
}
var err error
if b.ctx.GetSessionVars().EnablePipelinedWindowExec {
exec := &PipelinedWindowExec{
BaseExecutor: base,
groupChecker: vecgroupchecker.NewVecGroupChecker(b.ctx.GetExprCtx().GetEvalCtx(), b.ctx.GetSessionVars().EnableVectorizedExpression, groupByItems),
numWindowFuncs: len(v.WindowFuncDescs),
windowFuncs: windowFuncs,
partialResults: partialResults,
}
exec.slidingWindowFuncs = make([]aggfuncs.SlidingWindowAggFunc, len(exec.windowFuncs))
for i, windowFunc := range exec.windowFuncs {
if slidingWindowAggFunc, ok := windowFunc.(aggfuncs.SlidingWindowAggFunc); ok {
exec.slidingWindowFuncs[i] = slidingWindowAggFunc
}
}
if v.Frame == nil {
exec.start = &logicalop.FrameBound{
Type: ast.Preceding,
UnBounded: true,
}
exec.end = &logicalop.FrameBound{
Type: ast.Following,
UnBounded: true,
}
} else {
exec.start = v.Frame.Start
exec.end = v.Frame.End
if v.Frame.Type == ast.Ranges {
cmpResult := int64(-1)
if len(v.OrderBy) > 0 && v.OrderBy[0].Desc {
cmpResult = 1
}
exec.orderByCols = orderByCols
exec.expectedCmpResult = cmpResult
exec.isRangeFrame = true
err = exec.start.UpdateCompareCols(b.ctx, exec.orderByCols)
if err != nil {
return nil
}
err = exec.end.UpdateCompareCols(b.ctx, exec.orderByCols)
if err != nil {
return nil
}
}
}
return exec
}
var processor windowProcessor
if v.Frame == nil {
processor = &aggWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
}
} else if v.Frame.Type == ast.Rows {
processor = &rowFrameWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
start: v.Frame.Start,
end: v.Frame.End,
}
} else {
cmpResult := int64(-1)
if len(v.OrderBy) > 0 && v.OrderBy[0].Desc {
cmpResult = 1
}
tmpProcessor := &rangeFrameWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
start: v.Frame.Start,
end: v.Frame.End,
orderByCols: orderByCols,
expectedCmpResult: cmpResult,
}
err = tmpProcessor.start.UpdateCompareCols(b.ctx, orderByCols)
if err != nil {
return nil
}
err = tmpProcessor.end.UpdateCompareCols(b.ctx, orderByCols)
if err != nil {
return nil
}
processor = tmpProcessor
}
return &WindowExec{BaseExecutor: base,
processor: processor,
groupChecker: vecgroupchecker.NewVecGroupChecker(b.ctx.GetExprCtx().GetEvalCtx(), b.ctx.GetSessionVars().EnableVectorizedExpression, groupByItems),
numWindowFuncs: len(v.WindowFuncDescs),
}
}
func (b *executorBuilder) buildShuffle(v *plannercore.PhysicalShuffle) *ShuffleExec {
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
shuffle := &ShuffleExec{
BaseExecutor: base,
concurrency: v.Concurrency,
}
// 1. initialize the splitters
splitters := make([]partitionSplitter, len(v.ByItemArrays))
switch v.SplitterType {
case plannercore.PartitionHashSplitterType:
for i, byItems := range v.ByItemArrays {
splitters[i] = buildPartitionHashSplitter(shuffle.concurrency, byItems)
}
case plannercore.PartitionRangeSplitterType:
for i, byItems := range v.ByItemArrays {
splitters[i] = buildPartitionRangeSplitter(b.ctx, shuffle.concurrency, byItems)
}
default:
panic("Not implemented. Should not reach here.")
}
shuffle.splitters = splitters
// 2. initialize the data sources (build the data sources from physical plan to executors)
shuffle.dataSources = make([]exec.Executor, len(v.DataSources))
for i, dataSource := range v.DataSources {
shuffle.dataSources[i] = b.build(dataSource)
if b.err != nil {
return nil
}
}
// 3. initialize the workers
head := v.Children()[0]
// A `PhysicalShuffleReceiverStub` for every worker have the same `DataSource` but different `Receiver`.
// We preallocate `PhysicalShuffleReceiverStub`s here and reuse them below.
stubs := make([]*plannercore.PhysicalShuffleReceiverStub, 0, len(v.DataSources))
for _, dataSource := range v.DataSources {
stub := plannercore.PhysicalShuffleReceiverStub{
DataSource: dataSource,
}.Init(b.ctx.GetPlanCtx(), dataSource.StatsInfo(), dataSource.QueryBlockOffset(), nil)
stub.SetSchema(dataSource.Schema())
stubs = append(stubs, stub)
}
shuffle.workers = make([]*shuffleWorker, shuffle.concurrency)
for i := range shuffle.workers {
receivers := make([]*shuffleReceiver, len(v.DataSources))
for j, dataSource := range v.DataSources {
receivers[j] = &shuffleReceiver{
BaseExecutor: exec.NewBaseExecutor(b.ctx, dataSource.Schema(), stubs[j].ID()),
}
}
w := &shuffleWorker{
receivers: receivers,
}
for j := range v.DataSources {
stub := stubs[j]
stub.Receiver = (unsafe.Pointer)(receivers[j])
v.Tails[j].SetChildren(stub)
}
w.childExec = b.build(head)
if b.err != nil {
return nil
}
shuffle.workers[i] = w
}
return shuffle
}
func (*executorBuilder) buildShuffleReceiverStub(v *plannercore.PhysicalShuffleReceiverStub) *shuffleReceiver {
return (*shuffleReceiver)(v.Receiver)
}
func (b *executorBuilder) buildSQLBindExec(v *plannercore.SQLBindPlan) exec.Executor {
base := exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())
base.SetInitCap(chunk.ZeroCapacity)
e := &SQLBindExec{
BaseExecutor: base,
sqlBindOp: v.SQLBindOp,
normdOrigSQL: v.NormdOrigSQL,
bindSQL: v.BindSQL,
charset: v.Charset,
collation: v.Collation,
db: v.Db,
isGlobal: v.IsGlobal,
bindAst: v.BindStmt,
newStatus: v.NewStatus,
source: v.Source,
sqlDigest: v.SQLDigest,
planDigest: v.PlanDigest,
}
return e
}
// NewRowDecoder creates a chunk decoder for new row format row value decode.
func NewRowDecoder(ctx sessionctx.Context, schema *expression.Schema, tbl *model.TableInfo) *rowcodec.ChunkDecoder {
getColInfoByID := func(tbl *model.TableInfo, colID int64) *model.ColumnInfo {
for _, col := range tbl.Columns {
if col.ID == colID {
return col
}
}
return nil
}
var pkCols []int64
reqCols := make([]rowcodec.ColInfo, len(schema.Columns))
for i := range schema.Columns {
idx, col := i, schema.Columns[i]
isPK := (tbl.PKIsHandle && mysql.HasPriKeyFlag(col.RetType.GetFlag())) || col.ID == model.ExtraHandleID
if isPK {
pkCols = append(pkCols, col.ID)
}
isGeneratedCol := false
if col.VirtualExpr != nil {
isGeneratedCol = true
}
reqCols[idx] = rowcodec.ColInfo{
ID: col.ID,
VirtualGenCol: isGeneratedCol,
Ft: col.RetType,
}
}
if len(pkCols) == 0 {
pkCols = tables.TryGetCommonPkColumnIds(tbl)
if len(pkCols) == 0 {
pkCols = []int64{-1}
}
}
defVal := func(i int, chk *chunk.Chunk) error {
if reqCols[i].ID < 0 {
// model.ExtraHandleID, ExtraPhysTblID... etc
// Don't set the default value for that column.
chk.AppendNull(i)
return nil
}
ci := getColInfoByID(tbl, reqCols[i].ID)
d, err := table.GetColOriginDefaultValue(ctx.GetExprCtx(), ci)
if err != nil {
return err
}
chk.AppendDatum(i, &d)
return nil
}
return rowcodec.NewChunkDecoder(reqCols, pkCols, defVal, ctx.GetSessionVars().Location())
}
func (b *executorBuilder) buildBatchPointGet(plan *plannercore.BatchPointGetPlan) exec.Executor {
var err error
if err = b.validCanReadTemporaryOrCacheTable(plan.TblInfo); err != nil {
b.err = err
return nil
}
if plan.Lock && !b.inSelectLockStmt {
b.inSelectLockStmt = true
defer func() {
b.inSelectLockStmt = false
}()
}
handles, isTableDual := plan.PrunePartitionsAndValues(b.ctx)
if isTableDual {
// No matching partitions
return &TableDualExec{
BaseExecutorV2: exec.NewBaseExecutorV2(b.ctx.GetSessionVars(), plan.Schema(), plan.ID()),
numDualRows: 0,
}
}
decoder := NewRowDecoder(b.ctx, plan.Schema(), plan.TblInfo)
e := &BatchPointGetExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, plan.Schema(), plan.ID()),
indexUsageReporter: b.buildIndexUsageReporter(plan),
tblInfo: plan.TblInfo,
idxInfo: plan.IndexInfo,
rowDecoder: decoder,
keepOrder: plan.KeepOrder,
desc: plan.Desc,
lock: plan.Lock,
waitTime: plan.LockWaitTime,
columns: plan.Columns,
handles: handles,
idxVals: plan.IndexValues,
partitionNames: plan.PartitionNames,
}
e.snapshot, err = b.getSnapshot()
if err != nil {
b.err = err
return nil
}
if e.Ctx().GetSessionVars().IsReplicaReadClosestAdaptive() {
e.snapshot.SetOption(kv.ReplicaReadAdjuster, newReplicaReadAdjuster(e.Ctx(), plan.GetAvgRowSize()))
}
if e.RuntimeStats() != nil {
snapshotStats := &txnsnapshot.SnapshotRuntimeStats{}
e.stats = &runtimeStatsWithSnapshot{
SnapshotRuntimeStats: snapshotStats,
}
e.snapshot.SetOption(kv.CollectRuntimeStats, snapshotStats)
}
if plan.IndexInfo != nil {
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, plan.TblInfo.Name.O+":"+plan.IndexInfo.Name.O)
}
failpoint.Inject("assertBatchPointReplicaOption", func(val failpoint.Value) {
assertScope := val.(string)
if e.Ctx().GetSessionVars().GetReplicaRead().IsClosestRead() && assertScope != b.readReplicaScope {
panic("batch point get replica option fail")
}
})
snapshotTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
if plan.TblInfo.TableCacheStatusType == model.TableCacheStatusEnable {
if cacheTable := b.getCacheTable(plan.TblInfo, snapshotTS); cacheTable != nil {
e.snapshot = cacheTableSnapshot{e.snapshot, cacheTable}
}
}
if plan.TblInfo.TempTableType != model.TempTableNone {
// Temporary table should not do any lock operations
e.lock = false
e.waitTime = 0
}
if e.lock {
b.hasLock = true
}
if pi := plan.TblInfo.GetPartitionInfo(); pi != nil && len(plan.PartitionIdxs) > 0 {
defs := plan.TblInfo.GetPartitionInfo().Definitions
if plan.SinglePartition {
e.singlePartID = defs[plan.PartitionIdxs[0]].ID
} else {
e.planPhysIDs = make([]int64, len(plan.PartitionIdxs))
for i, idx := range plan.PartitionIdxs {
e.planPhysIDs[i] = defs[idx].ID
}
}
}
capacity := len(e.handles)
if capacity == 0 {
capacity = len(e.idxVals)
}
e.SetInitCap(capacity)
e.SetMaxChunkSize(capacity)
e.buildVirtualColumnInfo()
return e
}
func newReplicaReadAdjuster(ctx sessionctx.Context, avgRowSize float64) txnkv.ReplicaReadAdjuster {
return func(count int) (tikv.StoreSelectorOption, clientkv.ReplicaReadType) {
if int64(avgRowSize*float64(count)) >= ctx.GetSessionVars().ReplicaClosestReadThreshold {
return tikv.WithMatchLabels([]*metapb.StoreLabel{
{
Key: placement.DCLabelKey,
Value: config.GetTxnScopeFromConfig(),
},
}), clientkv.ReplicaReadMixed
}
// fallback to read from leader if the request is small
return nil, clientkv.ReplicaReadLeader
}
}
func isCommonHandleRead(tbl *model.TableInfo, idx *model.IndexInfo) bool {
return tbl.IsCommonHandle && idx.Primary
}
func getPhysicalTableID(t table.Table) int64 {
if p, ok := t.(table.PhysicalTable); ok {
return p.GetPhysicalID()
}
return t.Meta().ID
}
func (builder *dataReaderBuilder) partitionPruning(tbl table.PartitionedTable, planPartInfo *plannercore.PhysPlanPartInfo) ([]table.PhysicalTable, error) {
builder.once.Do(func() {
condPruneResult, err := partitionPruning(builder.executorBuilder.ctx, tbl, planPartInfo)
builder.once.condPruneResult = condPruneResult
builder.once.err = err
})
return builder.once.condPruneResult, builder.once.err
}
func partitionPruning(ctx sessionctx.Context, tbl table.PartitionedTable, planPartInfo *plannercore.PhysPlanPartInfo) ([]table.PhysicalTable, error) {
var pruningConds []expression.Expression
var partitionNames []model.CIStr
var columns []*expression.Column
var columnNames types.NameSlice
if planPartInfo != nil {
pruningConds = planPartInfo.PruningConds
partitionNames = planPartInfo.PartitionNames
columns = planPartInfo.Columns
columnNames = planPartInfo.ColumnNames
}
idxArr, err := plannercore.PartitionPruning(ctx.GetPlanCtx(), tbl, pruningConds, partitionNames, columns, columnNames)
if err != nil {
return nil, err
}
pi := tbl.Meta().GetPartitionInfo()
var ret []table.PhysicalTable
if fullRangePartition(idxArr) {
ret = make([]table.PhysicalTable, 0, len(pi.Definitions))
for _, def := range pi.Definitions {
p := tbl.GetPartition(def.ID)
ret = append(ret, p)
}
} else {
ret = make([]table.PhysicalTable, 0, len(idxArr))
for _, idx := range idxArr {
pid := pi.Definitions[idx].ID
p := tbl.GetPartition(pid)
ret = append(ret, p)
}
}
return ret, nil
}
func getPartitionIDsAfterPruning(ctx sessionctx.Context, tbl table.PartitionedTable, physPlanPartInfo *plannercore.PhysPlanPartInfo) (map[int64]struct{}, error) {
if physPlanPartInfo == nil {
return nil, errors.New("physPlanPartInfo in getPartitionIDsAfterPruning must not be nil")
}
idxArr, err := plannercore.PartitionPruning(ctx.GetPlanCtx(), tbl, physPlanPartInfo.PruningConds, physPlanPartInfo.PartitionNames, physPlanPartInfo.Columns, physPlanPartInfo.ColumnNames)
if err != nil {
return nil, err
}
var ret map[int64]struct{}
pi := tbl.Meta().GetPartitionInfo()
if fullRangePartition(idxArr) {
ret = make(map[int64]struct{}, len(pi.Definitions))
for _, def := range pi.Definitions {
ret[def.ID] = struct{}{}
}
} else {
ret = make(map[int64]struct{}, len(idxArr))
for _, idx := range idxArr {
pid := pi.Definitions[idx].ID
ret[pid] = struct{}{}
}
}
return ret, nil
}
func fullRangePartition(idxArr []int) bool {
return len(idxArr) == 1 && idxArr[0] == plannercore.FullRange
}
type emptySampler struct{}
func (*emptySampler) writeChunk(_ *chunk.Chunk) error {
return nil
}
func (*emptySampler) finished() bool {
return true
}
func (b *executorBuilder) buildTableSample(v *plannercore.PhysicalTableSample) *TableSampleExecutor {
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
e := &TableSampleExecutor{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.TableInfo,
startTS: startTS,
}
tblInfo := v.TableInfo.Meta()
if tblInfo.TempTableType != model.TempTableNone {
if tblInfo.TempTableType != model.TempTableGlobal {
b.err = errors.New("TABLESAMPLE clause can not be applied to local temporary tables")
return nil
}
e.sampler = &emptySampler{}
} else if v.TableSampleInfo.AstNode.SampleMethod == ast.SampleMethodTypeTiDBRegion {
e.sampler = newTableRegionSampler(
b.ctx, v.TableInfo, startTS, v.PhysicalTableID, v.TableSampleInfo.Partitions, v.Schema(),
v.TableSampleInfo.FullSchema, e.RetFieldTypes(), v.Desc)
}
return e
}
func (b *executorBuilder) buildCTE(v *plannercore.PhysicalCTE) exec.Executor {
storageMap, ok := b.ctx.GetSessionVars().StmtCtx.CTEStorageMap.(map[int]*CTEStorages)
if !ok {
b.err = errors.New("type assertion for CTEStorageMap failed")
return nil
}
chkSize := b.ctx.GetSessionVars().MaxChunkSize
// iterOutTbl will be constructed in CTEExec.Open().
var resTbl cteutil.Storage
var iterInTbl cteutil.Storage
var producer *cteProducer
storages, ok := storageMap[v.CTE.IDForStorage]
if ok {
// Storage already setup.
resTbl = storages.ResTbl
iterInTbl = storages.IterInTbl
producer = storages.Producer
} else {
if v.SeedPlan == nil {
b.err = errors.New("cte.seedPlan cannot be nil")
return nil
}
// Build seed part.
corCols := plannercore.ExtractOuterApplyCorrelatedCols(v.SeedPlan)
seedExec := b.build(v.SeedPlan)
if b.err != nil {
return nil
}
// Setup storages.
tps := seedExec.RetFieldTypes()
resTbl = cteutil.NewStorageRowContainer(tps, chkSize)
if err := resTbl.OpenAndRef(); err != nil {
b.err = err
return nil
}
iterInTbl = cteutil.NewStorageRowContainer(tps, chkSize)
if err := iterInTbl.OpenAndRef(); err != nil {
b.err = err
return nil
}
storageMap[v.CTE.IDForStorage] = &CTEStorages{ResTbl: resTbl, IterInTbl: iterInTbl}
// Build recursive part.
var recursiveExec exec.Executor
if v.RecurPlan != nil {
recursiveExec = b.build(v.RecurPlan)
if b.err != nil {
return nil
}
corCols = append(corCols, plannercore.ExtractOuterApplyCorrelatedCols(v.RecurPlan)...)
}
var sel []int
if v.CTE.IsDistinct {
sel = make([]int, chkSize)
for i := 0; i < chkSize; i++ {
sel[i] = i
}
}
var corColHashCodes [][]byte
for _, corCol := range corCols {
corColHashCodes = append(corColHashCodes, getCorColHashCode(corCol))
}
producer = &cteProducer{
ctx: b.ctx,
seedExec: seedExec,
recursiveExec: recursiveExec,
resTbl: resTbl,
iterInTbl: iterInTbl,
isDistinct: v.CTE.IsDistinct,
sel: sel,
hasLimit: v.CTE.HasLimit,
limitBeg: v.CTE.LimitBeg,
limitEnd: v.CTE.LimitEnd,
corCols: corCols,
corColHashCodes: corColHashCodes,
}
storageMap[v.CTE.IDForStorage].Producer = producer
}
return &CTEExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
producer: producer,
}
}
func (b *executorBuilder) buildCTETableReader(v *plannercore.PhysicalCTETable) exec.Executor {
storageMap, ok := b.ctx.GetSessionVars().StmtCtx.CTEStorageMap.(map[int]*CTEStorages)
if !ok {
b.err = errors.New("type assertion for CTEStorageMap failed")
return nil
}
storages, ok := storageMap[v.IDForStorage]
if !ok {
b.err = errors.Errorf("iterInTbl should already be set up by CTEExec(id: %d)", v.IDForStorage)
return nil
}
return &CTETableReaderExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
iterInTbl: storages.IterInTbl,
chkIdx: 0,
}
}
func (b *executorBuilder) validCanReadTemporaryOrCacheTable(tbl *model.TableInfo) error {
err := b.validCanReadTemporaryTable(tbl)
if err != nil {
return err
}
return b.validCanReadCacheTable(tbl)
}
func (b *executorBuilder) validCanReadCacheTable(tbl *model.TableInfo) error {
if tbl.TableCacheStatusType == model.TableCacheStatusDisable {
return nil
}
sessionVars := b.ctx.GetSessionVars()
// Temporary table can't switch into cache table. so the following code will not cause confusion
if sessionVars.TxnCtx.IsStaleness || b.isStaleness {
return errors.Trace(errors.New("can not stale read cache table"))
}
return nil
}
func (b *executorBuilder) validCanReadTemporaryTable(tbl *model.TableInfo) error {
if tbl.TempTableType == model.TempTableNone {
return nil
}
// Some tools like dumpling use history read to dump all table's records and will be fail if we return an error.
// So we do not check SnapshotTS here
sessionVars := b.ctx.GetSessionVars()
if tbl.TempTableType == model.TempTableLocal && sessionVars.SnapshotTS != 0 {
return errors.New("can not read local temporary table when 'tidb_snapshot' is set")
}
if sessionVars.TxnCtx.IsStaleness || b.isStaleness {
return errors.New("can not stale read temporary table")
}
return nil
}
func (b *executorBuilder) getCacheTable(tblInfo *model.TableInfo, startTS uint64) kv.MemBuffer {
tbl, ok := b.is.TableByID(context.Background(), tblInfo.ID)
if !ok {
b.err = errors.Trace(infoschema.ErrTableNotExists.GenWithStackByArgs(b.ctx.GetSessionVars().CurrentDB, tblInfo.Name))
return nil
}
sessVars := b.ctx.GetSessionVars()
leaseDuration := time.Duration(variable.TableCacheLease.Load()) * time.Second
cacheData, loading := tbl.(table.CachedTable).TryReadFromCache(startTS, leaseDuration)
if cacheData != nil {
sessVars.StmtCtx.ReadFromTableCache = true
return cacheData
} else if loading {
return nil
}
if !b.ctx.GetSessionVars().StmtCtx.InExplainStmt && !b.inDeleteStmt && !b.inUpdateStmt {
tbl.(table.CachedTable).UpdateLockForRead(context.Background(), b.ctx.GetStore(), startTS, leaseDuration)
}
return nil
}
func (b *executorBuilder) buildCompactTable(v *plannercore.CompactTable) exec.Executor {
if v.ReplicaKind != ast.CompactReplicaKindTiFlash && v.ReplicaKind != ast.CompactReplicaKindAll {
b.err = errors.Errorf("compact %v replica is not supported", strings.ToLower(string(v.ReplicaKind)))
return nil
}
store := b.ctx.GetStore()
tikvStore, ok := store.(tikv.Storage)
if !ok {
b.err = errors.New("compact tiflash replica can only run with tikv compatible storage")
return nil
}
var partitionIDs []int64
if v.PartitionNames != nil {
if v.TableInfo.Partition == nil {
b.err = errors.Errorf("table:%s is not a partition table, but user specify partition name list:%+v", v.TableInfo.Name.O, v.PartitionNames)
return nil
}
// use map to avoid FindPartitionDefinitionByName
partitionMap := map[string]int64{}
for _, partition := range v.TableInfo.Partition.Definitions {
partitionMap[partition.Name.L] = partition.ID
}
for _, partitionName := range v.PartitionNames {
partitionID, ok := partitionMap[partitionName.L]
if !ok {
b.err = table.ErrUnknownPartition.GenWithStackByArgs(partitionName.O, v.TableInfo.Name.O)
return nil
}
partitionIDs = append(partitionIDs, partitionID)
}
}
return &CompactTableTiFlashExec{
BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID()),
tableInfo: v.TableInfo,
partitionIDs: partitionIDs,
tikvStore: tikvStore,
}
}
func (b *executorBuilder) buildAdminShowBDRRole(v *plannercore.AdminShowBDRRole) exec.Executor {
return &AdminShowBDRRoleExec{BaseExecutor: exec.NewBaseExecutor(b.ctx, v.Schema(), v.ID())}
}